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Abstract: In this study, we proposed a method to improve the safety level of control software (CSW)
by managing the CSW’s design information and safety analysis results, and combining failure
mode and effects analysis (FMEA) and fault tree analysis (FTA). Here, the CSW is developed using
structured analysis and design methodology. In the upper stage of the CSW’s development process,
as the input of the preliminary design information (data flow diagrams (DFDs) and control flow
diagrams (CFDs)), the causes of undesirable events of the CSW are clarified by FMEA, and the
countermeasures are reflected in the preliminary design information. In the lower stage of the
CSW’s development process, as the inputs of the detailed design information (DFDs and CFDs in the
lower level) and programs, the causes of the specific undesirable event are clarified by FTA, and the
countermeasures are reflected in the detailed design specifications and programs. The processes are
repeated until the impact of undesirable events become the acceptable safety level. By applying the
proposed method to the CSW installed into a communication control equipment on the space system,
we clarified several undesirable events and adopted adequate countermeasures. Consequently, a
safer CSW is developed by applying the proposed method.

Keywords: failure mode and effects analysis (FMEA); fault tree analysis (FTA); safety analysis;
control software; structured analysis and design; software development

1. Introduction

Industrial products are controlled by a computerized system. The software installed
into the control system is called control software (CSW). Therefore, these days, accidents
caused by the CSW occur unexpectedly. In this paper, we propose a method for developing
safer CSW. The characteristics of the proposed method are as follows: by maintaining the
design information and the safety analysis results unitarily in the whole CSW’s develop-
ment process, one can develop safer CSW by conducting two kind of safety analysis. The
proposed method contributes to realizing safer industrial products along with developing
safer CSW.

First, we describe the background that the proposed method is required. Undesirable
events of CSW have caused many industrial products troubles recently, such as an accident
caused by the incorrect steering operation of an autonomous car [1], a loss of human
lives caused by malfunction of radiation therapy equipment [2], and destruction of the
spin satellite caused by abnormal hi-speed spin [3], resulting in enormous damages to
human life and industrial products. Thus, a safe method for CSW is required. As the
functional configuration of CSW becomes complex according to the high functionality
of CSW, it becomes difficult to realize sufficient safety when just conducting individual
safety analysis.

The proposed method adopts multiple safety analysis methods in adequate steps in
the CSW development process, and the result of the safety analysis in a timely way reflects
the design information. We propose a safer CSW development method by conducting
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those tasks. In the upper stages of the CSW’s development process (upper development
process), we applied failure mode and effects analysis (FMEA) [4] to the CSW’s design
information, clarified the causes of undesirable events comprehensively, and adopted
countermeasures for realizing safety. In the lower stages of the CSW’s development process
(lower development process), we applied fault tree analysis (FTA) [5] to the CSW’s design
information and code, clarified the causes of the specific undesirable events that could
not be treated in the upper development process but were found in the use of CSW, and
modified the design information and CSW. By repeating the design, development, FMEA,
and FTA, we can clarify the undesirable events injected by the modifications and then
identify those as modified (repaired). By executing the processes mentioned above, we
can develop a safer CSW. In this way, the proposed method enables seamless sharing of
design information and safety analysis results throughout the development process, and
improves the safety of CSW by repeating designing and safety analysis. By developing
safer CSWs, safer industrial products can be developed, and a safer society can be realized.

Here, we describe the CSW that is the target for this study. The target CSW has the
following characteristics in the proposed method. The CSW is developed by applying
structured analysis and design methodology (SADM) [6] and CSW is written in the C
language. As discussed in Section 3, SADM is applied because the SADM and the V
model of the software development process (this will be explained in Section 3.1) have
high-affinity applications. On the other hand, the reason for assuming the C language is
that the C language and SADM have high affinity, and 70% of CSWs are written in the C
language. CSW works on a single chip, single-core Central Processing Unit (CPU). Those
are based on the white paper of the embedded system development [7]. Large-scale CSW
is realized by connecting small-scale control pieces of equipment via network and data bus.
If small-scale CSW with low coupling and cohesion is developed, a safety analysis report
for large-scale CSW is realized by gathering and combining the safety analysis reports of
small-scale CSW. Thus, the proposed method can be applied to large-scale CSW.

The rest of the paper is organized as follows. Section 2 describes related works to
the CSW’s safety. Section 3 describes the proposed method’s outline and the support
environment. Section 4 describes the application and evaluation of the proposed method
for actual CSW. Section 5 describes the conclusion and future works.

2. Related Works

We classified the related works as the established standards related to software safety,
FMEA for software, FTA for software, other safety analysis methods, and cooperation with
multiple safety analysis methods.

First, we describe the following established standards related to software safety. The
International Electrotechnical Commission (IEC) 61,508 defined the requirements for the
functional safety of programmable electric systems [8], recommending the V model of the
software development process and requiring high coverage testing in checking the func-
tions. In the automotive domain, the International Organization for Standardization (ISO)
26,262 provided a standard for a car’s functional safety [9], which proposed a safety analy-
sis method when considering undesirable events and improved CSW’s safety by applying
hazard and operability study (HAZOP) [10], FMEA, and FTA. IEC 82304-1 (health software:
part 1), as the general requirements for product safety, was established as the standard of
CSW’s safety for medical equipment [11]. Good automated manufacturing practice ver. 5
(GAMP5) was established as the standard of CSW’s safety for pharmaceutical production
facilities [12]. These standards described the safety requirements for industrial products,
analysis methods, and validation methods, but did not describe specific implementation
methods. Therefore, we have to define the concrete procedures that met these standards.

Second, we explain related works for FMEA. Takahashi et al. [13] proposed an FMEA
method of CSW for pharmaceutical production. This research made the execution of
FMEA to the various kind of CSWs by defining the failure modes (failure modes will be
explained in Section 3.2) in the unit of the function. Morita [14] proposed a method for
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finding the bugs in the CSW by dividing the CSW into plural blocks, listing up the failure
modes, and predicting the causes. Niwa [15] conducted countermeasures to improve
CSW’s reliability by listing up the function units’ failure modes in the preliminary design
specification. Goddard et al. [16] conducted FMEA by defining the failure modes in the
CSW’s instruction level. Snooke et al. [17] conducted FMEA by translating the CSW to the
equivalent circuit. Lazarus et al. [18] proposed a failure analysis method by conducting
FMEA to the class diagrams developed based on an object-oriented design methodology.
Kim et al. [19] proposed a supporting method for detecting failure modes of various
software installed into car equipment. Batbayar et al. [20] proposed a risk evaluation
method for the CSW of medical equipment by combining a fuzzy model and FMEA.
Yang et al. [21] developed a hybrid expert system of failure diagnosis for the embedded
software by aggregating both case-based reasoning and diagnosis methods based on a
Bayesian network. These researches proposed an FMEA method that focused on a narrow
(specific) domain. This showed that the failure modes of these researches were not versatile.
To resolve this problem, we have to develop failure modes applicable for many kinds
of CSWs.

Third, we explain related work on FTA. Weber et al. [22] analyzed the cause of fault
for avionics CSW written in assembler language by conducting FTA. Friedman et al. [23]
proposed an automatic Fault Tree (FT) development method for software written in the
Pascal language. Leveson et al. [24] prepared an FT template corresponding to the pro-
gramming language instruction and developed an FT by combining those FT templates.
Takahashi et al. [25] proposed an automatic FT development method by expanding Leve-
son’s idea. Kumar et al. [26] showed that in the development of safety-critical ball position
control systems, adequate CSW design could be achieved when the FTA was conducted in
the software development life cycle’s proper timing. Oveisi et al. [27] proposed a safety
evaluation method by applying FTA to the software’s sequence diagrams according to the
object-oriented development methodology. Junga et al. [28] proposed an automatic FT
development method from software specifications written in formal specification language
called NuSCR. From the results of [24] and [25], we found that the causes of the undesirable
events are detected at the program level by using FT. By improving this function, FTA for
various types of CSWs becomes able to conduct.

Fourth, we explain other safety analysis methods. Hansen et al. [29] showed a method
that detected the hazards comprehensively by applying the HAZOP to the software speci-
fications written in the unified modeling language (UML). Guiochet et al. [30] proposed
a method that clarified the hazard when the robot behaved by applying HAZOP to the
robot’s CSW specification written in UML. Kaleeswaran et al. [31] proposed a method to
detect hazards written in domain-specific language by applying HAZOP if critical software
was developed using model-based development. Abdulkhaleq et al. [32] clarified the
system hazards of an adaptive cruise control system in the car by applying system-theoretic
process analysis (STPA) and pointed out the constraint and problems of STPA applica-
tion. Yang [33] proposed a method that derived the avionics system’s safety validation
testing requirements using STPA. Nakano et al. [34] showed that a safer system could
be developed by clarifying crew return vehicles’ hazards using STPA and reflecting the
countermeasures corresponding to the hazard to CSW in the concept development phase.
The completeness of the analytic result depends on the skills of the analyst because these
methods have a high degree of freedom. Therefore, these methods are not suitable for use
in the CSW’s development.

Finally, we explain cooperation with multiple safety analysis methods. Hong et al. [35]
proposed the following safety improving method: calculating the minimum cut-set of FT
by conducting FTA, identifying the fault with the highest risk, and planning the counter-
measure by conducting FMEA. Oveisi [36] proposed an approach to improve the CSW’s
safety throughout the software development lifecycle using hazard analysis in the upper
development process, FTA and FMEA in the middle development process, and detailed
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FTA and FMEA in the lower development process. From those cases, a safety analysis
method coordinating with FMEA and FTA is valid because it has a high affinity.

Many related works on CSW have been conducted; however, no method in developing
safer CSW in the whole development process has been reported. Our proposed method
will be described in Section 3.

3. Outline of the Proposed Method

Here, we explain the outline of the proposed development method for a safer CSW.
Section 3.1 explains the outline of the proposed method. Section 3.2 explains the FMEA for
a CSW, analyzing causes of undesirable events comprehensively in the upper development
process. Section 3.3 explains the FTA for CSW, analyzing the specific undesirable event’s
causes in the lower development process. Section 3.4 explains the safer CSW development
environment by combining FMEA and FTA.

The technical term “fault” is defined as “the state that causes the degeneration or
loss of ability for conducting a required function,” and the technical term “failure” is
defined as “the loss of ability for conducting a required function” (ISO/IEC 2382-14) [37].
Therefore, failure occurs when the fault occurs under specific conditions, resulting in
undesirable events.

3.1. Outline of the Development Method for a Safer CSW

This subsection explains an analysis method for developing a safer CSW in the whole
development process. The proposed method manages the CSW’s design information and
safety analysis results unitarily and uses that information by cooperating with FMEA and
FTA. The safer CSW is developed by adequately reflecting the CSW’s design information
and safety analysis results.

First, we explain the development processes and the outputs. Figure 1 shows the
CSW’s development processes and outputs in each step. The CSW’s development process
shown in Figure 1 is called the V model of the software development process. The squares
in Figure 1 show the individual processes. The left side of Figure 1 shows the development
process, and the right side shows the verification process. The dotted line between the
development process and the verification process shows the correspondence. We apply
SADM to the development process of CSW. The upper development process consists
of the planning step, requirement definition step, and preliminary design step. In the
planning step, we define the outline of the CSW’s functions and data interfaces (data and
control signals sent and/or received from/to CSW; external entities (hardware, software,
or persons)). The development plan is created as a document describing those data and
control signals. In applying SADM, the documents corresponding to the development
plan are the data context diagram (DCD) and control context diagram (CCD). In the
requirement definition step, we define the requirements for CSW and create the requirement
specification. Each requirement corresponds to the data flow diagrams (DFDs) process
in the second and/or third layer. (DCD is considered as the first-layer DFD. DFDs are
considered as the divided design of DCD. The number of the layer is a guide). We also
define the large-grained functions. The preliminary design specifications are created as the
document that describes large-grained functions. The large-grained functions correspond
to the processes in the DFD of the third to fifth layer. After developing the DFD, control
flow diagrams (CFDs) correspond to those DFDs, and control specifications (CSPECs) are
developed consisting of state transition diagrams, decision tables, and activation tables.
CFDs define the control signals used for invocating the processes and newly created control
signals. The state transition diagrams define the inner state of the CSW, the transition
conditions between the states, and the group of the processes activated when the transitions
occur. The decision tables define the control signals issued by the ON/OFF combination
of control signals. The activation tables define the groups of the processes activated by
the control signals. In the lower development process, the large-grained functions are
divided into several modules, and the algorithm of the module is defined. The detailed
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design specifications are created as the modules’ list and define the module’s concrete
processes. The modules correspond to the processes in the DFDs in the fourth to sixth layer.
After developing the DFDs, CFDs and CSPECs corresponding to the DFDs are developed.
Finally, in the programming step, CSWs are developed according to the detailed design
specifications. Those items, such as DFDs, CFDs, and CSPECs, are registered into the
database (DB), as explained in Section 3.4.
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Figure 1. The control software (CSW)’s development process.

Next, we explain the safety analysis methods used in the CSW’s development process.
In the upper development process, the failures with the possibility of occurrence are
examined comprehensively, and the necessary countermeasures are reflected in the designs.
FMEA is used for the analysis of the failures and their causes. The details of the FMEA will
be explained in Section 3.2. As the result of conducting FMEA, the development plan, the
requirement specifications, and the preliminary design specifications shown on the left side
of the area enclosed by the upper dotted bold line in Figure 1 are modified in relation to the
failures considered to be critical. As a result of modifications, the negative impacts of failure
are degraded to an acceptable level. Because the addition of the complex functions and the
countermeasures on the program cannot be conducted in this step, the countermeasures are
conducted in the lower development process, in which the countermeasures, such as the
addition of complex functions and programs, are conducted. Additionally, the necessary
countermeasures are conducted on the newly found faults. FTA is used for the analysis
of the causes of the fault. FTA will be explained in Section 3.3. As shown in the left lower
parts in Figure 1, the modification of the detailed design specifications, the modifications of
the programs, and the addition of the programs are conducted according to the results of
FTA. When the modifications of the detailed design specifications, the modification of the
programs, and the addition of the programs affect the negative impact on the documents
in the upper development process, the documents in the upper development process on
the left side of the area enclosed by the lower dotted bold line in Figure 1 are modified.

By conducting the processes mentioned above, we have completed the first investi-
gation of the CSW’s safety. However, the possibility of injections of new failure modes
and/or a fault occur in applying those countermeasures to the CSW is increased. Therefore,
after completing the first investigation for the CSW’s safety, FMEA and FTA are conducted
to the CSW, and additional countermeasures are applied to the CSW. This investigation
will repeat until the safety level of all failures and faults become acceptable. A safer CSW
will be realized by those works.
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3.2. Outline of FMEA

In this subsection, we explain the FMEA for investigating the CSW’s safety in the
upper development process.

First, we explain FMEA for CSWs. Here, we discuss the CSW’s failure mode. Generally,
a failure mode is defined as the change and/or alteration (violation) of the component
in an adequate (healthy) state. As bugs were injected when developing the software, the
component that contains the bugs is not in an adequate state originally. Therefore, the bugs
are not considered as failure modes. The bugs should be removed by conducting the tests.
The bug-removing task is not regarded as the target of FMEA in the proposed method.
Accordingly, the failure modes dealt with in the proposed method are considered as follows:
the deviation (violation) of usages of CSW functions (module, functions, etc.) and the
deviations (violation) of the operation method. The difference between a bug and a failure
mode is explained using a sample of stack overflow when an interruption occurs. Stack
overflow occurs when many interruptions occur in the case that the values of the registers
and variables pushed into the stack are not popped adequately, or when interruptions
occur over the number that is defined in the requirement specification. As in the former
case, when the gavages (the values of registers and variables) in the stack resulting from
the inadequate software design are the cause, this is regarded as the bug. The cause of the
latter case is too much push operation. In this case, the software is designed adequately, but
more interruptions than expected occur. Because this is a violation of the requirement, this
is regarded as a failure mode (violation of software usage). The benefit that violation of the
usage and operation is regarded as the failure mode is that these failure modes can apply to
the various types of function, and the number of failure modes can be reduced. If the bugs
were regarded as failure modes, the number of failure modes would be enormous because
the types of the bugs are various. In the proposed method, the common failure modes
used for whole CSWs and standard countermeasures for each common failure mode are
derived by analyzing more than twenty existing CSWs [10]. Table 1 shows a list of common
failure modes and standard countermeasures. Here, a sample of common failure modes
are explained. The common failure mode regarding the start-up (execution) function is
that the conditions for executing the function are not satisfied, and when this situation
occurs, the function becomes unable to execute. The countermeasures for this problem
are considered as follows: add the execution-condition check to the standard operation
procedure (SOP), and add the function that sets the conditions.

Table 1. Common failure modes and standard countermeasures.

Group Common Failure Mode Failure Example Countermeasure Policy Standard Countermeasures

Startup The startup conditions for
functions are not prepared

Related operations cannot
be conducted, an improper

system status exists

Review the
startup conditions

Add the confirmation
procedure for the startup

conditions to the Standard
Operation Procedure (SOP),

set the conditions as to
whether or not to start

Conduct multiple checks
when startup

Conduct the startup check Display the startup status

Termination
The termination

conditions for functions
are not prepared

Related operations cannot
be conducted, an improper

system status exists

Review the termination
conditions for functions

Add the confirmation
procedure for termination

conditions to the SOP, set the
conditions whether or not to

terminate, multiplex the
termination

confirmation procedure
Conduct multiple checks

upon termination

Conduct
termination check

Display the
termination status

Transit to the safe status
for top priority

Add the emergency
stop function
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Table 1. Cont.

Group Common Failure Mode Failure Example Countermeasure Policy Standard Countermeasures

Input/Output

Instructions on
SOP misread

Improper results are
calculated, an improper

system status exists

Conduct multiple checks
on SOP

Conduct double checks
on SOP

Improve the visibility of
SOP indications Integrate the SOP format

Indications on Human
Machine Interface

(HMI) misread

Improper results are
calculated, an improper

system status exists

Conduct multiple checks
on HMI

Conduct double checks on
HMI

Improve the visibility
of HMI Integrate the HMI format

Check the content of HMI Add the
reconfirmation function

Mistake in
checking products

Improper results
are calculated

Conduct multiple checks
on products

Conduct double checks
on products

Past data are lost
Data related to quality

are lost

Notify when data are lost Add a warning function for
past data loss

Latest data are lost Notify if there is a data
loss risk

Add a warning function for
the latest data loss

An inputting error
Improper results are

calculated, an improper
system status exists

Multiple checks on
input data

Conduct double checks on
setting data

Calibration Long time intervals for
function calibration

A wrong measurement is
done, improper results

are calculated
Conduct periodic reviews Shorten time intervals for

function calibration

Qualification Wrong operation authority
Proper operations cannot
be done, improper results

are calculated

Confirm the qualification
before operation

Confirm operation authority
before operation

Do not set
improper authority

Review authority
periodically

Backup Insufficient backup Data disappear, data
related to quality are lost

Conduct proper
backup operations

Organize the backup
procedure in the SOP

Shorten backup intervals Shorten backup
time intervals

Unexpected CPU Load

Unexpected data
update occurs Data cannot be updated

Realize faster processing Realize faster
update processing

Develop faster devices Install faster memory devices

The upper limit of
calculation precision

is confirmed

Improper results are
calculated Increase significant digits Utilize double-precision

variables

The lower limit of
calculation precision is

confirmed

Improper results
are calculated Increase significant digits Utilize double-precision

variables

Divided by zero Operation is suspended Give a warning of division
by zero

Add a warning function for
a small divisor

Unexpected amount of
data is accepted

Abnormal program
shutdown

Refuse data Add a restriction function
for available data

Do not input data Add the number of available
data to the SOP

Unexpected interruption
tasks occur

Restrict interruption tasks Restrict interruption tasks

Prohibit interruption tasks
Add the restriction function

for interruption tasks to
the SOP

Unexpected CPU
load occurs

Program does not
response, a slow response

Unexpected execution
requests are not sent

Add the function of
displaying CPU usage

Refuse unexpected
execution requests

Add the restriction function
for accepting execution

requests under CPU
overload
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Table 1. Cont.

Group Common Failure Mode Failure Example Countermeasure Policy Standard Countermeasures

Malicious operations
or attacks

No identification for
important data

Data are removed

Take measures so that data
are not removed

Introduce Data Loss
Prevention (DLP) tools

No access control for data Take measures so that data
are not accessed

Add access control for data
according to each user

Data could be rewritten Data are falsified Take measures so that data
are not falsified

Add e-signature, add
time stamp

Vast amounts of data sent
Related operations cannot

be conducted

Data acceptance is blocked Disconnect from the
external network

Vast amounts of
requests sent Data are selected Install fire walls

Illegally accessed from
the outside

System is invaded

Disconnect Disconnect from the
external network

Discover illegal access

Introduce Intrusion
Detection System (IDS),

Introduce Intrusion
Prevention System (IPS)

Data with virus attached
are received

System malfunctions,
improper results

are calculated

Remove computer virus Introduce antivirus software

Take measures so that
virus does not invade

Introduce virus
protection software

Conduct virus check on USB
memory devices connected

Figure 2 shows the process of conducting the proposed FMEA. First, the CSW is
designed, and the requirement specifications and preliminary design specifications are
registered to the Design Safety Information DB, as described in Section 3.4. Second, the
CSW’s functions are extracted from the DB, and the common failure modes shown in Table 1
are investigated as to whether they apply or not to the extracted functions. Third, if the
common failure mode can apply to the function, the function–failure mode correspondence
table is developed. Fourth, the function, the common failure mode, and the negative
impact for the CSW are decided using the FMEA sheet (Table 2). The usage of the FMEA
sheet is as follows: the function is described (entered) on the 1st column of the sheet, the
common failure mode applicable to the function is clarified and described on the 2nd
column of the sheet, and the impact on the system when the common failure mode occurs
is clarified and described on the 3rd column of the sheet. Then, the method described
below is used to determine whether the effect is acceptable. Fifth, severity, incidence, risk
class, and detection rate for the failure mode unit are decided, and the risk priority is
calculated. When deciding the risk priority, the risk evaluation matrix is used. Figure 3
shows the risk evaluation matrix. On the left side of Figure 3, the value of the risk class is
calculated using severity and incidence. On the right side of Figure 3, the value of the risk
priority is calculated using risk class and detection rate. Sixth, based on the value of the
risk priority, it is judged whether the CSW can accept the failure or not. If the risk cannot
be accepted, it is investigated to apply the standard countermeasures described in Table 1.
Finally, the severity, incidence, risk class, and detection rate when applying the standard
countermeasures are evaluated, and the risk priority is calculated again. As a result, if the
CSW can accept the failure, the CSW’s safe tasks are completed using FMEA. If the CSW
cannot accept the failure, the same tasks are repeated until CSW can accept the failure.
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Figure 2. The procedure of the proposed failure mode and effects analysis (FMEA).

Table 2. Sample of failure mode and effects analysis (FMEA) sheet.

Function Common
Failure Mode Impact to System Accept/Reject Severity Incidence Risk Class Detection Rate Priority Countermeasures

Function A

Startup condition
X is not prepared.

The machine
does not work.

Accept
Middle Low 3 High Low

Add Standard
Operation Procedure
(SOP) for Checking
Startup Conditions.Middle Low 3 High Low

Termination
condition Y is
not prepared.

The machine use
electric power
continuously.

Accept Middle Low 3 High Low Add SOP for
checking termination

Condition.Middle Low 3 High Low

- - - - - - - - - - - - – – – – – – - - - -
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Figure 3. Risk evaluation matrix.

3.3. Outline of FTA

This subsection describes the FTA used for clarifying the specific causes of the CSW’s
fault in the lower development processes.
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First, FTA for CSW is explained [38]. The components of CSW are instructions, and the
interfaces to other components are the execution sequence of the instructions and the data
exchanged. The fault is propagated via the sent/received data between the instructions
according to the instruction’s execution sequence. Therefore, to identify the causes of the
fault, we need to trace the execution sequence of instructions and calculation process in the
opposite direction. We explain this reason using the sample program shown in Figure 4.
The function of this program is to input the initial value and add the value of the index in
the for-loop to the initial value five times. We consider a case that the value of variable res1
in line 07 becomes six (this is a focused result). The instruction in line 05 is executed before
the execution of the instruction in line 07, and the value of res1 is five before the execution
of the instruction in line 05. As the instruction in line 05 exists in the loop instruction in
line 04, the instruction is executed five times. The value of res1 is one before executing
the loop instruction in line 04. The instruction in line 02 is executed before the execution
of line 04, and the value of one is assigned into res1. As the result that the value of one
is assigned into res1 in line 02, we found that res1 becomes six in line 07. To clarify the
calculation process between the instruction executing before and after, the relationship
(calculation process) between the instruction executing before and after is defined as the
Fault Tree template (FT template; explained later). Here, because it is inefficient to develop
FT templates for all instructions of the C language, FT templates for the instructions that
are used frequently are developed based on the result of instruction appearance frequency
in existing CSWs. The FT is developed by clarifying the instruction that is executed before
the focused instruction and combining the FT templates corresponding to the instruction.
This procedure is defined as FT development rules (explained later).

Figure 5 shows the proposed FTA procedure. In the proposed method, first, the CSW’s
design information (processes in the fourth and/or fifth layer’s DFDs, CSPECs, codes,
etc.), fault, and instruction that causes the fault are obtained from the DB, as described
in Section 3.4. Second, it extracts the FT template corresponding to the instruction that
causes the fault from the FT template library. Third, the FT template calculation is modified
according to the CSW’s execution status, and the FT template is regarded as the temporary
FT. Fourth, the instruction executed immediately before is clarified according to the FT
development rules; the corresponding FT template is extracted from the FT template library;
the corresponding FT template is added (combined) to the temporary FT; the contents of
the temporary FT are modified according to the actual status of the CSW. By conducting
those tasks, we can develop the FT for the fault.
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void main(){

01      int i, res1, res2;

02      scanf (%d, &res1);

03      scanf(%d, &res2);

04      for (i = 1; I <=5; i++){

05         res1 = res1 + i;

06         res2 = res2 + i;

}

07      printf (“res1 = ¥n“, res1);

08      printf (“res2 = ¥n“, res2);

}   
(1) the value of res1 is six in line 07.

res1 is calculated in line 05.

(2) res1 is calculated in line 05.

res1 is repeated five times by the loop 

instruction in line 04.

(3) res1 is one before entering the loop instruction.

res1 is assigned inline 02.

the value of res1 becomes six when 

one is assigned into res1 in line 02.

Event occurs in loop inst.

or

Not do inst. Do n times

andand

Cond. is

false

Not

do isnt.

Do 

n times
Do module C

Do module B

FT 

Development 
rulesfor(;;)

{Do module A;
Do module B;
Do module C;}

Print X

Input

FT template library

Do 1st inst.

・・・・DO n th isnt.

Sequence

Use

if-then-else

or

Do Ｔhen clause Do else clause

andand

If stat, 

is true

Event in

then clause

If stat. 

is false

Event in

Else clause

for｛i=0; n; i++｝ inst.

or

Not do inst. Do inst.

andand

Cond. is

false

Not 

do inst.

Cond. is

true

Do 

n times

Branch Loop

Output

Do 2nd inst.

Do module AFT template for Loop

FT template for SequenceControl software

FTA

Support Tool

Design Safety 

Information 

DB

Figure 4. Sample program for explanation of the proposed method.
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Figure 5. The procedure of the proposed fault tree analysis (FTA).

Second, we explain the FT templates. In the proposed method, we develop the FT
templates. The FT templates are developed based on the result of the appearance frequency
of the instructions in the existing twenty CSWs. Figure 6a–i shows each FT template. These
FT templates are described using logical symbols. In each FT template, it only shows the
relationship between the event after the execution of an instruction (TEvent) and the event
before the execution of that instruction (BEvent). Figure 6a shows the FT template for
the assigned statement. This template explains that the causes of the undesirable event
are the case of “input value is incorrect” or the case of “operator is incorrect” when this
instruction is executed. Figure 6b shows the FT template for the if-then-else statement. This
template explains that the causes of the undesirable event are the case that “n-th clause is
executed and the instruction in the clause produces the event” or the case that “else clause
is executed and the instruction in the clause produces the event” when this instruction is
executed. Figure 6c shows the FT template for the whole statement. This template explains
that the causes of the undesirable event are the case that “as a result of not executing this
instruction, the undesirable events occur” or the case that “as a result of executing this
instruction n-th times, the undesirable event occurs” when this instruction is executed.
Figure 6d shows the FT template for the function call. This template explains that the
cause of the undesirable event is the case that “arguments are incorrect” or the case that
“the function cannot be executed” when this instruction is executed. Figure 6e shows the
FT template for interruption. This template explains that the causes of the undesirable
event are the case that “the interruption occurs and the interruption module produces the
undesirable event”, the case that “the interruption does not occur, and the none-execution
of the interruption module produces the undesirable event”, or the case that “the inhibition
of the interrupt produces the undesirable event”. Figure 6f shows the FT template for
the global variables. This template explains that the cause of the undesirable event is
the case that “one or more values of the global-variables in the whole program being
incorrect produce the undesirable event”. Figure 6g shows the FT template for the local
variables. This template explains that the cause of the undesirable event is that “one or
more values of local variables in the focused scope being incorrect produce the undesirable
event”. Figure 6h shows the FT template for the array. This template explains the cause
of the undesirable event is the case that “the index of an array is under zero”, the case
that “the element that the index points to does not exist”, or the case that “the value of
the element that is pointed to by the index is incorrect”. Figure 6i shows the template
for the pointer. This template explains that the cause of the undesirable event is the case
that “the address does not exist”, the case that “the address is incorrect”, or the case that
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“the stored value is incorrect”. Here, the instruction that has the hierarchical instruction
structure is called the hierarchical instruction. The FT template for hierarchical instruction
is developed by combining the existing FT templates. When a frequently used instruction
appears, the instruction’s FT template is developed and added to the FT template library.
Since the FT template only shows the relationship between before and after the execution
of an instruction, there is no negative impact on the other FT template and FT development
rules by adding a new FT template.
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Third, we explain the FT development rules. Figure 7a–d shows the FT development
rules, and Figure 7a shows the outline of the FT development rules. Here, dFT means de-
veloping FT (i.e., the FT to be targeted), and wFT means the temporary FT (under-working
FT) used in the “Develop FT” module. As shown in Figure 7a, FT development rules set the
fault to the top event in dFT, and the “Develop FT” module develops the remaining part
of dFT. The “Develop FT” module clarifies the instruction executed immediately before
executing the instruction and combines the corresponding FT template. The tasks are
repeated until it is no longer possible to be back in the execution order of the instructions.
Finally, the instruction that exists at the forefront of the FT is the fault. Next, the contents
of the “Develop FT” module are explained. Figure 7b shows the modules consisting of
the “Develop FT” module. The “Develop FT” module develops the dFT corresponding
to the Ig contained in the BEvent of dFT. Additionally, the “develop wFT corresponding
to instruction (Ix)” module shows the wFT development procedure corresponding to the
instruction Ix; the “operation for global variables” module shows the procedure detecting
global variables in BEvent and adding an FT template for global variables to the dFT; the
“operation for local variables” module shows the procedure detecting local variables in
BEvent and adding an FT template for local variables to the dFT. Figure 7c shows the
outline of the “2.1 develop dFT when Ig is a hierarchical instruction”, whereas Figure 7d
shows the outline of the “2.2 develop dFT when Ig is not a hierarchical instruction”. By
combining the FT template according to the reverse execution sequence from the instruction
that causes the fault to the instruction that makes the fault occur, we clarify the causes of
the fault.
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3.4. Safety Analysis Support Environment

This subsection explains the safety analysis support environment combined with the
contents described in Sections 3.1–3.4.

Figure 8 shows an outline of the proposed safety analysis support environment,
consisting of the FMEA support tool, the FTA support tool, and the design and safety
information database (DSDB).
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Figure 8. Outline of the proposed safety analysis support environment.

The FMEA support tool is used in developing the requirement specifications and the
preliminary design specifications in Figure 1. The inputs of the FMEA support tool are
all functions extracted from DSDB. The outputs of the FMEA support tool are the results
of FMEA.

The FTA support tool is used in the step for developing the detailed design specifica-
tions and program in Figure 1. The FTA support tool’s inputs are the fault and the CSW’s
design information extracted from DSDB. The faults are items that cannot be modified
when FMEA is conducted and items clarified after completing the CSW development. The
outputs of the FTA support tool are the FTs for the fault.

DSDB manages the data necessary for conducting FMEA and FTA. Figure 9 shows
the outline of the DSDB data structure. DSDB consists of the following tables: require-
ment specification, preliminary design specification, detailed design specification, module,
common failure mode and countermeasure, function–common failure mode correspon-
dence, actual failure and impact, an actual countermeasure for failure, fault, module–fault
correspondence, fault tree, and actual countermeasure for fault. Those tables are created
in the unit of the CSW’s version. The tables for each specification include information
about CSW’s functions. The module table maintains the source code of the CSW. The
common failure mode and countermeasure table include all common failure modes and all
countermeasures for the failure. The function–common failure mode correspondence table
manages all common failure modes applied to each function. The actual failure and impact
table includes concrete failure and its negative impact. The actual countermeasure for fail-
ure table manages the actual countermeasures applied to the CSW. The fault table registers
all investigated faults. The module–fault correspondence table manages the information
related to the actual conduction of FTA. The fault tree table manages the result of FTA (FTs)
calculated by the FTA support tool. The actual countermeasure for the fault table manages
the concrete countermeasures for the fault.
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4. Application and Evaluation

This section describes the application and evaluation of the proposed method. Section 4.1
describes the outline of the target system. Section 4.2 describes the design information of
CSW. Section 4.3 describes the result of the safety analysis. Section 4.4 describes the benefits
of the proposed method. Section 4.5 describes the list of limitations of the proposed method.

4.1. Outline of the Target System

We applied the proposed method to the CSW conducting communication between
the control equipment installed into the space station according to the MIL-STD-1553B
protocol. The communication between the control equipment is conducted via the data bus.
The communication control is managed by BUS-61553B (Device Corporation Inc., Bohemia,
NY, USA), and data setting tasks and obtaining tasks are managed by a CPU made by
Intel Inc. (Santa Clara, CA, USA) via the shared memory between the BUS-61553B and
CPU. Most tasks conducted by BUS-61553B are executed automatically, whereas the tasks
conducted by the CPU are conducted by the program written in the C language. The lines
of code (LOC) of CSW is approximately 800. BUS-61553B conducts the communication
between the controller and the remote terminal (RT). The controller has a master roll, and
the RT has a slave roll. The communication starts after the controller turns on the power
switch of RT (interrupt of power on). The control signals that RT receives are as follows:
interruption of broadcast command (BC) reception, interruption of RT response reception,
and interruption of the control cycle (data set, command judgment, and Health and Status
(H&S) data creation). When there is an interruption of BC reception, BUS-61553B writes
the contents of the received command to the stack and revises the data reference pointer.
When there is an interruption of RT response reception, CSW creates and sends the RT
data. When there is an interruption of the control cycle, RT investigates the communication
status stored in the memory and conducts an adequate task corresponding to the received
command variation. The reception frequency of the command is approximately one time
per 125 ms (8 Hz), and the cycle of interruptions of the control cycle is 125 ms, which
occurs asynchronously.
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4.2. Design Information on the CSW

Figure 10a–c shows the design result of the communication CSW. Here, we focus on
and discuss the contents of process 3 in Figure 10b,c. Generally, SADM describes DFDs,
CFDs, and CSPECs in a separate sheet, but we describe this information in the same sheet
to save space. Figure 10a explains the DCD and CCD. Figure 10b shows the DFD, CFD, and
CSPEC in the second layer. The interruption of BC reception and the interruption of the
control cycle (command judgment) activate process 3, and the interruption of RT response
reception and the interruption of the control cycle activate process 2. Figure 10c shows the
DFD, CFD, and CSPEC related to process 3. When the interruption of BC reception occurs,
the processes (3.1, 3.2, 3.3, and 3.7) are executed by the activation table. Those processes’
concrete operations are as follows: increment stack pointer, set necessary data to descriptor
stack, and register data blocks in the BC command to the memory. Those processes are
conducted by BUS-61553B automatically. When the control cycle (command judgment)
interruption occurs, the processes (3.4, 3.5, and 3.6) are activated by the activation table.
The concrete operations are as follows: extract the descriptor that is referred by the stack
pointer from the stack, investigate the status of the received command, and extract data
blocks that are referred by the address written in descriptor from memory.
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4.3. Safety Analysis Results Related to CSW

This subsection describes the results of the safety analysis to CSW of the communi-
cation control equipment. The safety analysis of the existing CSW of the communication
control equipment was conducted by the engineers. The engineers who designed this CSW
had sufficient experience that the engineers developed more than 10 CSWs of the aerospace
systems and had enough knowledge about the SADM and the safety analysis method. The
engineer developed the CSW obeying the guideline [39]; while the engineers who conduct
safety analysis using the proposed method had the same experience and knowledge and
mastered the proposed method additionally.

First, we explain the results of FMEA, which is conducted using the information of
DFDs, CFDs, and CSPECs in the second and/or third layer from DSDB. Table 3 shows the
results of FMEA conducted to the functions of process 3.X. There are no countermeasures
for the processes (3.1, 3.2, 3.3, and 3.7) because BUS-61553B activates those processes
automatically (by hardware). In process 3.4, there are no countermeasures that can be added
because the format of the data blocks sent and/or received is defined by the hardware
and protocol of BUS-61553B. In process 3.5, the reliability of received data blocks can be
improved by adding the error-recovering bit. In process 3.6, the operation’s reliability
corresponding to the received command can be improved by registering the obtained data
multiplexed. As a result, we add the following countermeasures: add the error-recovering
bit in the data block and register the obtained data multiplexed. The total man-hours in
conducting FMEA and planning countermeasures are approximately 20 h. (The man-hours
of developing DFD, CFD, and CSPEC, as well as the man-hours of modifying the CSW, are
not also included.)

Table 3. Result of FMEA.

Process ID Function Common
Failure Modes Causes Impact to System Severity Probability Detection Rate Risk Countermeasures

3.1

increment stack
pointer for

command count
(conducted by
BUS61553B)

malfunction of
hardware

malfunction of
BUS61553B

cannot receive
commands High Low Low High

Not Applicable
(NA) (use high
reliability parts)

3.2

store necessary
info to

descriptor stack
(conducted by
BUS61553B)

malfunction of
hardware

malfunction of
BUS61553B

cannot receive
commands High Low Low High NA (use high

reliability parts)

3.3

store data
blocks

(conducted by
BUS61553B)

malfunction of
hardware

malfunction of
BUS61553B

cannot receive
commands High Low Low High NA (use high

reliability parts)

3.4
confirm
received

command status

activation
conditions

failure
no sync data cannot receive

commands High Low Low High
multiplexing

timer
interruption,
multiplexing

descriptor
pointer,

multiplexing
descriptor

pointer (Spec. of
BUS61553B)

completion
conditions

failure

cannot access
descriptor

stack

inadequate
input data

error of
descriptor

stack

inadequate
output data

command
reception
error on

inadequate
algorithm NA NA - - - - -

program
destruction

malfunction of
memory

cannot receive
commands High Low Low High

multiplexing
error bit for
command
reception

back up error NA NA - - - -

-security error NA NA - - - -
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Table 3. Cont.

Process ID Function Common
Failure Modes Causes Impact to System Severity Probability Detection Rate Risk Countermeasures

operation
procedure miss NA NA - - - -

malfunction of
hardware

malfunction of
Electronic

Control Unit
(ECU)

NA - - - -

3.5 extract data
blocks

activation
conditions

failure

cannot finish
process 3.4

cannot receive
commands High Low Low High countermeasure

in process 3.4

completion
conditions

failure

cannot access
data blocks

cannot receive
commands High Low Low High

multiplexing
data block

pointer (Spec. of
BUS61553B)

inadequate
input data

data block
error

cannot conduct
action

corresponding to
received

command

Middle Low High Low
increase retry

number of
sending

command (Spec.
of 1553B
protocol)inadequate

output data
command

reception error
request to send

command Middle Low High Low

inadequate
algorithm NA NA - - - - -

program
destruction

malfunction of
memory

cannot extract
data blocks High Low High Low add check bit to

data block

back up error NA NA - - - - -

security error NA NA - - - - -

operation
procedure miss NA NA - - - - -

malfunction of
hardware

malfunction of
ECU NA - - - - -

3.6

conduct action
according to

received
command

activation
conditions

failure

cannot finish
process 3.5

cannot response
for command High Low Low High countermeasure

in process 3.5

completion
conditions

failure
NA NA - - - - -

inadequate
input data

cannot conduct
adequate
command
response

cannot response
for command High Low Low High

add command
send request

function

inadequate
output data

cannot conduct
adequate
command
response

cannot response
for command High Low Low High

add command
send request

function

inadequate
algorithm NA NA - - - - -

program
destruction NA NA - - - - -

back up error NA NA - - - - -

security error NA NA - - - - -

operation
procedure miss NA NA - - - - -

malfunction of
hardware

malfunction of
ECU

cannot response
for command High Low High Low use redundant

system

3.7

conduct
command
response

(conducted by
BUS61553B)

malfunction of
hardware

malfunction of
BUS61553B

cannot response
for command - - - - -

Next, we describe the result of the FTA. Here, we discuss the FT related to the fault
that loses the BC command except for the BC command received immediately before when
CSW receives plural BC commands. Figure 11a–d shows the FTs. Figure 11a is the FT
corresponding to the operation that pops the descriptors from the stack. We found that
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the causes of this fault are as follows: (A) the algorithm of process 3.5 is inadequate, (B)
the value of the stack pointer is not the value of the lost BC commands, (C) the value
of the descriptor is not the value of the lost BC command, and (D) the obtained data
block is not the data block of the lost BC command. Figure 11a–d shows the detailed FT
related to causes (A–D), respectively. Figure 11a shows the FT related to cause (A). We
then explain the preliminary events obtained by conducting FTA: “the algorithm of process
3.5 is inadequate”. As the results of analyzing Figure 11b–d, causes (B–D) are revised by
BUS-61553B simultaneously, and those refer to the command received immediately before.
As a result of investigating process 3.6, the algorithm obtains (pops) the data block referred
to as the descriptor at the top of the stack. This algorithm is adopted because the frequency
of the interruption of BC reception and the cycle of the interruption of the control cycle is
the same. However, practically those interruptions occur asynchronously. Additionally,
there exists the deviation of the frequency of occurrence of the interruption of completion of
BC reception. Therefore, when plural receptions of BC within an occurrence of interruption
of the control cycle exist, it finds that the data blocks are not obtained (popped), except
for BC’s data block immediately before. As a result, we clarified the causes (preliminary
events) related to BC’s loss, except for what the BC received immediately before. We also
found a possibility that there will be stack overflow and memory (data area) destruction
when CSW is used for the long term because the non-extracted (popped) data blocks
remain as the garbage in the stack, the descriptor stack, and data block area. As a result,
we proposed the following countermeasures when the interruption of the control cycle
occurs: (I) add an operation that extracts (pops) the data blocks until the stack pointers and
descriptor stack become empty, (II) add the data escape area that temporarily saves the
read data block until it can be processed, and (II) add a flag that shows that there exist data
blocks waiting for the conduction. As a result of consideration of the CSW’s resources and
the modification costs, the countermeasure (III) is only applied to the CSW because the
frequency of this fault is much rarer. The total man-hours of creating this FT and planning
the countermeasures is approximately 10 h (the man-hours of developing DFD, CFD, and
CSPEC, as well as the man-hours of modifying CSW, are not included).
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4.4. Benefits of the Proposed Method

First, the benefits of the usage of the proposed FMEA method are described. In
conventional FMEA, the definition of a failure mode is different depending on the analyst.
Therefore, it could be said that the result of FMEA depended on the analyst. In the proposed
FMEA, common failure modes were defined as deviations from the original usage of the
function. This made it easy to correspond between the processes in DFD and the functions
and to conduct FMEA without depending on the granularity of the function. As a result,
the analyst with a certain level of experience and knowledge can obtain the same adequate
FMEA results.

Second, the benefits of the usage of the proposed FTA method are described. In
conventional FTA, the completeness of the FTA results was different depending on the
experience and knowledge of the analyst. Additionally, the well-experienced analyst
sometimes omitted the obvious parts of the developed FT. Therefore, when the other analyst
investigated the FT developed by the well-experienced analyst, the other analyst sometimes
could not understand how the well-experienced analyst came to such a conclusion. In the
proposed FTA, the CSW’s instruction was defined as the minimum component of the FT,
and the FT development rules were defined. As a result, the analyst with a certain level of
experience and knowledge became able to obtain the same adequate FTA results.

Third, the whole proposed method is described. In the proposed method, the design
information and safety analysis results could be managed unitarily, and those are shared in
the whole CSW’s development process. As a result, we could conduct designing and safety
analysis in pairs in the adequate CSW’s development stage and become able to feedback
the safety analysis results to the design information. This reduced the additional works
related to the implementation of safety countermeasures after the completion of the CSW.
Finally, we could develop the CSW with an adequate program structure (CSW without the
conflicts between the normal functions and the safety functions). By rigorously applying
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the proposed method, the CSW’s design and safety analysis have come to be carried out
appropriately. As a result, engineers with a certain level of experience and ability can
develop CSWs with high quality. Furthermore, by the reduction of backtracking work, a
reduction of development cost is expected.

From the above-mentioned results, we can conduct the reproducible safety analysis
and develop the adequate CSW that is reflected in the safety analysis results. In the future,
we will enrich the variety of the common failure modes and the FT templates by feed-
backing the other development results. We consider that the benefits of the usage of the
proposed method will increase.

4.5. List of Limitations

The proposed method can cooperate with FMEA and FTA by managing CSW’s design
information and safety analysis results unitarily. In the CSW’s upper development process,
the comprehensive failure countermeasures can be adopted to the CSW by conducting
FMEA, whereas in the CSW’s lower development process, the safety analysis and coun-
termeasures for a specific fault can be adopted by conducting FTA. Additionally, safety
analysis can be done within a reasonable time. Therefore, the reliability of CSW improves
by applying the proposed method. By applying and evaluating the proposed method, we
clarified the following problems.

4.5.1. The Issue of the CSW’s Size

Recently, the CSW became larger (the scale of avionics software of the newest aircraft
has reached 20 million LOC). Because the CSW has many functions, it is difficult to conduct
FMEA for all functions in the given development time. When conducting FTA, it is difficult
to reverse-trace the instructions because a function consists of codes in many modules
(classes and methods). For FMEA, a method that can analyze safety from the upper to
lower layers step by step by classifying and dividing the functions hierarchically will
be investigated. For FTA, the analysis method for a validated black box module, such
as modules completed in single-unit testing and combined testing, will be investigated.
Additionally, we investigated the adequate design guideline because it is necessary to
conduct adequate function dividing (adequate functional granularity) and good design
(low coupling and high cohesion) to realize the methods mentioned above.

4.5.2. The Issue Related to the Conflicts between Countermeasures and the Addition of
New Risk

Generally, the safety of the CSW will be improved by repeating safety analysis because
the problems that the CSW has have been clarified, and the countermeasures are applied. If
additional countermeasures are applied to the CSW portion that has already been applied
with countermeasures, conflicts between old countermeasures and new countermeasures
will occur. As a result of adding a new countermeasure to a function, there is a possibility
of negatively impacting other functions. In this case, the following countermeasures are
required: applying only the countermeasure that the function has a greater negative impact
and redesigning the CSW that does not have conflicts. We investigated a method to judge
whether redesigning or not was based on the risk evaluation results using Figure 3.

4.5.3. The Issue of Attacks

The proposed method improves safety by detecting the problems of the CSW’s func-
tions based on good design; however, enough countermeasures for the attack from the
outside of CSW have not been considered. In the future, because it is considered that
CSWs will become the Internet of things (IoT), we have to investigate security in addition
to safety.
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4.5.4. The Issue of Using an Object-Oriented Programming Language

Recently, there is an increase in cases of CSW developments using an object-oriented
programming language. However, it is not easy to apply the proposed method to the CSW
developed using an object-oriented programming language. FMEA can apply to those
CSWs by corresponding the unit of the function to the classes’ methods. Applying FTA to
CSWs requires developing a new FT template corresponding to the object-oriented pro-
gramming language. Additionally, the FT development rules cannot deal with inheritance
and polymorphism; thus, we have to investigate applying the proposed method to the
object-oriented language.

4.5.5. The Issue of Other Safety Analysis Methods

The proposed method adopts FMEA and FTA as safety analysis methods. Recently,
accidents that have not been considered before have occurred because of the increasing
complexity of the CSW’s functions. In the future, the proposed method should adopt other
safety analysis methods, such as HAZOP, STPA, and the Functional Resonance Analysis
Method (FRAM) [40], to realize a safer CSW.

5. Conclusions and Future Works

This paper proposes a method that develops a safer CSW and a safety analysis envi-
ronment by managing the CSW’s design information and safety analysis results unitarily
and cooperating with multiple safety analysis methods (FMEA and FTA). Additionally,
the proposed method and the environment were applied to the development and safety
analysis of the communication CSW installed into control equipment on the space system.
It was found that we can plan adequate countermeasures for realizing safety CSW within
an adequate analysis time.

The points to be noted when using the proposed method are now described. The
proposed method becomes effective by managing design information and safety analysis
results unitarily throughout the development process. The organizations need to define
the CSW’s development standards that adapt to the proposed method and supervise
the engineers to follow standards. Additionally, it is necessary to adopt the proposed
method to the development standards, since the development process is different for
each organization.

We now detail future works. At first, we will apply the proposed method and the
environment to more CSWs and improve them by reflecting on the application results.
Next, since there are restrictions described in Section 4.5 to using the proposed method,
these will have to be solved. It is necessary to propose a safety analysis method for attacks
through the Internet because CSW will always connect to the Internet. Additionally, it is
necessary to propose a safety analysis method for AI modules (machine learning modules)
because the AI modules will be added to the conventional CSW to improve CSW’s functions.
Additionally, we will investigate the proposed method by adopting new safety analysis
methods, because many new analysis methods are proposed, such as HAZOP, STPA, and
FRAM, etc.
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