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Abstract: Visual Question Generation (VQG) from images is a rising research topic in both fields of
natural language processing and computer vision. Although there are some recent efforts towards
generating questions from images in the open domain, the VQG task in the medical domain has not
been well-studied so far due to the lack of labeled data. In this paper, we introduce a goal-driven
VQG approach for radiology images called VQGRaD that generates questions targeting specific
image aspects such as modality and abnormality. In particular, we study generating natural language
questions based on the visual content of the image and on additional information such as the image
caption and the question category. VQGRaD encodes the dense vectors of different inputs into two
latent spaces, which allows generating, for a specific question category, relevant questions about the
images, with or without their captions. We also explore the impact of domain knowledge incorporation
(e.g., medical entities and semantic types) and data augmentation techniques on visual question
generation in the medical domain. Experiments performed on the VQA-RAD dataset of clinical visual
questions showed that VQGRaD achieves 61.86% BLEU score and outperforms strong baselines. We
also performed a blinded human evaluation of the grammaticality, fluency, and relevance of the
generated questions. The human evaluation demonstrated the better quality of VQGRaD outputs and
showed that incorporating medical entities improves the quality of the generated questions. Using the
test data and evaluation process of the ImageCLEF 2020 VQA-Med challenge, we found that relying
on the proposed data augmentation technique to generate new training samples by applying different
kinds of transformations, can mitigate the lack of data, avoid overfitting, and bring a substantial
improvement in medical VQG.

Keywords: visual question generation; visual question answering; variational autoencoders; radiol-
ogy images; domain knowledge; unified medical language system; data augmentation; computer
vision; natural language processing; artificial intelligence; medical domain

1. Introduction

Recent advancements in computer vision [1–5], natural language processing [6–11]
and deep learning [12–16] research have enabled enormous progress in many medical
image interpretation technologies that support clinical decision making and improve
patient engagement [17–20].

Generating natural language questions for image understanding is a rising research
topic in both the fields of natural language processing and computer vision [21,22]. The
task, known as Visual Question Generation (VQG), has two main motivations. First, it
supports creating large-scale collections of Visual Question Answering (VQA) pairs at
low cost since VQG could automatically generate questions about an image. Second, it
can also play a role in improving the efficiency of human annotation for VQA datasets
construction [23]. VQG combines natural language processing that provides the ability to
generate the question, and computer vision techniques that allow the understanding of the
image’s content.
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In contrast to answering visual questions about images, generating questions has
received little attention so far. A few recent works have attempted to generate questions
from images in the open domain [24–26]. However, the task of VQG in the medical domain
has not been well-studied. In addition to the two main motivations mentioned above, VQG
could benefit both doctors and patients. For example, patients could use the questions
provided by VQG systems to start a conversation with their doctors and understand better
their medical images. Moreover, such VQG systems could support medical education
and clinical decision making by understanding medical images and generating questions
related to their content [27].

The VQG task, as shown in Figure 1, consists of three main phases: (1) generating a
representations of the image; (2) producing the embeddings by a neural network; and then
(3) generating the question.

Figure 1. The VQG pipeline: image is taken as input to generate the question.

One major problem with medical VQG is the lack of large-scale labeled training data,
which usually requires huge efforts to build, especially in the medical domain where
domain experts are needed for data construction. Although deep learning models have
achieved a remarkable success in computer vision and natural language processing tasks,
the performance often depends on the size and quality of available training data, which
is often tedious to collect [17,28,29]. Usually, to avoid the overfitting problem, the neural
networks have to access more training data. However, many tasks lack access to large
amounts of data, such as medical VQG and VQA.

Recently, we have presented a VQG system that is able to generate questions when
shown radiology images [30]. However, this approach is not goal-driven as it does not
guarantee that the generated questions will address a specific aspect of the image. Our
previous approach tackled generating natural language questions that are relevant to radi-
ology images without any constraints on the types of the generated questions. Developing
a method capable of asking goal-oriented questions about images is a challenging research
problem. Towards this end, this work aims to develop an approach to generating questions
that ask specific information about radiology images. As shown in Figure 2, by specifying
the type of the expected questions, different questions can be generated for a given image
such as “What is the condition seen in this image” for abnormality, “Does this have con-
trast” for modality. The goal-driven question generation process allows, for a given image,
to specify the category of the expected question. Such an approach will allow better control
of the generated questions from radiology images when they involve multiple topics of
interest, which occurs often in medical images.

In this paper, we introduce VQGRaD, a goal-driven VQG system for generating natural
language questions about radiology images. VQGRaD is tasked with generating a natural
language question when provided with an image (with or without its caption) and the
question category. In summary, this paper makes the following contributions:

1. To the best of our knowledge, this work is the first attempt to generate visual questions
about medical images that will result in a specific type of answer when provided with
an initial indication of the question category/type.

2. To overcome the data limitation of VQG in closed domains, we propose a new data
augmentation method for natural language questions.
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3. VQGRaD is designed to work with or without an image caption and only requires the
image and the question category as minimal inputs.

4. We study the impact of domain knowledge incorporation, such as named entities and
semantic types, in the proposed VQGRaD approach.

5. VQGRaD is evaluated using the VQA-RAD dataset of clinical questions and radiol-
ogy images. Experimental results show that VQGRaD performs better than strong
baselines, with a BLEU-1 score of 61.86%. We also report the VQG models’ results in
our participation at the VQA-Med 2020 challenge.

6. We perform a manual evaluation to study the grammaticality, fluency, and relevance
of the generated question from radiology images.

Figure 2. Examples of goal-driven questions about a radiology image. The possible questions should
be relevant to the given category, also known as question type. By specifying the type of the expected
question, different questions such as (a–c) can be generated from the same radiology image.

The remainder of the paper is organized as follows. First, related work concerning
the main visual question generation systems is reviewed in Section 2. Then, the proposed
methods are presented in Section 3. Several comprehensive experiments are performed
to evaluate the effectiveness of the proposed methods in Section 4 where experimental
settings, evaluation metrics, benchmark datasets, and results are presented. Conclusions
and future work are finally presented in Section 5.

2. Related Work

Question generation (QG) is the task of automatically creating natural language ques-
tions from a range of inputs, such as natural language text [31–33], structured data [34]
and images [21,24]. While many natural language processing and computer vision prob-
lems involve extracting information from the texts and images such as VQA [19,35,36],
VQG, which can be considered as a complementary task of VQA, is a multi-modal prob-
lem involving image understanding and natural language generation, especially using
generative methods.

VQG in the open-domain benefited from the available large-scale annotated datasets [37–39].
These large-scale datasets allow for a variety of work studying generative models and
continuous latent spaces for generating visual questions in the open domain [22,40]. Early
work on goal-oriented visual question generation focused primarily on reinforcement
learning setting [41,42]. Recent VQG approaches have used autoencoders’ architecture to
generate questions from images and some additional inputs such as answers and categories
of questions [23,24,43]. The successes of these systems have primarily been a result of
variational autoencoders [44].

In this work, we are interested in generating questions in closed domains. Visual question
generation in closed domains, such as the medical field, is a challenging task [45–48] that is
still understudied. For instance, Lau et al. [27] created the first VQG dataset in the medical
domain (VQA-RAD), where each radiology image was manually annotated with several
questions. However, this dataset is too small for training efficient VQG models. Recently,
we have developed a VQG system that is able to generate questions from radiology
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images [30]. However, this approach is not goal-driven as it does not guarantee that the
generated question will address a specific aspect of the image.

Inspired by the aforementioned open-domain research, we present in this paper
VQGRaD, a goal-driven visual question generation system for radiology images based on
the variational autoencoders architecture. Our work extends our previous method [30]
by tackling visual question generation as a process that considers the question’s category,
the image and its caption.

VQGRaD is able to generate questions about four main categories: abnormality, modal-
ity, plane, and organ. These are the most frequent question categories in the VQA-RAD
dataset. The questions can be generated from either (i) the image and the question category
or (ii) the image, its caption, and the question category.

In addition, to overcome the data limitation problem in the medical domain, we
propose a text-based augmentation method to automatically create new training ques-
tions. Data augmentation, the application of one or more deformations to labeled data
which result in new, additional training data, is a promising solution to handle the data
insufficiency problem [49,50].

Automatic data augmentation based on images is commonly used in computer vi-
sion [17,28,29] and can help train deep learning models, particularly when using smaller
datasets. Simply flipping or shifting images can help the models to better learn by increas-
ing the number of training images. However, the lack of available training images for
VQG in the medical domain makes image-based data augmentation alone insufficient for
boosting performance on the visual question generation task. Thus, training our supervised
models on the augmented natural language data can allow them to become more invariant
to these deformations and generalize better to unseen data.

Our text data augmentation method can also be used in open-domain and restricted-
domain NLP tasks, such as text classification and question answering, as it relies on general
morpho-syntactic features to replace relevant target words in the original text with words
that have a high contextual similarity. The following section will present our proposed
methods in detail.

3. Methods

The first goal of this study is to generate natural language questions that ask about
specific topics such as modality, abnormality, plane, and organ.

To address this challenge, we present VQGRaD, a goal-driven visual question gener-
ation system for radiology images that aims to generate relevant questions based on the
visual content of the image.

3.1. Problem Modeling

Given a pair (C, I), where C is the question category accompanied by a medical image
I, VQGRaD is tasked with generating the appropriate question Q that will result in a
specific type of answer. Mathematically, the VQG task can be formulated as:

Q = f (C, I, α) (1)

where f is the question generation function and α denotes the parameters of the model.
Categories in C are modality, abnormality, plane, and organ.

In the following sections, we will provide a detailed description of our proposed methods.

3.2. VQGRaD

The VQGRaD model is based on the variational autoencoders architecture [44]. It
first encodes the image and its caption along with the category before generating the
question. VAEs comprise two neural network components, known as encoder and decoder,
for learning the probability distributions of data p(x). The encoder transforms the latent
variable z that is created from raw data x into latent space z-space. In other words,
the encoder compresses the data from the initial space to the encoded space, also called
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latent space. The decoder, on the other hand, aims at recovering x using z extracted from
the latent space. The training of the encoder and decoder proceeds by maximizing marginal
likelihood log p(x). Finding the Evidence Lower Bound (ELBO) yields:

log p(x) ≥ Ez∼qθ(z|x)[log pφ(x|z)]− KL(qθ(z|x)||p(z)) = ELBO (2)

where q(z|x) and p(x|z) are the probability distributions of the encoder and the decoder,
respectively.

The loss function that is minimized when training VAEs is the negative log-likelihood
with a regularizer. It consists of a reconstruction loss and a regularisation loss (on the
latent layer). Reconstruction loss consists at making the scheme for encoding and decoding
as performant as possible, whereas the regularisation loss regularises the latent space
organisation by making the distributions returned by the encoder close to a standard
normal distribution. The loss function li for datapoint xi is:

li(φ, θ) = −Ez∼qθ(z|xi)
[log pφ(xi|z)] + KL(qθ(z|xi)||p(z)) (3)

where Ez∼qθ(z|xi)
[log pφ(xi|z)] is the reconstruction error and KL(qθ(z|x)||p(z)) is the Kullback–

Leibler divergence regularization between the returned distribution and a standard Gaus-
sian. φ and θ, the parameters for the decoder distribution pφ(x|z) and the encoder distribu-
tion qθ(z|x), respectively.

In VQGRaD, as shown in Figure 3, a Convolutional Neural Network (CNN) is used
to obtain the image feature map v and a Long Short Term Memory network (LSTM) [51]
is used to generate the embedded caption features c. The categories of the questions are
represented as a one hot vector a. It then encodes the dense vectors hc, ha and hv of the
caption, the category, and the image, respectively, into a continuous, dense, latent z-space.
It also encodes the dense vectors ha and hv into another continuous, dense, latent t-space
based on the continuous latent space introduced in [24] for regularization. This allows our
system to maximize the mutual information MI(.) between the encoded features, i.e., the
image, the caption, the category, and the latent space. MI(.) measures how much knowing
one of the predefined features reduces uncertainty about the other. For example, if ha and
hv are independent, then knowing hv does not give any information about ha and vice
versa, so their mutual information is zero.

Figure 3. Overview of VQGRaD, a visual question generation system for radiology images. Input captions are encoded by
an LSTM. Images are encoded by a CNN. t-space contains images and categories features, whereas z-space includes images,
captions, and categories features. Questions can be generated from either the caption latent space z or the category latent space t.
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In our case, the optimization is computed as follows:

max
φ

MI(q, z|c, a, v) + λ1MI(c, z) + λ2MI(a, z) + λ3MI(v, z)

s.t.|z| = pφ(q|z)
(4)

where λ1, λ2, λ3 are hyperparameters that relatively weight MI(.) terms in the optimization.
pφ(q|z) is the learned mapping, parameterized by φ, from the image, the caption, and the
category to this latent space.

Then, VQGRaD reconstructs the inputs from the z-space using a simple Multi Layer
Perceptron (MLP) which is a neural network with fully connected layers. It generates the
reconstructed image, caption, and category features Lv, Lc, La, and optimizes the model by
minimizing the following l2 losses:

Lv = ||hv − ĥv||2
Lc = ||hc − ĥc||2
La = ||ha − ĥa||2

(5)

On the other hand, VQGRaD trained t-space by minimizing the KL-divergence with
z-space:

Lt = KL(pφ(z|c, a, v), pθ(t|a, v))

= log σt − log σp +
σz + (µt − µz)

2σt
− 0.5

(6)

where φ and θ are the parameters used to embed into z-space and t-space, respectively. We
used the reparameterization trick [44], to generate means µz and standard deviations σz,
combine it with a sampled unit Gaussian noise ε to generate:

z = µz + εσz (7)

In VQGRaD, the t-space is not only used for regularization but also to generate
questions from only the image and the question category.

Finally, VQGRaD uses an LSTM decoder to generate the question q̂ from either the
z-space or the t-space. The decoder takes a sample from the latent dimension z-space,
and uses that as an input to output the question q̂. It receives a “start” symbol and proceeds
to output a question word by word until it produces an “end” symbol. We used Cross
Entropy loss function to evaluate the neural network’s quality and minimize the error Lg
between the generated question q̂ and the ground truth question q. The generation of each
word of the question can be written as:

ŵt = arg max
w∈W

p(w|v, w0, . . . , wt−1) (8)

where ŵt is the predicted word at t step, W denotes the word vocabulary, and ŵi represents
the i-th ground-truth word.

The final loss of VQGRaD is as follows:

Lvqgrad = λ5Lg + λ4KL + λ3Lv + λ2La + λ1Lc + λ6Lt (9)

where KL is Kullback–Leibler divergence, λ1, λ2, λ3 have already been introduced and
λ4, λ5, λ6 are hyperparameters that control the variational loss, the question generation
loss, and the amount of regularization used in our model, respectively.

3.3. Data Augmentation

Questions. For a given medical question q, we generate a set of new questions.
During the augmenting process, we use the whole training data D = {qi}n

i=1 where n is the
number of training questions. We expand each training question qi into a set of instances
qk

i where k is the number of derived pairs for each training question. To do so, we first
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select nouns and verbs as candidate words, using the following part-of-speech tags (we
used NLTK [52] to perform part-of-speech tagging):

• NN: Noun, singular or mass.
• NNS: Noun, plural.
• NNP: Proper noun, singular.
• NNPS: Proper noun, plural.
• VBD: Verb, past tense.
• VBP: Verb, non-3rd person singular present.
• VBN: Verb, past participle.
• VBG: Verb, gerund or present participle.
• VBZ: Verb, 3rd person singular present.
• VB: Verb, base form.

Each candidate word is then replaced by contextually similar words using Wiki-
PubMed-PMC embedding which was trained using four million English Wikipedia, PubMed,
and PMC articles. Similar words for a given word are retrieved from the word embeddings
space using cosine similarity. We compute the cosine similarity between a weight vector of
the given word wi in the question and the vectors for each word wj in the pre-trained word
embeddings. We use the top k similar words according to the cosine similarity. Several
experiments were carried out with k = {5, 10, 15, 20, 30} and found that the best result can
be achieved with k = 10. Figure 4 presents some examples of created questions for the
input question “Are the kidneys normal?”.

Figure 4. Contextual augmentation, when a clinical question “Are the kidneys normal?” is aug-
mented by replacing only selected words with similar words retrieved based on the cosine similarity
and pretrained word embeddings.

Images. We also generate new training instances based on image augmentation tech-
niques. To do so, we apply flipping, rotation, shifting, blurring techniques on the whole
VQA-RAD training images. Figure 5 presents some examples of created images.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Examples of created images from the original image (a): (b) is the rotated image, (c) the
blurred image, (d) the horizontally flipped image, (e) the vertically flipped image, (f) the shifted
image, and (g) the noisy image.

4. Experimental Settings and Results

In this section, we present our VQG results and conduct a comprehensive ablation
analysis. As mentioned above, the proposed method is evaluated on the VQA-RAD and
VQA-Med 2020 datasets.

4.1. Datasets

In this study, we used the VQA-RAD [27] dataset of clinical visual questions to evaluate
our VQG system. The dataset contains 315 images and 3515 corresponding questions.
Figure 6 presents simple images and questions. Each image is associated with more than one
question, each of which is accompanied with its category. In this work, we are particularly
interested in five categories of questions: “Modality”, “Abnormality”, “Organ”, “Plane” and
“Other”. Table 1 presents the number of questions and images associated to each of these
categories before and after data augmentation. The test set contains 100 reference questions
with associated categories and images.

We have also used the datasets provided by the VQA-Med 2020 challenge at Image-
CLEF 2020 during our participation. Given a radiology image, the VQG task consists of
generating a natural language question based on the image’s content. The dataset used
in VQA-Med 2020 consists of 780 radiology images with 2156 associated questions as
training data, 141 radiology images with 164 questions as validation data, and 80 radiology
images as test data. There are 1942 unique questions in the 2156 training questions. Some
questions are associated with more than one image (up to 8 images). After applying data
augmentation, our final training set consists of 161,348 questions. Figure 7 shows examples
from VQA-Med 2020 VQG data.
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Table 1. The number of questions and images associated with each category. The values after “/”
represent the number of questions and images created by our data augmentation techniques.

Category #Questions #Images

Abnormality 397/18,642 112/784
Modality 288/5534 54/378
Organ 73/16,408 135/945
Plane 163/9216 99/693
Other 348/19,798 81/567

Total 1269/69,598 239/1673

Figure 6. Sample radiology images and the associated questions from the VQA-RAD dataset.

Figure 7. Example of radiology images and the associated questions from the VQG training set of
ImageCLEF 2020 VQA-Med.

4.2. Evaluation Metrics

To investigate the performance of our visual question generation model, we make use
of both automatic and manual evaluations.

4.2.1. Automatic Evaluation

VQG is a sequence generation problem. Therefore, in the automatic evaluation, we used
various language modeling evaluation metrics such as BLEU, ROUGE, METEOR, and CIDEr
to measure the similarity of the system-generated questions and the ground truth questions
in the test set. We used the evaluation package published by [53]. BLEU-{1-4} measures the
quality of the generated question by counting the matching {1-4}-grams in the generated
question to the {1-4}-grams in the reference question, respectively. METEOR compares
the generated question with the reference question in terms of exact, stem, synonym,
and paraphrase matches between words and phrases. ROUGE-L assesses the generated
question based on the longest common subsequence shared by both the candidate and the
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reference question. The CIDEr measures consensus in questions by performing a Term
Frequency Inverse Document Frequency (TF-IDF) weighting for each n-gram.

4.2.2. Human Evaluation

We also performed a human evaluation to measure the quality of the questions
generated by our system and the baseline. To do so, we followed the standard approach
in evaluating text generation systems [54], as used for question generation by [55,56].
We manually checked the generated questions and rated them in terms of relevancy,
grammaticality, and fluency. The relevancy of a question is determined by the relationship
between the question, the image, and the category. Grammaticality refers to the conformity
of a question to the grammar rules. Fluency and common sense (readability) refers to the
way individual words sound together within a question. Two experts at the U.S National
Institutes of Health (NIH) performed manual evaluation. For each measure, the assessors
were required to give a rating ranging from 1 to 3 scale (1 = Incorrect, 2 = Average (minor
errors), 3 = Correct).

4.3. Implementation Details

VQGRaD. Our VQGRaD is implemented using PyTorch. We used ImageNet-pretrained
ResNet-50 [57] without fine-tuning its weights. Since the model expects an input of dimen-
sion 224× 224, we resized the input images to suit that dimension. The z-space and t-space
are 100 dimensions, the Adam optimiser [58] with a learning rate of 0.0001, a batch size of
32, maximum sequence length for outputs of 20 tokens were used. All models were trained
for 40 epochs using single P100 GPUs (16 GB VRAM) on a shared cluster, and the best
results were used as final results. We optimized the hyperparameters such that λ1 = 0.001,
λ2 = 0.005, λ3 = 0.001, λ4 = 0.0001 λ5 = 0.001 and λ6 = 0.001 for a total of 20 epochs.
The source code are publicly available on GitHub at https://github.com/sarrouti/vqgrad,
accessed on 15 August 2021.

VQG baseline. We used our recent VQG system named VQGR [30] as a baseline. This
model is based on the variational autoencoder architecture that takes an image as input and
generates a question. In our implementation, we used ImageNet-pretrained ResNet-50 [57]
provided by PyTorch without fine-tuning its weights as the image encoder and an LSTM
decoder for generating questions. The source code is publicly available on GitHub at
https://github.com/sarrouti/vqgr, accessed on 15 August 2021.

4.4. Experiments and Results

In order to study the task of visual question generation about radiology images and
explore the impact of domain knowledge incorporation such as medical entities and UMLS
semantic types, we perform several experiments with different settings as shown in Table 2:

• VQGRaD is our full model that can generate questions from either the caption la-
tent space z (image, caption, and category) or the category latent space t (image
and category).

• VQGRaDw_t includes another LSTM encoder to encode the image titles.
• VQGRaDw_st includes another LSTM encoder to encode the UMLS semantic types

extracted from the image captions.
• VQGRaDw_e uses only UMLS entities instead of using all words in captions. PyMetamap

(https://github.com/AnthonyMRios/pymetamap, accessed on 15 August 2021), a python
wrapper for MetaMap [59], has been used for extracting UMLS entities and semantic types.

• In VQGRaDcap_or_c, the z-space contains only image and caption features.

All systems can generate questions from either the caption latent space z or the
category latent space t.

Table 2 also presents a comparison of our proposed models and the baseline systems:

• The VQGR baseline system is trained on the VQA-RAD dataset without data augmentation.
• VQGRw_im_aug is trained on the dataset generated by augmenting the images.
• VQGRw_our_aug is trained on the dataset generated by our data augmentation technique.

https://github.com/sarrouti/vqgrad
https://github.com/sarrouti/vqgr
https://github.com/sarrouti/vqgr
https://github.com/AnthonyMRios/pymetamap
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By comparing VQGR, VQGRw_im_aug and VQGRw_our_aug, we can see that our data
augmentation technique helped considerably producing a significant improvement in the
results. The best BLEU-1 score, 55.05%, was achieved using our data augmentation technique.

Table 2. Ablation study and comparison of VQGR (baseline) and VQGRaD systems.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VQGR 31.45 14.60 7.82 3.27 10.43 38.80 21.19
VQGRw_im_aug 44.83 30.10 23.62 19.81 18.98 24.30 23.43
VQGRw_our_aug 55.05 43.39 37.98 34.54 29.35 56.34 31.18

t-space

VQGRaDcap_or_c 58.69 48.82 44.08 40.92 31.71 59.70 35.74
VQGRaDw_t 57.12 46.62 41.49 37.96 29.61 58.93 34.99
VQGRaDw_st 56.86 45.73 40.58 37.25 29.99 58.42 36.21
VQGRaDw_e 61.81 51.69 46.69 43.35 33.94 63.62 40.33
VQGRaD 61.86 51.65 46.70 43.40 33.88 63.75 41.13

z-space

VQGRaDcap_or_c 59.31 49.31 44.73 41.75 32.54 60.90 36.38
VQGRaDw_t 58.49 48.26 43.87 41.21 31.79 58.81 36.03
VQGRaDw_st 60.74 50.06 45.00 41.90 32.81 61.36 36.89
VQGRaDw_e 60.52 50.61 46.31 43.68 33.07 61.29 37.86
VQGRaD 59.11 47.44 41.78 37.85 31.00 60.39 36.79

Furthermore, it is interesting to see that VQGRaD performs the best over the baseline
systems and on all evaluation metrics. Moreover, all of our VQGRaD models outperform
the baseline system by a significant margin. This confirms our hypothesis that the task
of visual question generation can be goal-driven. VQGRaD achieved consistently better
scores among other ablations when the questions were generated from the t-space, which
contains the image and the question category features.

When adding the UMLS semantic types extracted from the captions in VQGRaDw_st
or the image titles in VQGRaDw_t, the models’ performance was continuously improved in
most metrics when the questions were generated from the z-space (caption latent space).
This is likely because the questions were generated from a latent space that encodes more
features (including images, question category, caption or title, and UMLS semantic types)
than in the VGGRaD system. However, the best results were obtained by VGGRaD when
the questions were generated from the t-space (category latent space). Thus, building
end-to-end VQG models that consider the question type is a feasible and efficient task.

For additional evaluation, we used our VQG system during our participation in
the VQG task of the VQA-Med challenge at ImageCLEF 2020 [60]. Given a radiology
image, the VQG task consists of generating a natural language question based on the
image’s content. As the questions were all about abnormality, we only used our recent
VQGR system based on VAEs and data augmentation, which takes an image as input and
generates a natural language question as output. Table 3 shows our official results on the
validation set at the VQG task of the VQA-Med challenge.

The official results of ImageCLEF 2020 VQA-Med showed that using a sequence
generation model to solve VQG in the medical domain is complicated due to the problem
of labeled data scarcity. Hence, the participating systems have used image classification
approaches [48] to solve the VQG task. Small datasets might require models that have low
complexity. Whereas sequence generation models require a large amount of training data
as they try to deeply learn the underlying data distribution of the input to output new
sequences. The available training data for VQG in the medical domain is not large/varied
enough for training a seq2seq model. However, once we increased the size/variance in
the dataset through the proposed augmentations, the performance of the proposed VQG
increases significantly, yielding a BLEU score of 39.74% and 11.6% on the validation set
and the test set, respectively.
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Table 3. Evaluation results on the validation set of the VQG dataset provided in the ImageCLEF 2020
VQA-Med challenge. VQGR trained on the original training datatset. VQGRw_our_aug trained on the
augmented data obtained by our data augmentation technique.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VQGR 33.32 23.18 5.86 2.64 11.59 35.38 20.69
VQGRw_our_aug 39.74 23.18 14.91 11.52 16.56 41.23 50.03

An additional manual evaluation of the VQG models’ outputs was performed by
two experts in medical informatics. Table 4 presents the results of the manual evaluation.
Twenty (question, image, category) triples from the test set were randomly selected for the
manual evaluation. Detailed guidelines for the raters are listed in Section 4.2.2. Inter-rater
reliability was calculated on each of the 3 measures. F1-score for each measure is presented
in Table 5. Most of the reliability scores are close to 0.50, which is considered satisfactory
reliability [61].

Table 4. Results of the manual evaluation of the best VQGRaD models and the VQG baseline system.
“Relevancy”, “Fluency”, and “Grammaticality” are rated on a 1–3 scale (3 for the best). “Score” is the
average of relevancy, fluency, and grammaticality scores. All numbers are normalized (divided by
60). The perfect score is 100.

Model Relevancy Grammaticality Fluency Score

VQGR 78.3 93.3 80.0 83.3
VQGRaDw_st(z−space) 83.3 92.5 91.6 89.16
VQGRaDw_e(z−space) 81.6 92.5 93.3 89.16
VQGRaDw_e(t−space) 96.6 96.6 97.5 96.9
VQGRaD(t−space) 86.6 96.6 92.5 91.9

Table 5. Inter-rater reliability. We used F1-score to compute the inter-annotator agreement [62].

Model Relevancy Grammaticality Fluency

VQG 0.42 0.27 0.51
VQGRaDw_st(z−space) 0.32 0.64 0.40
VQGRaDw_e(z−space) 0.40 0.64 0.48
VQGRaDw_e(t−space) 0.32 0.72 0.33
VQGRaD(t−space) 0.35 0.72 0.43

The human evaluation showed that our models achieved the highest scores by gener-
ating more relevant and correct questions. This also demonstrates that the image caption
and the question category features contribute to generating better questions. Furthermore,
the results showed that adding medical entities as an additional input improves the quality
of the generated questions.

Overall, VQGRaD provides an improved approach to generating visual questions
by targeting specific types of natural language questions about radiology images. Table 6
provides example questions generated by [27] (ground truth questions) and the VQGRaD
model. These examples show that the questions generated by our model are more consistent
with the reference questions.
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Table 6. Example image along with the question category, the automatically generated questions,
and the ground truth question. The generated questions by our VQGRaD model and the baseline
system are shown in blue and red, respectively. We manually selected the baseline’s question from
its outputs as the baseline system does not recognize the question category and generates a random
question for each image.

Image Category Generated and Ground Truth Questions

Abnormality
is a ring enhancing lesion present in the right lobe of the liver?
is a ring enhancing lesion present in the right lobe of the liver?
is the liver normal?

Modality
was this mri taken with or without contrast?
which ventricle is compressed by the t2-hyperintense?
was this mri taken with or without contrast?

Organ
is this a typical liver?
are these normal laughed kidneys?
Is this a study of the brain?

Plane
what plane is this image obtained?
what plane is this image blood-samples?
Is this image of a saggital plane?

The manual evaluation scores are much higher than the automatic ones. This is
because the system, as shown in Table 6, generates the question words that are semantically
comparable but does not generate the exact same words as the ground-truth answer. Indeed,
we believe that the existing automatic evaluation metrics are not enough to accurately
evaluate text/question generation tasks. Further efforts are needed to investigate a better
evaluation strategy for the VQG task.

5. Conclusions and Future Work

In this paper, we presented a goal-driven visual question generation approach called
VQGRaD that can generate a question that is relevant to the image and a specified cate-
gory. In particular, we were interested in questions about Abnormality, Modality, Organ,
and Plane of radiology images. The generated questions are evaluated using automatic
and manual evaluations and are found to outperform the baseline systems. The man-
ual evaluation showed that the generated questions appear comparable in quality to the
human-generated questions. The results also showed that our data augmentation technique
can boost performance on the VQG task.

Although there are several categories of questions about radiology images, the pro-
posed method can handle only four categories (i.e., abnormality, modality, organ, plane).
In the future work, we will study additional question categories. Future work will also
include the creation of larger and more varied VQG datasets as well as the use of VQG
models to create VQA data. In addition, we will investigate the use of the attention mecha-
nism to focus on specific regions instead of the whole image. We also plan to investigate
better evaluation strategies/metrics for the VQG task.
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