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Abstract: Every step we take in the digital world leaves behind a record of our behavior; a digital
footprint. Research has suggested that algorithms can translate these digital footprints into accurate
estimates of psychological characteristics, including personality traits, mental health or intelligence.
The mechanisms by which Al generates these insights, however, often remain opaque. In this paper,
we show how Explainable AI (XAI) can help domain experts and data subjects validate, question,
and improve models that classify psychological traits from digital footprints. We elaborate on two
popular XAI methods (rule extraction and counterfactual explanations) in the context of Big Five
personality predictions (traits and facets) from financial transactions data (N = 6408). First, we
demonstrate how global rule extraction sheds light on the spending patterns identified by the model
as most predictive for personality, and discuss how these rules can be used to explain, validate,
and improve the model. Second, we implement local rule extraction to show that individuals are
assigned to personality classes because of their unique financial behavior, and there exists a positive
link between the model’s prediction confidence and the number of features that contributed to the
prediction. Our experiments highlight the importance of both global and local XAI methods. By
better understanding how predictive models work in general as well as how they derive an outcome
for a particular person, XAI promotes accountability in a world in which Al impacts the lives of
billions of people around the world.

Keywords: psychological profiling; predictive modeling; behavioral data; explainable artificial
intelligence; rule extraction; counterfactual explanations

1. Introduction

The information age is characterized by a wealth of user-generated data that is col-
lected with every step a user takes in the digital environment. These digital footprints are
increasingly available for academics, businesses and governments [1] and have been shown
to provide highly intimate insights into people’s lives as well as the ways in which they
think, feel and behave. For example, digital footprints can be used to predict personality
traits [2,3], mental health [4], sexual and political orientation [2,5] or intelligence [2]. The
process of translating digital footprints into meaningful psychological profiles with the
help of machine learning has been termed ‘psychological profiling’, and drives applica-
tions in a variety of areas ranging from marketing to employment to mental health (see
Figure 1 for a conceptual overview). As Matz et al. [6] define it, psychological profiling is
“the automated assessment of psychological traits from digital footprints”. Over the past
decade, researchers have been tapping into a broad variety of data sources for psycholog-
ical profiling, including social media data (e.g., Facebook likes and status updates [2,7]),
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mobile sensing data [8], music listening preferences [9,10], mobility behaviors [11] as well
as financial transaction records [12,13].
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Figure 1. Explainable Al in applications that leverage behavioral data for psychological profiling.
1.1. Al as a Black Box

Machine learning models that classify psychological traits from behavior can be highly
accurate. However, at the same time, their structure can be very complex, which has earned
them the reputation of being a ‘black box’ that is difficult to penetrate. The complexity
arises from either the learning technique (e.g., Random Forest models), the data, or both.
Consequently, it is often difficult—if not impossible—to understand how classifications
were made when using nonlinear models without relying on interpretation techniques
like the ones we use in this study. Even for linear models or decision trees, it can be
challenging to gain meaningful insights into how classifications are made, because of the
high dimensional and sparse nature of behavioral data [14-17]. For example, if we want to
predict people’s personality based on the Facebook pages they ‘like’, a user is represented
by a binary feature for every page, which results in an enormous feature space. Linear
models trained on these data end up having a large number of features (i.e., every Facebook
page becomes a separate feature in the model), each of which is assigned a corresponding
weight. Alternatively, only the features with the largest weights can be inspected. Because
the data is sparse, however, only a small fraction of the classified instances is ‘explained’.
Kosinski et al. [2], for example, predicted personal traits using over 50,000 Facebook pages
and interpreted the models by listing the pages that are most related to a trait of interest.
Amongst the top predictors for high intelligence were pages like ‘Science” and ‘Curly Fries’.
Due to the data sparsity, however, these pages are only relevant (‘liked’) by a small fraction
of all users predicted as intelligent, which leaves a substantial part of the classifications
unexplained (on average, a user liked 170 pages out of a total of 55,814 pages that were
used by the model).

In addition to the outlined challenges associated with the high dimensionality and
sparsity of digital footprint data, the non-redundancy of the data also impacts the ability to
meaningfully interpret model predictions. Given that many behavioral features are relevant
for the classification task, applying feature input selection or dimensionality reduction
generally results in worse predictive performance, and makes a detailed interpretation of
the model impossible [14,18,19]. Taken together, the high dimensionality and sparsity of
digital footprint data in combination with the explosion in potentially relevant features,
drive the complexity of models developed from behavioral data, making them difficult
to interpret.
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1.2. Why the Interpretability of Al Matters

The lack of transparency and inability to explain decisions of Al systems for psycho-
logical profiling from digital traces creates challenges for their adoption. We distinguish
three main reasons for the need of interpretability: (1) trust and compliance, (2) insights
and (3) model improvement.

1.2.1. Trust and Compliance

Explaining model outputs helps validate and justify the relations learned from the data
and compare this with theoretical assumptions and domain knowledge. This can increase
trust of experts to eventually accept these systems [20,21]. Trusting a model implies believ-
ing its reliability or truth [21]. Next to the model’s out-of-sample predictive performance,
the explanation needs to provide evidence that the model learned a meaningful pattern that
is not only useful in specific circumstances. The need for trust and validation also stems
from increasing regulatory pressure. Both the United States (US) and European Union (EU)
are pushing toward a regulatory framework for transparent and accountable Al, and global
organizations like OECD and G20 aim for a more human-centric approach. Especially for
systems deemed as high-risk (defined in the EU’s recent Al Act, and referring to every
system that can negatively impact the life of a human), explainability has emerged as a key
business and regulatory challenge. For example, systems that regulate access to financial
services, educational opportunities or employment fall in this category. Psychological
profiling can also be part of such applications. Think of talent acquisition and management
systems that assess job-relevant characteristics (In the last decade, many companies have
been created that leverage Al for more fair, efficient and effective talent acquisition and
management, for example, advertising online job vacancies or measuring the fit of job
seekers with open roles in a company using behavioral data (game-based assessments
or video interviews). Examples are pymetrics (https://www.pymetrics.ai/ (accessed on
2 November 2021)) and Humantic Al (https://humantic.ai/ (accessed on 2 November
2021))), or systems to prioritize medical aid (e.g., to people who display early signs of
depression [1,4]).

Appropriate human-machine interface tools should be put in place that allow experts
to interpret the model outputs and overrule them when necessary. This is also important to
guarantee safe and fair Al systems that do not exhibit differential effects on subgroups or
underrepresented groups [22], which can open up organizations to legal entanglements or
cause reputational damage [23,24]. In HR analytics, for example, when predicting which
persons to invite for an interview, based on resumes and behavioral assessments, it is
important to know why a model makes decisions, to ensure there is no unfair treatment of
certain groups like women or immigrants (for example, think of the algorithmic discrimina-
tion in Amazon’s male-biased hiring tool [23] or Uber running job ads targeted exclusively
at men [24]). Interpretability techniques might not directly solve these issues, but can be
used as a tool to audit models and detect sources of bias that can arise from skewed data
collection or real human bias hidden in the data. In addition, regulatory requirements
and increasing customer expectations push companies to provide transparency to those
affected by the data-driven decisions (hereafter ‘data subjects’). For example, the General
Data Protection Regulation (GDPR) notes the ‘right to explanation’ for those affected by
decisions of Al systems.

1.2.2. Improved Insights

A second reason for model explainability stems from a broader goal of predictive
modeling: to learn something about a domain. Interpretability allows researchers and
domain experts to verify knowledge encoded in the models, which can be useful for
building on prior research, or for theory building and exploratory work. For example,
businesses might ask: what are the main reasons we are inviting job applicants to an
interview based on their resumes and motivations? Psychologists might wonder: what
are the behavioral manifestations of people on social media who suffer from burn-outs?
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Explaining Al systems helps explore new insights, that, in turn, can inspire new hypotheses
to be tested with more traditional, statistical methods [25]. Insights into personality
predictions from behavior can also lay groundwork for (research on) interventions targeting
specific behavior (e.g., to promote well-being [11]).

In addition, improved insights might translate into a competitive advantage when
companies are able to share these insights with consumers. In targeted marketing and sales
efforts relying on the prediction of psychological profiles [1], for example, explainability could
be used to validate the models predictions and meet the needs of demanding customers who
want both control and service [6,26]. As Matz et al. [6] argue, insight into not just the data that
is collected but also the inferences that are derived from it, can help data consumers make more
informed decisions that are based on trade-offs between improved service and privacy. In
line with this, non-profit initiatives like mePrism (https:/ /www.meprism.com/ (accessed on
4 November 2021)) and Digita (https://www.digita.ai/ (accessed on 4 November 2021)) aim
to give insight to online users on the data that’s collected about them and how companies
use this information, and support them to be in charge over their digital footprints. The
European Commission’s Digital Services Act (DSA) further emphasizes this by noting that
recipients of online advertisements should get “meaningful explanations of the logic used”
for “determining that specific advertisement is to be displayed to them” (paragraph 52).
Another example of giving insights to data subjects is providing personalized feedback
to job candidates on data-driven insights about their strengths, development needs and
organizational fit, that can in turn guide them in future job search endeavors. Moreover,
this can improve the candidate experience and the overall quality of the recruiting process,
and eventually benefit the company as well [27].

1.2.3. Model Improvement

Explanations can be used to improve prediction models and identify weaknesses that
arise from models overfitting to the data and/or perpetuating historical biases. When
modeling human behavior, monitoring the important predictors of a model is crucial,
for example, to identify reasons for drops in performance over time, that can be caused
by changing behavior; a phenomenon known as ‘concept drift’ (for example changing
spending behavior in times of a pandemic [28]; we refer to Stachl et al. [22] and Lu et al. [29]
for more examples). Technology and culture are evolving at a rapid pace which means
that the purpose of technical devices and the way we interact with them are constantly
changing. The information captured by online behavior can thus change over time and
lead the model’s performance to drop [29]. Although a number of control mechanisms can
be put into place (e.g., online learning [29,30]), understanding which behavioral features
have a (large) impact on a model’s classifications through explanations can help domain
experts make sound statements on the expected lifetime of a model and its sensitivity to
rapidly changing technological indicators and digital behavior. For example, the type of
mobile phone applications that people use might change more rapidly compared to the
genres of movies people watch or the type of places they visit on the weekend, which
reflect more ‘stable” behavior.

Explanations can also help understand the generalization ability of a model beyond
the sample data or improve overall troubleshooting. For example, some behavior can be
specific to populations located in geographical regions. If the model picks up these specific
behaviors and gives them a large weight in the decisions, this might limit the usability of
that model in other contexts.

1.3. Using Explainable Al to Overcome Black Box Approaches: Research Overview

Over the last decade, a growing body of research has been dedicated to the field of
Explainable Artificial Intelligence (XAI). The aim of this research area is to develop and
apply algorithms to explain prediction models and individual predictions. The desire to
have both predictive and interpretable models resulted in an explosion of new methods
to extract useful information from black box models. (A detailed overview of all XAI
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methods proposed in the literature is beyond the scope of this study, so we point readers
interested in learning more about all different techniques to recent overviews, for example,
Arrieta et al. [31], Guidotti et al. [32], or Molnar [33]. In this study, we select methods that
we believe are particularly suitable to explain classifications of models from large-scale
behavioral data).

In this study, we build on this research to address the challenge of model interpretabil-
ity. We contribute to the literature in different ways: (1) first, this study presents, to the
best of our knowledge, the first application of rule-based XAI methods (rule extraction and
counterfactual explanations) to the field of computational psychology, in which model in-
terpretability has been overlooked up to now; (2) second, using a case study of personality
predictions from real-world consumer spending data, we apply XAl to provide global in-
sight into why a model makes classifications of interest (e.g., when does the model typically
classify someone as Neurotic based on their behavior?) and generate more granular, local
explanations for why a particular decision was made (e.g., why does the model classify
this person as Neurotic?); (3) third, we empirically demonstrate the importance of both
global and local XAI for different use cases (model acceptance, validation, insights and
improvement), on the basis of concrete examples from the case study; and, (4) lastly, we
elaborate on the practical implications of the use of XAl, and the difference between local
and global methods, for domain experts and researchers interacting with, and data subjects
being targeted by the model.

The remainder of this paper is structured as follows: in Section 2, we describe the XAI
techniques and motivate why we select these methods in this paper. Next, in Section 3, we
describe the data and methods used in our case study. We apply XAl in the context of Big
Five personality predictions from real-world financial transactions data collected by a non-
profit organization in the United States (N = 6408). To bring in an angle that goes beyond the
prediction task in related work, we model personality hierarchically: we model both traits
and their underlying facets (e.g., Extraversion can be broken down in facets: Assertivism,
Energy and Sociability). In Section 3.5, we first discuss the classification performance of
the models, and then go over the observations from the model interpretability analysis. In
Section 4, we summarize the main findings and their implications, and point at a good
deal of room for further research at the intersection of XAl and computational psychology.
Finally, Section 5 sets out the conclusions of this study.

2. Introduction to the Field of Explainable AI (XAI)

As described in Section 1, models that classify psychological traits from behavioral
data are often considered ‘black box” approaches. That is, it is generally difficult to de-
termine why and under which conditions a class of interest (hereafter also referred to as
the ‘positive class’) was predicted. In an attempt to open the black box, the field of XAI
field has started to develop tools and frameworks that provide insights into how models
work, providing human experts with the ability to understand the logic that goes into the
algorithm’s decisions. A large body of work has focused on post hoc explanations to extract
information about a model’s behavior without addressing details of their inner workings.
Instead, these methods only use the input data and the model’s predicted outputs. One
of the most prominent advantages of post hoc explainability is that interpretations can
be provided after developing complex models without needing to sacrifice predictive
performance [33].

Explanation methods can have a global or local scope. Global explanations give insight
into models at an aggregate level, over all the model’s classifications. Local explanations
explain individual classifications. In this study, we use both global and local XAI methods to
explain classifications (There exists a subtle yet important distinction between explanation
methods that explain (discrete) classifications vs. (continuous) predicted scores (we refer to
Fernandez et al. [34] for a full discussion). In this study, we focus on explaining classifica-
tions that drive concrete decisions and/or actions to be taken) of a model Cjy, that predict
a psychological trait Y (i.e., target variable) from behavioral data X C RN*M where N and
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M, respectively, indicate the number of data subjects (i.e., instances) and features. Note that
we solely focus on classification tasks in this study. Although prior work on psychological
profiling has predominantly focused on predictive performance [22,35], there have been
attempts at explaining the underlying mechanisms. Some studies have highlighted the face
validity of predictive models by showing the most related predictors to the target (based
on univariate correlations prior to modeling that do not necessarily reflect what the model
learned from the data [2]), or by providing a list of important features [8,13,36]. While such
approaches offer initial insights, they do not reflect how the (combination of) feature values
impact(s) the predicted classes, nor the extent to which the classifications are explained.
Understanding the latter is particularly valuable when modeling very sparse data where
one feature might only be relevant to a small number of instances (e.g., liking ‘Curly Fries’
on Facebook might be predictive of IQ, but only a small fraction of the population likes
‘Curly Fries” on Facebook). In this paper, we therefore move beyond what has previously
been suggested by the literature. Our selection of methods is based on the following
criteria: we exclude methods that might not be suitable when modeling high-dimensional
behavioral data. For example, visualizations of feature effects are mentioned in Stachl
et al. [22] as a way to increase interpretability in personality computing applications, by
tracing how the outcome variable changes as the value of a feature changes (e.g., score on
Extraversion). However, we argue that this approach is not appropriate for models with
hundreds to thousands of features, where many features might be relevant for the task,
and for which the important features may vary substantially between classifications (as we
will demonstrate in Section 3.5). Users who want to understand how a specific variable
relates to the predicted outcome (either at an aggregate or local level) might still benefit
from using this approach; however, it is impractical to show how classifications come about
by showing the effect of just one or two features (i.e., interaction plot).

As a global XAl method, we therefore use rule extraction to capture under which
conditions a class of interest is predicted, and discuss how these explanation rules can be
used to validate learned relations, generate new hypotheses, and identify weaknesses of
the model. To explain predictions at the local level, we use counterfactual explanations
that reveal which features contributed to a single classification, or more precisely, point to
changes of the feature values that lead the model to make another decision. In the following
subsections, we go over rule extraction and counterfactual explanations in more detail.

2.1. Rules as Global Explanations

We use rule extraction as a global method to gain insight into the classification models.
Rule extraction has been proposed in the literature to generate explanations by distilling a
comprehensible set of rules (hereafter ‘explanation rules’) from a complex classification
model Cys [15,37-39]. Rule extraction is based on surrogate modeling of which the goal
is to use an interpretable model to approximate the predictions of a more complex model
Y. The interpretable model used as surrogate can be a concise set of if-then-else rules (in
which case it’s called ‘rule extraction’) or a linear model with a small number of features.
The complexity of the rules is restricted so that the final explanations are comprehensible
to humans. (Rule extraction can be challenging for high-dimensional, sparse data, as the
black box model needs to be replaced by many rules to explain a substantial fraction of
the classifications, which leaves the user again with an incomprehensible explanation. To
address this, Ramon et al. [15] proposed a technique based on metafeatures (i.e., clusters of
the original features) to extract a concise set of rules that more accurately approximates
the model’s behavior. In this study, however, we apply rule extraction on the original
data, because the dimensionality and sparsity of the data used in the case study are still
manageable). A main motivation for the use of rule extraction is to combine the desirable
predictive behavior of complex classification techniques with the comprehensibility of
decision trees and/or rules.

We use rule extraction for different reasons. First, an important advantage of rule
extraction is that the learned relations between features and predicted classes are not lost.
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Another advantage is that it approximates classification behavior of a model. This is in
contrast to other XAI methods, like feature relevance methods, that do not reflect how
features impact predicted classes, but merely provide a list of important features [34].
Moreover, using rule extraction—or surrogate models in general—we can quantify the
extent to which the model is explained using a metric called Fidelity. (If we use a linear
model as surrogate to approximate the model’s behavior, we can also compute Fidelity
of the explanation. However, the same limitations as for feature relevance lists hold. The
information about the interaction between features and their correspondence to the class
gets lost. Moreover, it gets more difficult to grasp the classification behavior. There will exist
a very large number of conditions that explain when the model predicts a particular output,
rendering the explanation less comprehensible). Fidelity can be operationalized in different
ways. Here, we refer to the metric that computes the overlap between the predicted
classes of the model Y and the classes predicted by the explanation rules Y,,;, as Fidelity.
(Essentially, you can compare Fidelity to Accuracy that is used as a performance metric
in a traditional machine learning context. Accuracy measures to what extent the model’s
predictions Y overlap with the ground-truth classes Y. In contrast, Fidelity measures to what
extent the explanation rules’ predicted classes Yo ules overlap with the model’s predicted
classes Y). The goal is to extract rules that have high Fidelity, i.e., approximate the patterns
learned in the original model to the best possible extent. For imbalanced problems, it is
often more insightful to use the Fscore of predicting the output of the model to measure
the quality of the explanation, which we refer to as Fscorey. Fscores is measured by the
harmonic mean between Recall; and Precisiony, and reflects how well the “positive class’
is explained by the rules. Recall; measures the proportion of positives predicted by the
model that are retrieved, and Precision s measures the proportion of correct classifications
among the instances predicted as a class of interest (a “positive’) by the rules. All else equal,
we prefer an explanation rule set that results in a higher Fscorey, because this explanation
reflects the original model’s predictions more accurately. We measure the quality of rules
on an out-of-sample test set, as we want the explanation to reflect the model’s prediction
behavior on new data, not just on the training data. (The same challenges of overfitting
in machine learning hold in the surrogate modeling context. As an extreme example,
consider a decision table as an explanation that memorizes when the model predicts a
class of interest. For new data, the table would never classify someone as a class of interest
(the persons’ identifiers will never match an identifier in the table). We would get a high
in-sample, but a low out-of-sample Fidelity, because the decision table does not reflect how
the model is actually making classifications from the data).

2.2. Counterfactual Rules as Local Explanations

For explaining model classifications at the local level, we compute counterfactual
rules [16,17,40]. Compared to local feature relevance methods, such as Local Interpretable
Model-agnostic Explanations (LIME) [41] and SHapley Additive exPlanations (SHAP) [42],
counterfactual rules explain the model’s predicted class instead of the score [17,34]. Follow-
ing Martens & Provost (2014), who defined counterfactuals for document classifications,
we define counterfactual rules for a classification as a set of features from the instance that
is causal: changing the value of the features causes the system’s decision to change. In
other words, the decision would have been different if not for the presence of this set of
features. There are multiple ways of defining changes of the feature values. A common
approach is to simulate the ‘missingness’ of a feature by replacing the value by the mean
value of the feature (for continuous features), or the median or mode value (for sparse
numerical, binary or categorical data). In essence, we are asking ourselves the question if
the model would make the same decision if a feature in question would be missing [34]. It
is important, both in research and practice, that the choice on how to define ‘changes’ is
clearly mentioned, because, depending on this, slightly different explanations may arise.

We use counterfactual explanations, first of all, because they point at a set of features
without which the Al system would have made a different decision. They help us under-
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stand how features affect decisions of Al systems, rather than predicted scores, in terms of
domain knowledge, rather than in terms of modeling techniques. Providing a concrete
justification for a decision gives data subjects insight into changes to receive a desired result
in the future, based on their current behavior, and is consistent with requirements specified
in regulatory frameworks [40]. Another advantage is that the explanation only comprises a
(small) fraction of all features used in a model, which makes it a particularly interesting
approach to explain decisions of models with high-dimensional feature dimensions. Prior
work showed cases where these explanations can be obtained only in seconds for models
on large-scale data, and that explanations typically consisted of a handful to a few dozen
of features [16,17,26]. Moreover, in contrast to local feature relevance methods, where it is
non-trivial to choose the complexity setting (i.e., how many features to show), the answer
for counterfactuals is clear-cut: those features are shown that allow for the creation of a
counterfactual rule [17].

3. Case Study: Predicting Personality Traits from Financial Transaction Records

We use a case study on the prediction of Big Five personality traits from real-world
transactions data to demonstrate how global and local XAI methods can help shed light on
the ways by which the prediction model learns and makes decisions about the target indi-
vidual.

Figure 2 depicts the methodology used in our case study. We describe (i) how the data
was collected (Section 3.1), (ii) how the data was prepared for the analyses (Section 3.2),
(iii) the model specifications (Section 3.3), as well as (iv) the ways in which XAI can help
understand and validate the models (Section 3.4). (This methodology can be applied
more generally to psychological profiling applications that mine other types of behavioral
data, such as social media data, GPS location data and web browsing histories). In what
follows, we go over each step in more detail. In Section 3.5, the results of the case study
are discussed.

3.1
Data Data Model
; I— I—ol Modelin
[ collection [ preparation 9 interpretability
(" Financial transactions  , Feature engineering Techniques Global explanations
Personality traits Overall spending aew LOgistic Regression Rule extraction
Category spending VA& Linear Regression Feature relevance
Random Forest
@ Target variables . Local explanations

(5-fold cross-validation)
Evaluation & selection
- Area under ROC curve

Percentile-based discretization Counterfactual rules

Figure 2. Methodology of the case study to develop models that classify people’s personality from
financial transactions (Sections 3.1-3.3) and gain insight into the final models by means of global and
local XAI methods (Section 3.4).

3.1. Data Collection
3.1.1. Financial Transactions

We use financial transactions data collected by a non-profit based in the US. The
organization offers a money management application to help people manage their savings
more effectively. Individuals can join the platform by linking their bank accounts, including
checking, savings and credit card accounts. Using these data, the organization provides
people with financial decision-making aid and motivates them to achieve savings objectives
by offering rewards and lotteries. As part of their onboarding experience, users can
voluntarily complete a personality questionnaire. For the purpose of our case study, we
use de-identified historical transactions between January and December 2019. We subset
the data to active accounts to guarantee a sufficient amount of data per person: we discard
individuals with fewer than five transactions or less than $100 spent on a monthly basis,
or fewer than five distinct spending categories. (The users of the money management
application have relatively large financial constraints. For this reason, we set more flexible
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criteria compared to related studies (see for example Tovanich et al. [13])). This exclusion
procedure leaves us with N = 6408 data subjects of whom we have transactions data
(linked to their self-reported personality profiles) that can be fed into the prediction models.
The transactions data include a time stamp indicating when the transaction was made,
the amount of the transaction (in US Dollar), and the category of the transaction. Each
transaction belongs to one of the 285 spending categories.

Table 1 shows summary statistics of the sample data. The individuals observed in
the data generally have a low-income profile, i.e., they spend, on average, about $15,000
over the course of one year. In the US, a household has on average $63,036 of expenditures
per year [43]. With an average household consisting of 2.5 adults, this is equivalent to
annual expenditures of $25,214 per capita. The average amount of yearly expenditures for
low-income households with a total income before taxes less than $15,000 is lower, and
equals $15,745 per capita [43].

Table 1. Summary statistics of the transactions data. The data contains 4,539,634 spending records
between January and December 2019 of 6408 data subjects. Only individuals with at least five
transactions and $100 spent in each month, and at least five distinct spending categories are selected.
There are 285 spending categories and the average household consists of 3 people.

Per Customer Mean (Std) Median
Total amount transactions $47,236.26 ($58,441.34) $33,649.78
Amount per transaction $66.77 ($53.94) $16.71
Number of transactions 708.43 (441.49) 621
Unique number of spending categories 43.66 (16.12) 43
Per Spending Category Mean (Std) Median
Total amount transactions $1,062,070 ($4,142,055) $29,256.64
Rel. total amount transactions 0.0035 (0.014) 9.7 x 107
Number of transactions 15,928.54 (51,812.71) 544
Rel. number of transactions 0.0035 (0.011) 1.2 x 10~%
Customer support 981.79 (1494.70) 240
Rel. customer support 0.15 (0.23) 0.04

3.1.2. Personality Traits

Personality traits are conceptualized as relatively stable characteristics that explain
and predict differences in cognition, affect and behavior. Decades of research have sug-
gested that there are five dimensions that explain these individual differences across a
broad variety of contexts, including different cultures or language. These five dimensions
are known as the Big Five (BF) Model of Personality [44]. The BF model proposes five
traits that capture individual differences in the way people think, feel and behave [44]:
(1) Extraversion, the tendency to seek stimulation in the company of others, to be outgoing
and energetic; (2) Agreeableness, the tendency to be warm, compassionate and cooperative;
(8) Conscientiousness, the tendency to show self-discipline, aim for achievement, and be
organized; (4) Neuroticism, the tendency to experience unpleasant emotions easily; and
(5) Openness to Experience (or simply Openness), the tendency to be intellectually curious,
creative and open to feelings [13,44]. Personality theory specifies that traits are hierarchi-
cally organized [44,45]: each domain subsumes more specific facets that have a unique
variance not entirely explained by the higher order Big Five. (Adaptations of the original
Big Five Inventory (BFI) questionnaire (e.g., BFI-2-S5)—that was not intended as hierarchi-
cal measure—allow to simultaneously assess someone’s personality at the trait and facet
level). The facets vary slightly across models and measures, but for the purpose of this
case study we leverage the Big Five Inventory (BFI-2) questionnaire which suggests the
following facets:

¢  Extraversion: Sociability, Assertiveness, Energy
*  Agreeableness: Compassion, Respectfulness, Trust
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*  Conscientiousness: Organization, Productivity, Responsibility
*  Neuroticism: Anxiety, Depression, Emotional Volatility
¢ Openness: Intellectual Curiosity, Aesthetic Sensitivity, Creative Imagination

Our sample data contains the (self-reported) BF personality traits of the data subjects
at the trait (5) and facet (15) level. All 6408 individuals completed a personality survey
and provided their consent to have their transactions history matched with their survey
responses for the purpose of this study. The traits were measured by the established BFI-2-S
questionnaire [45], in which participants indicate their agreement with 30 statements using
a five-point Likert scale (1 = ‘Disagree strongly’ to 5 = ‘Agree strongly’). For example, in
the survey, one of the statements that belongs to the Extraversion trait is “I am someone
who is full of energy” (see Figure Al for a full snapshot of the survey). Each trait (resp.,
facet) was measured using a six-item (resp., two-item) scale and the final (averaged) scores
range between 1 and 5, respectively, indicating a low or high score. With Cronbach’s alpha
being larger than 0.7 across all Big Five traits (Extraversion = 0.80, Agreeableness = 0.79,
Conscientiousness = 0.82, Neuroticism = 0.85, Openness = 0.72), internal consistencies
were found to be good. Figure 3 shows the distribution of the traits. Neuroticism follows
a normal distribution, whereas Extraversion and Openness are approximately normally
distributed. The distributions of Conscientiousness and Agreeableness are skewed to the
left, indicating that the majority of individuals in the sample perceive themselves as highly
agreeable and conscientious. Table A1l shows the mean and standard deviation of the
traits in the sample under investigation and compares this against a reference sample of
1000 American individuals (i.e., the Internet sample in Soto & John [45]).

Density plot Big Five traits
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Agreeableness

— Conscientiousness

—— MNeuroticism

0.6 Openness
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0.3 4
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0.0

T
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Figure 3. Distribution of scores on the Big Five traits in our sample of 6408 individuals.

3.2. Data Preparation
3.2.1. Feature Engineering

The spending data reflect a wide range of behavioral patterns, which we organize
into two broad categories of features based on related work [12,13]: (1) overall spending that
comprises summary statistics of spending aggregated over time and features that enrich
the aggregated measures with finer-grained, time-dependent information (e.g., how much
does the daily amount someone spends vary over time?) and (2) category spending that
reflects a person’s spending category profile and relative spending per category. In total,
we extract 578 features from the raw transactions data. Calculations and definitions of the
features are detailed in Table A2.

Owerall spending. For every individual, we compute the total number of transactions
ntor and the total amount someone spent a;,; aggregated over the 12-month period. We
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also compute the average amount spent per transaction a,,, and the (relative) variability
of the transaction amount a., defined as the ratio between the standard deviation and
the mean of the transaction amount. (We use the coefficient of variation because it is a
more robust measure when comparing the variance of two variables with different means,
i.e., the average amount of money spent per transaction varies between individuals). A
low variability indicates that a person spends money equally over different transactions.
Lastly, we measure the average daily amount spent a,,¢ 4,11y and the (relative) variability of
the daily transaction amount a.; 4,1, which is computed similar to ac, but then on a daily
basis. A low value for 4.y 4,1, indicates that someone spends their money equally over
different days.

Category spending. For every individual, we compute their spending proportions in
each category: we calculate both the relative amount of transactions n. and the relative
amount of money 4, that a person spent in each category c. Their transactions are mapped
to the 285 spending categories, then aggregated and normalized to get the percentage of
spending in each category. We also compute the number of unique spending categories Cyo;
and the diversity of spending over different categories Centropy- A high value of Centropy
indicates that someone equally distributed their transactions over the spending categories
in which they made transactions. A low value indicates that a person has transactions that
are distributed over a few categories.

3.2.2. Target Variables

Each person in the data is characterized by a set of historical financial transactions
and a (self-reported) score for each of the traits. Following prior work [8,13,22], we
define a multi-class classification task for each of the traits by splitting the data into three
classes (High vs. Middle vs. Low), where we create discrete classes in the continuous
scale scores using a percentile-based approach [8,13]. (Classes of personality can also
be constructed using a central tendency estimate [46], however, this can result in a high
rate of misclassifications. Big Five traits tend to be normally distributed [22,47], which
means that many scores lie close to the central tendency estimate of the scale (see Figure 3).
Consequently, the artificial ‘Low vs. High’ distinction results in a greater separation
between subjects than actually exists. Further, this approach likely results in a large
number of misclassifications due to measurement error, i.e., the true scores on BF traits of
each individual may be close, but not exactly equal to, the measured values). We specifically
focus on the High and Low classes. This decision was driven by the fact that the higher and
lower classes are often those of interest in applied contexts, where it is useful, for example,
to know which individuals are highly extraverted and therefore have certain behavioral
tendencies. For example, companies might want to adjust their marketing message to the
outgoing and social nature of extraverts or select the most conscientious candidates for a
job interview.

We use min-max normalization to transform the raw scores into a decimal between
0 and 1. The normalized scores are used to develop the regression models (e.g., Logistic
Regression), which can in turn be used to make classifications using a threshold (an
approach known as regression-based classification). Second, we use percentile-based
discretization to map the scores to personality buckets. To construct a binary target that
indicates if someone scores High on a trait, we transform the scores that exceed the 66th
percentile to 1, else 0. In a similar fashion, we construct another binary variable that
indicates if someone scores Low on a trait using the 33rd percentile.

3.3. Modeling
3.3.1. Modeling Techniques

Machine learning algorithms can be used to make classifications of psychological
traits about new individuals. These algorithms are suitable for large-scale data, such as
behavioral data, and allow to model complex relationships. Moreover, the algorithms can
pick up on subtle patterns of which humans are unaware or cannot perceive [22]. We test
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both linear and nonlinear models from the data and select the final classification model
using a five fold cross-validation procedure to test out-of-sample performance. For linear
models, we train regularized Linear and Logistic Regression models. (We use both lasso
and ridge regularization). We also train Random Forest models that account for possible
nonlinearities between the behavioral features and the target personality classes. Random
Forest classifiers (resp., regressors) are ensemble learners that fit a number of decision
tree classifiers (resp., regressors) on various subsamples of the data and use averaging to
improve the out-of-sample accuracy.

We train all models using the same financial transactions data to predict High and Low
levels on the traits. Figure 4 depicts the pre-processed financial transactions data and binary
target. For each trait, we construct two separate models, in line with a one-vs.-rest approach
for multi-class problems: (1) a model that decides if someone scores High on a trait and
(2) one that decides if someone scores Low on a trait. For example, for Extraversion, we
train a model that predicts High Extraversion and another that predicts Low Extraversion.

Category spending
I
!

Rel. number of Rel. amount of

Overall transactions per money spent per

spending category n. category a, &
1 Il A g 2
f - ul T ! g g
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£ L £ =% § £ 5§
a 0.4 03 | 0.3 | 0.0 0.0 | 0.1 | 0.0 00 | 02 | 01 1 n
™~ 0.2 0.4 0.1 0.1 0.0 0.1 0.0 0.1 0.3 0.1 0
Data “ Target
Training — @ 03 | . | 07 | 00 | 01 01|00 |01| .. | 0o 05|04 0 L Training
80% w 80%
ﬁ 0.2 05 | 0.0 | 0.0 0.0 [ 0.0 | 0.0 0.0 | 04 | 06 1
Data 0.2 06 | 0.2 | 0.0 01 | 01 | 0.0 00 | 0.1 | 0.0 1 Target
Test e Test
20% — - - 20%
e 0.1 0.2 0.1 0.0 . 0.0 0.0 0.0 0.0 0.3 0.1 0

Figure 4. Pre-processed financial transactions data and binary target variable (Big Five trait).

3.3.2. Evaluation & Selection

The final classification system consists of a (continuous) scoring function f that can be
used to assign a score s to every instance x. Given a threshold k, explicit class predictions
can be assigned to instances x using a binary indicator function Y = I(s > k), with f(x) =s,
which, in turn, can be linked to a decision. After selecting the final model for each trait
(see Linear vs. Nonlinear Models in Section 3.1), we obtain class label predictions using the
final model and setting the threshold k so that the fraction of individuals predicted as
positive (i.e., belonging to a personality class) equals the fraction of positives in the data
(approximately one-third of the data).

We use the Area under the Receiver Operating Curve (AUC) to measure the general
performance of the models. It reflects the model’s ability to rank a true positive instance
(e.g., a true extrovert) higher than a true negative instance (e.g., a true introvert) [48]. The
AUC value does not depend on a classification threshold, but only on the score ranking
of the instances that the model returns [48]. Moreover, AUC is not influenced by the
underlying distributions of the personality classes (i.e., imbalance of the target variable).
AUC is useful to summarize the model’s performance in one metric and decouples classifier
performance from the specific conditions under which the classifier will be used. Also,
AUC allows for an easy comparison with random predictions, since a random classifier
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should result in a AUC value of 50%. We use AUC to compare the predictive accuracy
of linear vs. nonlinear models and the predictability of different traits from the financial
transactions data [47]. We report the average AUC across the five folds (see Figure A2).

3.4. Model Interpretability
3.4.1. Global Explanations: CART to Extract Rules

We use the CART decision tree algorithm of the Scikit-learn library (https://scikit-
learn.org/stable/modules/tree.html (accessed on 2 December 2021)) in Python to extract
global explanation rules. The algorithm extracts a set of if-then-else rules using the behav-
ioral features together with the predicted classes Y of the classification model. We set the
maximum tree depth to 3, to limit the complexity of the explanation rules and make them
easily understandable by humans. Depending on the setting, however, a user can increase
the maximum complexity and get more granular explanations, possibly with additional
insights. For the other parameters of the CART algorithm, we use the default settings (e.g.,
as a splitting criterion it uses the Gini impurity).

3.4.2. Local Explanations: SEDC to Compute Counterfactual Explanations

We use the SEDC algorithm to compute (local) counterfactual rules (Python code
available (https://github.com/yramon/edc (accessed on 2 December 2021))), that is based
on a best-first heuristic search strategy [16,17,40]. We define counterfactuals as the set of
features that need to change so that the predicted class changes, where a ‘change’ is defined
as replacing the original feature value with the median value of that feature computed
over the training data. To use SEDC, the decision-making (i.e., assignment of a person to
a personality bucket) should be based on comparing a predicted score (i.e., the model’s
output) to a threshold. The scoring function is used by the SEDC algorithm so that it first
considers features that, when replacing their value with the mean, reduce the predicted
score the most in the direction of the opposite class (i.e., the ‘best-first’ feature).

3.5. Results

In the following sections we will outline how XAI methods can be used to validate
predictive models that compute personality from real-world transactions data. We first
discuss the extent to which personality traits and facets can be predicted using both linear
and non-linear models (Section 3.5.1). Next, we show how rule extraction explains classi-
fiers at an aggregate level and describe practical use cases of global interpretability on the
basis of concrete examples from the case study (Section 3.5.2—Global explanations). Lastly,
we provide empirical support for why local explanations are important—especially when
modeling behavior—and elaborate on the implications of our observations (Section 3.5.2—
Local explanations).

3.5.1. Classification Performance Analysis
Linear vs. Nonlinear Techniques

First, we focus on the performance of linear vs. nonlinear techniques to model
personality. We compare the performance of linear models (LR and Logit) vs. nonlinear
models (RF), measured by the difference in AUC. The goal here is to provide a sound
statement regarding the superiority of more flexible techniques for modeling personality
from spending data. For the majority of traits and facets, nonlinear models outperform
linear models (see Figure A3). On average, traits could be predicted with 58.14% accuracy
in the linear models (min = 53.13%, max = 61.82%), and 59.31% in the nonlinear models
(min = 53.35%, max = 63.98%). Since we find that RF models—capable of finding nonlinear
patterns— generally outperform the linear models, we select RF as the final technique and
report all following results based on the outputs of the RF models.
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Predictability of Personality Traits and Underlying Facets

Figure 5 shows the prediction accuracy of the selected models that classify personal-
ity. There is a wide variation in the models’ performances, ranging from moderate (e.g.,
AUC =53.4% for Low Aesthetic Sensitivity) to decent performance (e.g., AUC = 63.9%
for High Productivity). The best classification performance is achieved when predicting
High levels of Productiveness, Depression and Neuroticism. Overall, individuals can be
classified substantially above chance level for the majority of traits, which is in line with
prior work that explored the value of spending data to segment people based on their
personalities. The performances we find are comparable with, and even slightly better
than, accuracies reported in related studies that use machine learning to predict BF traits
from spending data [12,13].

A second observation is that (the facets in) Conscientiousness and Neuroticism are the
most predictable traits from the data, while Agreeableness and Openness characteristics
are the least predictable. One possible explanation for this observation is that implicit
behavioral residues—like the transaction records in this study—are particularly useful
to predict intrapersonal characteristics (Conscientiousness and Neuroticism), while other
types of digital footprints that constitute more explicit identity claims, like social media
data, are more valuable for recognizing interpersonal traits [46,49] (Openness, Extraversion
and Agreeableness). Our results suggest that the spending patterns differ more between
those groups scoring different on intrapersonal traits, allowing for a better classification
compared to interpersonal traits.

Further, the facets that underlie the same trait are not always equally predictable. For
example, it is easier to predict Energy levels from financial transactions than Sociability
and Assertiveness (all facets of Extraversion). Similarly, high levels of Productivity are
easier to predict than Low levels, and Emotional Volatility as part of Neuroticism is less
predictable from these data than Anxiety and Depression.

3.5.2. Model Interpretability Analysis

In the next sections we explore the explainability of the models at the global and
local level and discuss use cases of interpretability on the basis of examples from our case
study. For simplicity, we only explain predictions of the Random Forest models that predict
High levels of a trait which are more frequently used in applied contexts. However, the
analysis would follow a similar pattern for the models that predict Low levels. Our goal is
to demonstrate the value and different use cases of XAI by means of a realistic case study.
We aim to provide compelling evidence to academics and practitioners for the importance
of XAI methods in any application that leverages behavioral data to assess psychological
traits, making the implications of our findings relevant beyond the examples presented in
this case study.

Global Explanations: Rule Extraction

Tables 2 and 3 respectively show the explanation rules that approximate the classifica-
tion behavior of the models that predict personality and their quality. The predictions of
the rules substantially overlap with the model predictions (Fidelity ranges from 72.07% to
81.59%) and the rules that explain when a trait is predicted achieve high levels of reliability
(see the Precisiony column in Table 3). When comparing the rules and the feature relevance
lists (shown in Figure 6), we observe a considerable amount of overlap of the top features
identified as important in the black box model. However, the feature relevance lists do not
explain how the feature values lead to a classification of interest, and cannot account for
interactions of features or shed light onto the directionality of the effects. In contrast, the
extracted rules displayed in Table 2 capture associations between features and personality
classes that the model learned and utilized in the prediction task.
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Figure 5. Prediction accuracy of models that classify High or Low levels of personality traits and
facets expressed by the AUC averaged over five folds. The personality trait to which each facet
belongs, is shown in parentheses (e.g., ‘E” stands for Extraversion).

To make the decision rules more tangible, we discuss a number of face-valid examples
that are representative of these global explanations (see Table 2). Focusing on the personal-
ity trait of Conscientiousness, for example, the explanation shows that individuals with
high transaction volumes in Discount stores are more likely to be classified as conscientious
by the algorithm. This rule aligns with the general description of conscientiousness as
the tendency to exercise self-control and to be less impulsive. In addition, the model
identified the association between Conscientiousness and high transaction volumes in
Clothing & Accessories and Beauty products, which is consistent with research showing
that conscientious individuals demonstrate a stronger interest in clothing and physical
appearance than individuals scoring low on Conscientiousness [13,50,51]. Moreover, the
rules provide insight into specific model behavior, such as trade-offs made by the model
to make personality classifications which cannot be identified in the feature relevance
list (see Figure 6). More precisely, the rules show that the model classifies someone as
conscientious when there are many transactions in the categories Square Cash and Beauty
products, irrespective of spending volumes in other categories. However, when a person’s
relative spending in the Beauty products category drops below a certain threshold (0.3%),
then a substantial amount of spending in the category Clothing & Accessories needs to be
observed to still classify the person as conscientious.
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Gaining insight into how predictors impact personality classifications at a global
level can also help explore new hypotheses about the relationship between spending be-
havior and psychological traits. In our case study, it is notable that, within the money
transactions space, there are different payment services that are predictive for different
personalities. This can trigger new research questions, such as, why a specific group of
people—homogeneous in terms of personality— would develop their own distinct taste in
payment services (e.g., see research on brand personality). More precisely, an important
category in the models to predict personality is Square Cash, a mobile payment applica-
tion that allows users to easily transfer money to friends and family. Since this mobile
application is identified as important for explaining classifications of the algorithm (Square
Cash appears in almost all explanations in Table 2), future research might investigate this
relationship to understand what makes Square Cash users uniquely conscientious or not
depending on its interaction with other spending features.

Table 2. Global explanation rules. If-then-else rules that explain when the algorithm classifies High levels of personality traits

based on financial transactions. The Default class comprises Low to Medium levels of the same trait. Note: Discount stores

and Discount stores ($), respectively, indicate the relative number of transactions in vs. the amount of money spent in a

category. ‘Square Cash’ and “Venmo’ are mobile payment applications to transfer money to friends and family.

Trait Explanation Rules
g if (Square cash($) < 0.3%) and (Average transaction < $57.08) and (Clothing & Accessories < 0.7%) — Model predicts High Neuroticism
g if (Square cash($) > 0.3%) and (Subscription($) > 0.5%) and (Loans & Mortgages($) < 3.9%) — Model predicts High Neuroticism
o}
Z.  else: Model predicts Default

if (Square cash > 0.4%) and (Beauty Products > 0.3%) — Model predicts High Conscientiousness

if (Square cash > 0.4%) and (Beauty Products < 0.3%) and (Clothing & Accessories($) > 0.8%) — Model predicts High Conscientiousness
if (Square cash < 0.4%) and (Discount Stores > 0.8%) and (Shops > 0.5%) — Model predicts High Conscientiousness

else: Model predicts Default

Extroverted | Conscientious

if (Square cash < 0.7%) and (Clothing & Accessories ($) > 0.7%) and (Hotels & Motels > 0.1%) — Model predicts High Extraversion
if (Square cash > 0.7%) and (Variability transaction amount < 0.31) — Model predicts High Extraversion

if (Square cash > 0.7%) and (Variability transaction amount > 0.31) and (Service > 0.3%) — Model predicts High Extraversion

else: Model predicts Default

if (Square cash < 0.5%) and (Discount Stores($) > 0.1%) and (Shops < 0.6%) — Model predicts High Agreeableness

v
% if (Square cash > 0.5%) and (Discount Stores > 0.7%) — Model predicts High Agreeableness
?D if (Square cash > 0.5%) and (Discount Stores < 0.7%) and (ATM > 5.7%) — Model predicts High Agreeableness
< else: Model predicts Default

if (Venmo($) > 0.1%) — Model predicts High Openness
g if (Venmo($) < 0.1%) and (Square cash($) > 0.5%) and (Digital purchase > 2.5%) — Model predicts High Openness
8 if (Venmo($) < 0.1%) and (Square cash($) < 0.5%) and (Taxi($) > 0.4%) — Model predicts High Openness

else: Model predicts Default

Table 3. Out-of-sample performance of rules that explain the model’s classifications. The performance
of a random explanation is shown in parentheses.

Personality Class Fidelity (%)  Fscorey (%)  Precisions (%)  Recalls (%)
Neuroticism 79.02 (58.16)  62.48(29.79) 66.87 (29.79) 58.64 (29.79)
Conscientiousness 75.82 (58.74) 52.45 (29.09) 61.29 (29.09) 45.84 (29.09)
Extraversion 78.47 (55.57)  58.43(33.31) 81.86 (33.31) 45.43 (33.31)
Agreeableness 81.59 (60.95)  63.35 (26.59) 67.33 (26.59) 59.82 (26.59)
Openness 72.07 (56.78)  50.82 (31.59) 57.28 (31.59) 45.68 (31.59)
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Lastly, global model interpretability can help identify problems or weaknesses of the
model, for example, related to the data quality or the generalizability of the model. When
modeling human behavior, monitoring the performance of a model and understanding
the contribution of individual (behavioral) features can be crucial. For example, changes
in the meaning of certain behaviors can result in sudden drops in performance over
time, a phenomenon termed ‘concept drift’” (described in Section 1). Returning to the
the mobile application Square Cash, for example, it is conceivable that such a mobile
applications might at first be niche product that is only used by specific groups with similar
psychological profiles, but over time becomes more widespread and used by a wider
population. As a result, the spending feature might lose its predictive power, challenging
the expected lifetime of the prediction model.
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Figure 6. Feature relevance lists that show top features in the model that predicts High levels of (a) Neuroticism, (b) Consci-
entiousness, (c) Extraversion, (d) Agreeableness, and (e) Openness. The importance weights are computed as the average
impurity reduction over the trees in the Random Forest.
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Local Explanations: Counterfactual Explanations

In addition to global model interpretability, we compute local explanations to identify
important features for individual classifications. In Table 4, local explanations are shown
for why individuals who are predicted to be highly neurotic. For example, the explanation
for why Person E was predicted to be neurotic can be interpreted as follows: “if Person
E had spent less money in Department Stores, but more frequently in Square Cash — then
Person E would not have been predicted to be neurotic”. There are some interesting
observations when looking at the counterfactuals in Table 4. First, our experiments show
that the explanations are generally concise (on average, explanations consist of 0.3% of the
full feature space).

Second, the explanations vary tremendously in nature: people are assigned to the
same personality class based on vastly different behaviors. In other words, there is a lot of
uniqueness in the explanations associated with each individual. This is visually depicted
by Figure 7 which plots the distribution of pairwise similarities between counterfactual
explanations. We observe that the majority of explanations has no overlap. This obser-
vation is consistent with prior work on local explanations for models on behavioral data
demonstrating the variety of local explanations [16,17,26].

Distribution of pairwise similarity of counterfactual explanations
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Figure 7. Distribution of pairwise similarity between counterfactual explanations for predicting
Neuroticism. A value of 0 (resp., 1) indicates no (resp., perfect) overlap.

When explaining the predictions for the personality trait of Neuroticism, 91.1% of
the explanations are unique. This implies that people will receive different explanations
most of the time. As a result, the local explanations provide insights into the specific
behavior of a person that led the model to make a decision, making the explanation more
granular and personally relevant than the global explanation rules. To illustrate this more
clearly, consider two female individuals in our sample, both classified as neurotic by the
model. Examining the global explanations in Table 2, they are both explained by the first
explanation rule, that includes the features Square Cash, Average transaction amount and
Clothing & Accessories. (Note that the global explanation shows which combination of
feature values likely leads the model to predict a Neurotic person, however, it does not give
an exhaustive (Recally is not 100%) nor perfectly reliable (Precisiony is not 100%) rule set
that explains when the model predicts a Neurotic person. Moreover, changing the features’
values such that the rule would no longer apply to the person, does not guarantee that the
predicted class flips to the Default, because there might be other combinations of feature
values—not captured by the incomplete global explanation—that lead to the prediction
of a Neurotic person). However, going a level deeper to the local explanations, we get a
more granular notion of which features contributed to the classification of each of the two
women. For the first woman, the predictors Gas Stations, Square Cash and Taxi are part
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of the explanation for being classified as neurotic. In contrast, the second woman would
receive an explanation that comprises the features Average transaction amount, Clothing &
Accessories, Fast Food and Public Transportation Services.

Third, local explanations not only vary in the specific features and feature combina-
tions they use, but also in the complexity of the counterfactual rules to explain decisions.
Depending on someone’s set of historical transactions (their ‘financial behavior profile’),
it can become harder to flip the model’s predicted class. Generally, in the results, we
observe a trend that the number of features that counterfactually explain the predicted class
positively relates to the prediction confidence of a model as depicted by Figure 8. Moreover,
the number of feature changes needed to flip the predicted class is generally larger for True
Positives compared to False Positives. This finding provides some intuitive satisfaction
and is in line with prior work on counterfactual explanations [26]. When explaining why
individuals are predicted as neurotic, the average number of features in the explanations
for True Positives and False Positives is, respectively, 2.09 and 1.79. This difference suggests
that a person who is incorrectly classified as neurotic needs to change fewer features to
receive a different classification than someone who was accurately classified to be neurotic.

Finally, the explanations in Table 4 provide another interesting insight. For example,
Person A was predicted as neurotic due to two features: “if Person A had spent more
frequently in Clothing & Accessories and Restaurants, but less frequently in Computers &
Electronics, Insurance and Shops — then Person A would not have been predicted as
neurotic”. The rule highlights that it is not always the behavior that people exhibit that are
most predictive for a psychological characteristic. The behavior that people do not or only
rarely exhibit might also drive the model’s classification.

High Neuroticism
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Figure 8. Model’s predicted scores vs. number of predictors in the explanation to counterfactually
explain the predicted class High Neuroticism. The correlation between the scores and explanation
sizes is 0.68.
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Table 4. Local explanations that show the features that (counterfactually) explain the predicted class High Neuroticism. A

selection of explanations is shown for instances i with highest predicted scores s;.

Instance i Counterfactual Explanation for Instance i
Person a (s; = 0.69) If you had spent less frequently in Computers & Electronics, Insurance and Shops,
sizecr, =5 and more frequently in Clothing & Accessories and Restaurants — then you would not

have been predicted as Neurotic

Person b (s, = 0.66)

If you had spent less frequently in Pets, Shops and Veterinarians, and spent less

sizecpp = 4 money on Subscription — you would not have been predicted as Neurotic

Person ¢ (s¢ = 0.65) If you had spent less frequently in Shops, less money on Internal Account Transfer
sizecr. =3 and Subscription — then you would not have been predicted as Neurotic

Person d (s; = 0.65) If you had spent less frequently in Shops, and less money on Subscription

sizecpg = 2 — then you would not have been predicted as Neurotic

Person e (s, = 0.65) If you had spent less frequently in Food & Beverage, PayPal and Shops, and less
sizecr, =4 money on Subscription — then you would not have been predicted as Neurotic
Person f (s = 0.65) If you had spent less frequently in Check, Department stores and Shops, and more
sizecp,f =4 frequently in Supermarkets & Groceries — then you would not have been predicted

as Neurotic

Person g (sg = 0.64)

If you had spent less frequently in Shops and Tobacco, and less money on

sizecr,g =4 Subscription and Tobacco — then you would not have been predicted as Neurotic
Person h (sj, = 0.64) If you had spent less frequently in Food & Beverage, Vintage & Thrift, less money on
sizecpp =8 Department stores, Shops, Tobacco and Vintage & Thrift, more frequently in Clothing &

Accessories, more money in Arts & Entertainment, and the variability of your spending
amount was lower — then you would not have been predicted as Neurotic

4. Discussion

In this paper, we demonstrated the value of XAI in the context of psychological
profiling that translates innocuous digital footprints into psychological traits. Our case
study highlights the importance of both global and local methods to address interpretability
challenges when working with high-dimensional, sparse behavioral data.

4.1. Importance of Global Explanations and Implications

Global rules provide general insights into the decisions a model makes about a target
based on what it has learned from the the full (training) data set. Global rules hence
provide an explanation of the decision model that is comprehensible to the individuals
making predictions and the individuals who are the target of predictions [21]. While other
global XAI methods exist (e.g., feature relevance scores), we argue that rule extraction—
and surrogate explanations in general—is a particularly useful tool to understand how a
(combination of) feature(s) impact(s) model decisions, and to provide an estimate of how
well the classifications can be explained (measured by Fidelity). Insight into the Fidelity of
an explanation is important in the context of behavioral data. If the most important features
in a model are extremely sparse, an explanation with few rules and/or few conditions
per rule will fail to make accurate predictions for most people, as reflected by a low
Fidelity or Fscorey. When this is the case, novel rule extraction approaches can be used to
replace features with metafeatures (groups of individual behavioral features—e.g., ‘fast
food” purchases that are made up of individual merchants) to increase the Fidelity of the
extracted rules [15].

Our experiments demonstrate how global rules can be used to validate what the
model learned at an aggregate level. This additional understanding can add a layer of trust
to the out-of-sample performance measures by testing the face validity of the global rules
(i.e., compare them with related work and existing knowledge). Not only could global
rules be used to validate models before they are deployed in practice, but they could also
be used to continuously audit the functionality of a model (i.e., does it use information that
we do not want it to use?). For example, when verifying if a model exhibits algorithmic
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bias toward a certain protected group (e.g., minorities), we can use post hoc explanations
to audit the model. Importantly, global rule extraction calls for the inclusion of domain
experts. In our case study, for example, personality psychologists can help determine
whether the extracted rules make sense in the context of the vast body of literature on the
correlates of personality traits.

Our case study also shows how XAl at a global level can be used to generate novel hy-
potheses that would have been impossible to derive deductively (e.g., different preferences
for mobile payment services). As Stachl et al. [22] note, researchers should “invest time
and effort to finding persistent and stable digital behavioural dimensions when working
on theoretical models”. A future direction that is worth exploring is how higher-level,
less-sparse metafeatures can help construct more ‘stable” behavioral profiles that can be
used for (bottom-up) theory building and hypothesis generation. This is especially inter-
esting when modeling very high-dimensional and sparse behavioral data, for example,
modeling the fine-grained places people visit [11], web pages they browse or pages they
‘like” on Facebook [2]. While individual places, websites and Facebook pages might be
highly predictive at any given point in time, they are also likely to change (e.g., the same
coffee shop, website or Facebook page might only survive for a certain period of time).
Using metafeatures for modeling is likely to lead to worse predictive performance in the
moment [14,18,19]. However, they might prove valuable when extracting insights from
high-performing models and generating hypotheses that are more stable over time. In sum,
global rule extraction methods provide researchers and practitioners with a tool to validate
their models, create a more robust foundation for future investigations of the relationship
between human behavior and psychological constructs, and facilitate replication efforts in
computational social sciences research [52].

4.2. Importance of Local Explanations and Implications

Next to global insights, our experiments highlight the importance of local counterfac-
tual rules to address interpretability issues of models on behavioral data. While global rule
extractions have partially found their way into social science research, local counterfactuals
(and other types of local explanations) have largely been overlooked so far. The value of
local rule extractions is manifold. First, they are concise: Only a small fraction of features
of the full feature space is part of the explanations. We might worry providing users
with explanations that are unnecessarily large, especially in the context of behavioral data.
In our experiments, we see that the explanations generally have a small size, especially
relative to the total number of features present in the model. This concurs with findings of
Chen et al. [26], Fernandez et al. [34] and Martens & Provost [16].

Second, they are specific to the individual’s behavior: Explanations point at unigue
behavior of the person that contributed most to the classification. Counterfactual explana-
tions have the additional advantage that they are consistent with requirements currently
described in regulation [40]. For example, the advisory organ of the EU on GDPR, Working
Party 29, provided additional details on meaningful information that data subjects should
receive when subject to automated decisions: “The company should find simple ways to
tell the data subject about the rationale behind, or the criteria relied on in reaching the
decision, ... The information should be sufficiently comprehensive for the data subjective to
understand the reasons for the decision.” Local rule extractions satisfy these requirements.

Third, local explanations could be used by companies that chose to be transparent
about the ways by which they target individuals. In addition to mandated regulations,
Facebook’s ‘Why Am I Seeing This Ad’ initiative or the AdChoices program [26], for
example, could provide their users with a clearer and more personalized explanation for
why they are seeing a given ad. Notably, prior work has suggested that contrary to most
people’s intuition, transparency and control in the context of online advertising can indeed
result in higher engagement levels [53,54]. Similarly, local rule extraction might solve a
problem many companies are facing when sharing global rules with users. Especially when
the stakes are high, there is a concern that individuals will use these insights to ‘game the
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system’. In the context of hiring or lending for example, companies often do not want to
disclose the exact working of the predictions they make, because they are worried that their
models will be rendered inadequate as soon as individuals have the ability to strategically
update their records in a certain direction. Local explanations are inherently relevant to one
individual, but not per se useful for other people. This greatly reduces the risk of ‘gaming’
the system.

Finally, for experts interacting with a model (e.g., psychologists or HR managers),
local explanations can be useful to understand how a particular prediction was made, and
what to focus their attention on: either to overrule the decision (when domain knowledge
or context outweighs the explanation for the decision), or to understand a misclassification
to guide error analysis. For example, consider the (fictitious) example of predicting mental
health problems from online web searches. When a person is identified as depressed by the
algorithm, it is useful for experts to validate the decision based on the (words in) searches
that contributed most to this decision, instead of going through the hundreds of searches of
this person. Further, knowing why the classification was made can be used to overrule the
decision: say a person was identified as depressed because of searching for ‘symptoms of
depression’, but, when looking at queries in the same time window, it turns out the person
logged in multiple times on the web page of the Department of Psychology at Columbia
University. A user seeing this explanation would better understand why the prediction
was made, and in this case, likely identify it as a false positive prediction, as this might not
be an unusual search query for Psychology students.

4.3. Limitations

Our study has a number of limitations. The first limitation stems from the use of a
case study as the experimental method. Future research should validate the rule-based
XAI methods discussed in this paper in other applications on psychological profiling, i.e.,
with different behavioral data and/or psychological characteristics to predict. Next, we
do not conduct a user study to estimate the impact of XAI on behavior and attitudes of
the experts interacting with the model or the data subjects being targeted. It is essential to
further investigate, for example, the extent to which trust and/or acceptance of experts
are impacted by increased (post-hoc) interpretability or how effective these XAI methods
can be as auditing tools. Moreover, future work can study the impact on attitudes of
data subjects (e.g., regarding privacy) when they are provided with local explanations of
how their data is turned into information about their psychological traits. Lastly, the case
study is based on a data sample that consists of low-income households in the US, which
might not be representative for the general population. However, our main focus is on
the demonstration of XAI for different use cases, and from this point of view, it is actually
interesting how XAl can help detect if a final model ‘picks up’ sample-specific patterns,
and how this tells us something about the generalizability of the model.

5. Conclusions

Psychological profiling from digital footprints has attracted considerable interest from
researchers and practitioners alike who study and apply the methodology across a wide
variety of applications, ranging from marketing to employment to healthcare. Given that
the underlying models can become very complex, they have earned the reputation of being
a ‘black box’ that is difficult to penetrate. Most of the research in this area has focused on
the predictive accuracy of models, without much effort being dedicated to explaining how
the classifications come about. However, the explainability of these systems—central in
the field of Explainable Al—is becoming an essential requirement to generate trust and
increase the acceptance of predictive technologies as well as generate better insights from
these systems.

In this study, we showed how global and local XAl techniques can help domain
experts and data subjects validate, question and improve models that classify psycholog-
ical traits from digital footprints. Using real-world financial transactions data to predict
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Big Five personality traits, we demonstrated how global rule extraction can be used to
understand a model’s classification behavior at an aggregate level, and discussed use cases
of global model interpretability (validation, insights and improvement). Furthermore, we
empirically showed how local counterfactual rules can reveal more granular insights into
why classifications are made (i.e., individuals are classified as exhibiting a personality trait
for reasons that reflect their unique financial spending behavior), and discussed impli-
cations of this uniqueness for experts and data subjects. We hope this study encourages
researchers and practitioners in the field of psychological profiling to implement XAl as
a tool to develop more human-centric, interpretable psychological profiling systems that
support decision-making.
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Appendix A

The Big Five Inventory—2 Short Form (BFI-2-S)

Here are a number of characteristics that may or may not apply to you. For example, do you agree that you are
someone who likes to spend time with others? Please write a number next to each statement to indicate the extent
to which you agree or disagree with that statement.

1 2 3 4 5
Disagree Disagree Neutral; Agree Agree
strongly a little no opinion a little strongly

I am someone who...

1. __ Tends to be quiet. 16. ___Is outgoing, sociable.

2. ___Is compassionate, has a soft heart. 17. __ Can be cold and uncaring.

3. ___ Tends to be disorganized. 18. ___Keeps things neat and tidy.

4. __ Worries a lot. 19. _ Isrelaxed, handles stress well.

5. __Is fascinated by art, music, or literature. 20. __ Has few artistic interests.

6. __Is dominant, acts as a leader. 21. __ Prefers to have others take charge.

7. __ Is sometimes rude to others. 22. __Isrespectful, treats others with respect.
8. __ Has difficulty getting started on tasks. 23. __ Is persistent, works until the task is finished.
9. __ Tends to feel depressed, blue. 24. __ Feels secure, comfortable with self.

10. ___ Has little interest in abstract ideas. 25. ___Is complex, a deep thinker.

11. __Is full of energy. 26. ___Is less active than other people.

12. ___ Assumes the best about people. 27. __ Tends to find fault with others.

13. __Is reliable, can always be counted on. 28. ___ Can be somewhat careless.

14. ___Is emotionally stable, not easily upset. 29. __Is temperamental, gets emotional easily.
15. __Is original, comes up with new ideas. 30. __ Has little creativity.

Please check: Did you write a number in front of each statement?
BFI-2 items copyright 2015 by Oliver P. John and Christopher J. Soto.

Scoring Key

Item numbers for scoring the BFI-2-S domain and facet scales are listed below. Reverse-keyed items are denoted
by “R.” Due to the limited reliability of the two-item facet scales, we only recommend using them in samples with
approximately 400 or more observations. For more information about the BFI-2, visit the Colby Personality Lab
website (http://www.colby.edu/psych/personality-lab/).

Domain Scales

Extraversion: IR, 6, 11, 16, 21R, 26R
Agreeableness: 2, 7R, 12, 17R, 22, 27R
Conscientiousness: 3R, 8R, 13, 18, 23, 28R
Negative Emotionality: 4, 9, 14R, 19R, 24R, 29
Open-Mindedness: 5, 10R, 15, 20R, 25, 30R

Facet Scales

Sociability: 1R, 16
Assertiveness: 6, 21R

Energy Level: 11, 26R
Compassion: 2, 17R
Respectfulness: 7R, 22

Trust: 12, 27R

Organization: 3R, 18
Productiveness: 8R, 23
Responsibility: 13, 28R
Anxiety: 4, 19R

Depression: 9, 24R
Emotional Volatility: 14R, 29
Aesthetic Sensitivity: 5, 20R
Intellectual Curiosity: 10R, 25
Creative Imagination: 15, 30R

Citations for the BFI-2 and BFI-2-S

Soto, C. J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical
model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social
Psychology, 113, 117-143.

Soto, C. J., & John, O. P. (2017). Short and extra-short forms of the Big Five Inventory—2: The BFI-2-S and BFI-
2-XS. Journal of Research in Personality, 68, 69-81.

Figure A1. Snapshot of the Big Five Inventory-2 Short Form that was filled out by the participants.
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Table Al. Mean and standard deviation of the BF traits and facets in this study vs. the Internet
sample [45]. The fourth column shows the mean-level difference d between the two samples. The
last column represents the Cronbach'’s alpha of each item scale that measures a BF trait.

Domain or Facet This Study Internet Sample [45] d Cronbach’s Alpha
Extraversion 3.35 (1.08) 3.23 (0.80) 0.12 0.8012
Sociability 3.21 (1.08) 2.95 (1.05) 0.26
Assertiveness 3.58 (1.02) 3.28 (0.93) 0.30
Energy 3.25(1.13) 3.47 (0.89) —0.22
Agreeableness 4.19 (0.67) 3.68 (0.64) 0.51 0.7868
Compassion 4.34 (0.83) 3.84 (0.78) 0.50
Respectfulness 4.40 (0.76) 3.98 (0.71) 0.42
Trust 3.84 (0.92) 3.23(0.82) 0.61
Conscientiousness 3.87 (0.79) 3.43 (0.77) 0.44 0.8153
Organization 3.52(1.17) 3.42 (1.01) 0.10
Productivity 3.89 (0.96) 3.37(0.90) 0.52
Responsibility 4.18 (0.82) 3.48 (0.81) 0.70
Neuroticism 2.88 (0.96) 3.07 (0.87) —0.19 0.8533
Anxiety 3.34 (1.07) 3.43 (0.93) —0.09
Depression 2.61(1.13) 2.85 (1.02) —0.24
Emotional volatility 2.67 (1.17) 2.93 (1.05) —0.26
Openness 3.75 (0.68) 3.92 (0.65) —-0.17 0.7219
Intellectual curiosity 3.83(0.79) 4.10 (0.70) —-0.27
Aesthetic sensitivy 3.57 (0.96) 3.80 (0.92) —0.23
Creative imagination 3.83 (0.94) 3.85 (0.81) —0.02
N = 6408 N = 1000

Table A2. Summary of features capturing spending behavior.

Type Feature Notation Feature Name Description
Overall Mot Total transactions Total number of transactions over 12 months
Atot Total amount transactions Total amount of money spent over 12 months
Agog Average transaction Average amount of money spent per transaction
ey Variability transaction Variability of amount of money spent per transaction
Aavg,daily Average daily transaction Average amount of money spent on a daily basis
Aco, daily Variability daily transaction Variability of amount of money spent on a daily basis
Category ne Category ¢ Relative number of transactions in category c (e.g., Fast Food)
ac Category ¢ (3) Relative amount of money spent in category c (e.g., Fast Food ($))
Crot Unique categories Number of distinct spending categories
Centropy Category entropy Diversity of spending in different categories
Predicted
Test
Train classification model # Apply model on -
(e.g., Random Forest) test set Measure Average
predictive q performance

accuracy folds
BBIGEY o: | o0 o1 [ ea oo o0 [0 [ oo E

s e e
o o e o eojetfoe orfesfet o e 01 02 o1 | 0o 0o | 00 | 0o 00 03|01 Tar et
03 oA oo | 01 01 | oo |01 00 | 05 [ 04 o g
—— I Data Test
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Repeat for every fold

Figure A2. Five fold cross-validation procedure to develop classification models to predict BF traits.
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Difference in performance of nonlinear vs. linear classification for dichotomized traits
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Figure A3. Percentage difference in predictive accuracy of nonlinear vs. linear classification models
for dichotomized personality traits, expressed by the difference in Area under the Curve (AUC),
and ranked by decreasing difference in AUC. Positive values indicate that the best nonlinear model

outperformed the best linear model.
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Figure A4. Distribution of pairwise similarity between counterfactual explanations for predicting
(a) Conscientiousness, (b) Extraversion, (c) Agreeableness and (d) Openness. A value of 0 (resp., 1)
indicates no (resp., perfect) overlap.
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Figure A5. Model’s predicted scores vs. number of features in the explanation to counterfactually
explain the predicted class. The correlations between the confidence scores and explanation sizes are
0.72 (Conscientiousness), 0.52 (Extraversion), 0.44 (Agreeableness), 0.87 (Openness).
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