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Abstract: The use of data analysis techniques in electronic health records (EHRs) offers great promise
in improving predictive risk modeling. Although useful, these analysis techniques often suffer from
a lack of interpretability and transparency, especially when the data is high-dimensional. The emer-
gence of a type of computational system known as visual analytics has the potential to address these
issues by integrating data analysis techniques with interactive visualizations. This paper introduces
a visual analytics system called VERONICA that utilizes the natural classification of features in EHRs
to identify the group of features with the strongest predictive power. VERONICA incorporates a
representative set of supervised machine learning techniques—namely, classification and regression
tree, C5.0, random forest, support vector machines, and naive Bayes to support users in developing
predictive models using EHRs. It then makes the analytics results accessible through an interactive
visual interface. By integrating different sampling strategies, analytics algorithms, visualization
techniques, and human-data interaction, VERONICA assists users in comparing prediction models
in a systematic way. To demonstrate the usefulness and utility of our proposed system, we use the
clinical dataset stored at ICES to identify the best representative feature groups in detecting patients
who are at high risk of developing acute kidney injury.

Keywords: visual analytics; electronic health records; machine learning; data-driven healthcare;
imbalanced data; prediction models; acute kidney injury; precision medicine

1. Introduction

A key component of precision medicine is to determine a person’s individualized
estimates of different health outcomes, which then guides therapy to increase the chance
of long-term good health. Identifying the group of features in electronic health records
(EHRs) with the most substantial predictive power helps in the development of robust
predictive models [1,2]. The data in EHRs has great promise for improving predictive
risk modeling [3]. However, EHRs are often challenging to analyze due to their high
dimensionality [4,5]. In recent years, several studies have incorporated various data mining
and machine learning techniques to address this problem. Most of the existing studies use
unsupervised learning techniques such as principal component analysis [6], K-means [7,8],
and hierarchical clustering [9] to find the best representative group of features in high
dimensional EHRs [10–18]. Although these unsupervised techniques have shown promise
in managing high dimensional data, to our best knowledge, this problem has not been
studied thoroughly using supervised techniques [19,20]. One of the main issues with both
supervised and unsupervised techniques is that they suffer from a lack of interpretability
and transparency [21–23]. In healthcare settings, it is essential to better understand how a
given technique works. Therefore, increasing a technique’s interpretability by involving
humans in the analytics process can play a vital role in building trust with users [24–28].
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The analytics results can be made accessible to users through visual analytics (VA) to
address these issues.

Visual analytics (VA) integrates data analytics techniques with interactive visualiza-
tions to improve users’ capabilities in performing data-driven tasks [21,29]. It enables users
to achieve their goals through interactive exploration and manipulation of the data [30,31].
The design of a VA system is often not straightforward because it requires the designer to
consider users’ activities and tasks, the structure of the data, and human factors [20,32–34].
Thus, the designer needs to make several non-trivial decisions when developing such
systems. For instance, one needs to consider which techniques to use, which features
and samples to incorporate, and what level of granularity to look for when choosing a
data analytics technique [29]. Similarly, it is important to determine how to map and
classify data items and help users accomplish their tasks when developing interactive
visualizations. Consequently, combining analytic techniques with interactive visualizations
becomes a more complex challenge. Thus, it is important to involve stakeholders (e.g.,
clinical researchers and medical practitioners) in the design and development process of a
VA system [35].

The purpose of this paper is to show how VA systems can be designed systematically
to identify the best representative subset (i.e., a combination of groups) of high-dimensional
EHRs. The proposed VA system, VERONICA (Visual analytics for idEntifying featuRe
grOups iN dIsease ClAssification), takes advantage of the group structure of features stored
in EHRs. EHRs are generally classified into different groups: comorbidities, medications,
laboratory tests, hospital encounter codes, and demographics. It is possible to combine
these groups to create multiple subsets of groups. For instance, one can create a subset by
combining all features from both comorbidity and demographic groups. Depending on
the predictive power of features within them, some groups or subsets (i.e., combinations
of groups) are stronger predictors in identifying diseases in comparison to others. To
identify the subset with the most substantial predictive power, VERONICA considers
every possible subset of groups (i.e., groups of features) and applies several supervised
learning techniques to each subset. It allows users to compare the results based on different
performance measures through an interactive visual interface. VERONICA aims to assist
healthcare providers at ICES-KDT, where ICES is a non-profit, world-leading research
organization that utilizes population-based health data to produce knowledge on a broad
range of healthcare issues, and KDT refers to the Kidney Dialysis and Transplantation
Program located in London, Ontario, Canada. We utilize the clinical dataset housed at
ICES to identify the best representative feature groups in detecting patients with a high
risk of developing acute kidney injury to demonstrate VERONICA’s utility and usefulness.

The rest of the paper is organized as follows. Section 2 gives an overview of the con-
ceptual and terminological background to understand the design of VERONICA. Section 3
briefly describes existing EHR-based VA systems. Section 4 explains the methodology used
for the design of VERONICA. Section 5 presents VERONICA by describing its structure
and components. We address the limitations of the system in Section 6. Finally, Section 7
discusses the conclusions and future areas of application.

2. Background

In this section, we present the terminological and conceptual background to un-
derstand the design of VERONICA. We discuss different components of VA systems to
provide a better understanding of the concept of VA. Finally, we provide a summary
of the chosen machine learning techniques—namely, classification and regression tree
(CART) [36], C5.0 [37], random forest [38], naïve Bayes (NB) [39], and support vector
machine (SVM) [40].

2.1. Visual Analytics

Visual Analytics (VA) systems combine the strengths of data analysis and interactive
visualizations to enable users to apply filters and explore and manipulate the data inter-
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actively to accomplish their goals [41]. The processing load in VA is distributed between
users and the key components of the system—namely, the analytics module and interactive
visualization module [21,29,42–45].

2.1.1. Analytics Module

The analytics module is responsible for storing, pre-processing, transforming, and
performing computerized analysis of the data. It involves three main stages: data pre-
processing, data transformation, and data analysis [29]. The raw data retrieved from
different sources gets processed in the pre-processing stage. This stage involves tasks
such as fusion, integration, cleaning, and synthesis [46]. Then in the transformation stage,
the pre-processed data is transformed into a form suitable for analysis. Common tasks
in this stage include smoothing, aggregation, normalization, and feature generation [46].
Finally, the analysis stage involves the discovery of hidden patterns and relationships
and allows for the extraction of useful and novel information from the data [47,48]. This
can be carried out by applying various statistical and machine learning techniques (e.g.,
random forest, SVM, NB, and decision trees) to the transformed data. However, despite all
the benefits, most of these computational techniques do not support proper exploration
and manipulation of the computed results [21]. VA systems address this problem by
allowing users to engage in a more involved discourse with the data through interactive
visualizations.

2.1.2. Interactive Visualization Module

In VA systems, the interactive visualization module is composed of a mapping compo-
nent that retrieves the analyzed data from the analytics module and generates interactive
visual representations. It allows users to change the displayed information, modify the
subset of the information displayed, and guide and control the intermediary steps of the
analytical processes within the analytics module. This, in turn, incites a chain of reactions
that leads to the execution of additional analysis processes. The interactive visualization
module provides users with flexibility and supports their cognitive and perceptual needs
as they engage in various complex tasks. However, despite the advantages of interactive
visualizations in amplifying users’ cognitive needs, they fell short when confronted with
data-intensive tasks that require computational analysis [21]. Therefore, an approach that
integrates analytical processes with interactive visualizations through VA is required to
overcome these challenges [49–51].

2.2. Machine Learning Techniques

In this section, we give a brief overview of all machine learning techniques used in
VERONICA.

2.2.1. Decision Tree

Decision trees are among the most popular and powerful classification techniques
that can provide informative models [52]. They construct a set of predictive rules to solve
the classification problems using the recursive partitioning process. In their simplest form
(e.g., C4.5 [37]), each feature is tested and ranked based on its ability to split the remaining
data. The training data is propagated through the decision tree branches until enough
features are chosen to correctly classify them. The classifier has a tree-like structure where
each of its leaf nodes corresponds to a subset of the data that belongs to one class. Two
widely known methods for generating decision trees are Classification and Regression
Trees (CART) and C5.0. CART is based on a tree-growing algorithm that uses the GINI
index as its splitting criteria. The strategy is to choose the feature whose GINI Index is
minimum after each split. On the other hand, C5.0 builds the tree by splitting based on
the feature that yields the most considerable information gain (Entropy). These classifiers
are robust in handling missing values since the tree-growing process is not affected by
missing data [53]. However, despite all the benefits, they tend to over-fit the training
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data [54]. Random forest addresses this problem by generating an ensemble of decision
trees where each tree is built from a random arrangement of features [38,55]. A new object
passes through every tree in the forest to get classified based on a vector of features. Each
distinctive tree gives a classification and votes for the class. The final classification of the
new object is based on the majority “vote” of all the trees in the forest.

2.2.2. Support Vector Machines

Support Vector Machines are among the most successful and robust classification tech-
niques [40,56]. They aim to identify an optimal separating hyperplane that can distinctly
divide the instances of multiple classes in a multi-dimensional space by maximizing the
minimum distance from the hyperplane to the closest instance. Although models produced
by SVM are often hard to interpret and understand, they work well on classification tasks
involving a large number of features [57]. SVM is first outlined for the linearly separable
classification problems, but a linear classifier might not be the most appropriate candidate
for the binary classification. SVM can support non-linear decision surfaces using kernel
functions. Due to its good generalization ability and its low sensitivity to the curse of
high-dimensionality, SVM is often used in many classification problems.

2.2.3. Naive Bayes

Naive Bayes is a simple and powerful probabilistic classifier that often creates stable
and accurate models [39]. The model is based on the probability of each class and the
conditional probability of each class given each feature. These probabilities that are directly
calculated from the data can be used for the classification of new data based on the Bayes
theorem. Naive Bayes makes a simplistic assumption that all the features are independent
of one another. Despite this assumption and its simplistic design, it can be very efficient,
particularly when the data is high-dimensional.

2.3. Class Imbalance Problem

In EHRs, data are usually composed of “negative” samples with only a small percent-
age of “positive” ones, resulting in the imbalanced classification problem. The imbalance
problem in the healthcare domain, where one class often has notably fewer samples than
the other class, affects the performance of classification techniques. The former class is
known as the minority class, and the latter is known as the majority class. Most standard
classification techniques, such as support vector machines, assume that both classes are
equally common and aim to maximize the overall classification accuracy without account-
ing for uneven distribution of the minority and majority classes. Thus, the impact of the
imbalance problem in the performance of classification techniques could have adverse
consequences. It often results in a learning bias to the majority class and poor sensitivity
toward the minority class [58,59]. In EHRs with imbalance class distribution, accurately
detecting samples from the minority class is of great importance as they often correspond
to high-impact events. For instance, among patients with suspicious mole(s) pigmentation,
the prevalence of patients with cancer (i.e., minority class) is significantly lower than
patients who are likely not to have cancer (i.e., the majority class). In this example, the
incorrect classification of a cancer patient as a patient without cancer will incur an unac-
ceptably high cost, thus making the class imbalance into a problem of great importance in
predictive learning, especially in the healthcare domain. A common strategy to address the
imbalance problem is to rebalance the class distribution at the data level using sampling
techniques [60–63]. In the next section, we discuss some of the widely used sampling
techniques in more detail.

Sampling Techniques

In their simplest forms, random oversampling duplicates random samples from the
minority class, while random undersampling selects random samples from the majority
class [64]. One of the main issues of undersampling is the removal of valuable information
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if a large number of samples are discarded from the majority class. A considerable deletion
of samples from the majority class might also change the distribution of the majority class,
resulting in a change in the distribution of the overall dataset. On the other hand, since
oversampling increases the size of the training data, it will result in an increased training
time. It has also been shown that oversampling approaches might cause overfitting since
classification techniques tend to focus on replicated minority samples [65]. Overfitting
occurs when a prediction model fits too closely to the training set and is then incapable
of generalizing the new data. To avoid overfitting, oversampling approaches that cre-
ate artificial minority samples are preferred [66]. The synthetic minority oversampling
technique (SMOTE) is an oversampling approach that randomly selects samples from the
minority class and generates artificial minority samples by random interpolation between
the selected samples and their nearest neighbors [67]. The generation of new minority class
samples will lead to a more balanced class distribution compared to the original minority to
majority class ratio. One potential disadvantage of SMOTE is that it creates the same num-
ber of artificial samples for each original minority sample without taking the neighboring
samples into consideration, which ultimately increases the occurrence of overlaps between
classes [68]. Several modifications of SMOTE that improve its performance by adjusting
minority sample selection procedures have been proposed in the literature. For instance,
adaptive synthetic sampling adaptively alters the number of artificial samples from the
minority class following the density of majority samples around the original samples from
the minority class [69].

3. Related Work

The most common application of VA in EHRs is identifying and exploring patient
cohorts [70]. Several EHR-based VA systems have been developed to facilitate the process of
generating and comparing multiple patient cohorts and identifying risk factors associated
with a specific disease. For instance, VisualDecisionLinc [71] is a VA system that supports
clinicians in identifying groups of patients with similar characteristics to understand
the effectiveness of different treatments for those patients by providing summaries of
patient outcomes and treatment options in a dashboard. Similarly, PHENOTREE [72] is
a hierarchical and interactive phenotyping EHR-based VA system that allows users to
interactively explore patient groups and explore hierarchical phenotypes by integrating
principal component analysis and a user interface. VALENCIA [19] is another EHR-based
VA system that facilitates the exploration of high-dimensional data stored in EHRS by
combining various dimensionality reduction and clustering techniques with interactive
visualizations. It allows clinical researchers to identify which features are more important
within each cluster of patients. RadVis [73] is a VA system that enables clinicians to better
understand the characteristics of patient clusters. It allows the user to apply different
clustering techniques and displays the result using a 3-dimensional radial coordinate
visualization. Likewise, Guo et al. [74] developed another EHR-based VA system to assist
clinical researchers in clustering similar patients, comparing values of medical features of
patients, and finding similar time tamps among similar patients. To support the user in
performing these tasks, the system integrates a dimensionality reduction technique and
a density-based clustering method with multiple interactive linked views. SubVIS [75]
is another VA system that assists clinical researchers in exploring and interpreting high-
dimensional clinical data by integrating different subspace clustering techniques and
an interactive visual interface. Similarly, Huang et al. [76] developed a VA system that
supports the exploration of patient trajectories to help clinical researchers in identifying how
a group of similar patients with a specific disease might develop other comorbidities over
time. The system integrates frequency-based and hierarchical clustering techniques with a
Sankey-like timeline to support clinical researchers in performing these tasks. Most of these
existing EHR-based VA systems that have been developed to manage high dimensional
data use unsupervised learning techniques such as dimensionality reduction, principal
component analysis, and clustering techniques. Although these techniques have shown
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great promise in addressing this issue, to our best knowledge, this problem has not been
studied thoroughly using supervised techniques.

4. Materials and Methods

In this section, we describe the methods we used to design the proposed VA system—
namely, VERONICA.

4.1. Design Process and Participants

The design and development of VA systems is an integrated process that requires
various sets of skills and expertise. In light of this, we adopted a participatory design ap-
proach to obtain the needs and requirements of the healthcare providers and to understand
the real-world EHR-driven tasks that they perform. Participatory design is a co-operative
approach that places users at the center of the design process. It is an iterative group
effort that requires all the stakeholders to work together to ensure the system meets their
expectations [35]. An epidemiologist, a clinician-scientist, a statistician, data scientists,
and computer scientists were involved in the conceptualization, design, and evaluation of
this VA system. It is important to optimize the communication between all stakeholders
involved in the process because they might experience a language gap due to their different
backgrounds. For instance, it is critical to ensure that the medical terms are comprehensible
to the team members with a technical background and the motivations of the analysis
process and design decisions are well-addressed across the team. In light of this, we asked
healthcare experts to provide us with their formative feedback on different design deci-
sions and a list of tasks they perform on EHRs. Multiple participatory design approaches
are used to obtain the healthcare providers’ needs and identify opportunities that can
significantly improve VERONICA’s performance through more effective visualizations
and analysis techniques.

4.2. Data Sources

We formed a derivation cohort using large linked administrative healthcare databases
held at ICES. We ascertained hospital and patient characteristics, outcome, and drug use
from five administrative databases (see Table A1). These datasets were linked using unique
encoded identifiers that were derived from health card numbers of patients and were
analyzed at ICES. The Ontario Drug Benefit Program database is used to identify prescrip-
tion drug use. This database contains highly accurate patient records of all outpatient
prescriptions administered to patients aged 65 years or older, with an error rate of less
than 1% [77]. We acquired vital statistics from the Ontario Registered Persons Database,
which includes demographic data on all Ontarians who have ever been issued a health
card. We identified baseline comorbidity data, ED visits, and hospital admission codes
from the National Ambulatory Care Reporting System and the Canadian Institute for
Health Information Discharge Abstract Database (hospitalizations). We used ICD-10 (i.e.,
International Classification of Diseases, post-2002) codes to identify hospital encounter
codes and baseline comorbidities. In addition, baseline comorbidity data and health claims
for physician services were acquired from the Ontario Health Insurance Plan database. All
the coding definitions for the comorbidities are provided in Tables A2 and A3.

4.3. Cohort Entry Criteria

We created a cohort of patients aged 65 years or older who were admitted to a hospital
or visited an emergency department (ED) between 2014 and 2016. The discharge date
from the hospital or ED served as the index date, also referred to as the cohort entry
date. If a patient had multiple ED visits and hospital admissions, we chose the first
incident. Individuals with invalid data regarding age, sex, and the health-card number
were excluded. In addition, we excluded individuals who: (1) previously received a kidney
transplant or dialysis treatment as the assessment of acute kidney injury is usually no
longer relevant in patients with end-stage kidney disease; (2) left the hospital or ED against
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medical advice or without being seen by a physician; and (3) had acute kidney injury
recorded during their hospital admission or ED visit prior to hospital discharge, as acute
kidney injury was already present prior to the follow-up period. The diagnosis codes for
the exclusion criteria are shown in Table A4.

4.4. Response Variable

Acute Kidney Injury (AKI) is defined as a sudden deterioration of kidney function. It is
associated with a lower chance of survival, prolonged hospital stays, subsequent morbidity
after discharge, and incremental healthcare costs [78–81]. A system that detects early
AKI or predicts its clinical manifestations with considerable lead-time allows healthcare
experts to provide more effective treatments to prevent AKI. We build models to predict
hospital admission with AKI within 90 days after being discharged from ED or hospital.
The incidence of AKI is identified using the Canadian Institute for Health Information
Discharge Abstract Database and National Ambulatory Care Reporting System based on
ICD-10 diagnostic codes (i.e., “N17”).

4.5. Input Features

The final cohort includes 162 unique features. These features can be classified into
five groups: demographics, comorbidities, hospital encounter codes, general practitioner
(GP) visits, and medications. The demographic group includes four features: age, sex,
region, and income quintile. The comorbidity group contains ten known risk factors of AKI,
including diabetes mellitus, chronic kidney disease, chronic liver disease, cerebrovascular
disease, coronary artery disease, hypertension, major cancers, peripheral vascular disease,
heart failure, and kidney stones. These comorbidity features are detected prior to index
hospital admission or ED visit. We applied a 5-year look-back window to identify these
features. The GP visit group contains twenty-three features that are identified based on the
billing codes from the Ontario Health Insurance Plan database (Table 1).

The hospital encounter code group includes 1878 diagnostic codes that were detected
during the index hospital admission and ED visit. The medication group consists of
595 medications prescribed to the patients within 120 before the index date. We apply the
Chi-Square test for feature selection on the hospital encounter code and medication groups
and then filter the chosen features with a healthcare expert. We select seventy and fifty-five
most significant features for hospital encounter code and medication groups, respectively,
based on the result of the chi square test. The ten most important features in the hospital
encounter code and medication groups are shown in Table 2.
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Table 1. The features included in the GP visit Group.

Features

Minor assessment

General assessment

General re-assessment

Consultation

Repeat consultation

Intermediate assessment or well-baby care

Mini assessment

Complex house call assessment

House call assessment

Limited consultation

Special family and general practice consultation

Comprehensive family and general practice consultation

Care of the elderly FPA

Periodic health visit—adult 65 years of age and older

Chronic disease shared appointment-2 patients (per unit)

Chronic disease shared appointment—3 patients (per unit)

Chronic disease shared appointment—4 patients (per unit)

Chronic disease shared appointment—5 patients (per unit)

Chronic disease shared appointment—6 to 12 patients (per unit)

Nursing home or home for the aged—first 2 subsequent visits per patient per month (per visit)

Nursing home or home for the aged—additional subsequent visits (maximum 2 per patient per
month) per visit

Additional visits due to intercurrent illness per visit

Table 2. The top ten features included in hospital encounter codes and medications groups.

Hospital Encounter Codes Medications

Acute myeloid leukemia Sunitinib Malate

Diffuse non-Hodgkin’s lymphoma Lenalidomide

Chronic kidney disease Abiraterone Acetate

Congestive heart failure Metolazone

Cholecystitis Cyclosporine

Lymphoid leukemia Megestrol Acetate

Malignant neoplasm of bladder Lithium Carbonate

Decubitus ulcer Atropine Sulfate and Diphenoxylate Hcl

Abnormal serum enzyme levels Furosemide

Secondary and unspecified malignant
neoplasm of lymph nodes Prochlorperazine Maleate

5. Implementation Details

VERONICA is implemented in HTML, JavaScript library D3, and R packages. R
is used to develop the Analytics module. Html and D3 are used to build the interface
and controls in the Interactive Visualization module. We implement the communication
between these two modules using PHP and JavaScript.
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We use R to develop different components of the Analytics module because it (1)
offers support in performing various sampling and machine learning techniques, (2) is an
open-source and platform-independent tool, (3) has several libraries, (4) is available in the
ICES environment, and (5) has a large community and user forums.

D3 (Data-Driven Documents) is used to implement the interactive visualizations,
and the Java programming language will be used to integrate data analytics with the
visualizations. D3 (1) is an open-source Javascript library that works with web standards,
(2) provides users with the full capabilities of the modern web browsers, (3) enables them
to reuse JavaScript code and add different functionalities, and (4) is compatible with
multiple platforms and other programming languages that are used in the implementation
of VERONICA.

6. Workflow

As shown in Figure 1, VERONICA has two modules: Analytics and Interactive
Visualization. The Analytics module utilizes the group structure of features stored in EHRs
to identify the subset of feature groups that best represent the data in the prediction of
AKI. The Interactive Visualization module maps the data items generated by the Analytics
module into interactive visual representations to assist users in exploring the results. It
supports six main interactions: (1) arranging, (2) drilling, (3) searching, (4) filtering, (5)
transforming, and (6) selecting.

The basic workflow of VERONICA is as follows. First, we gather patient and hospital
characteristics from five different databases stored at ICES. We then classify these features
into five main groups—namely, hospital encounter codes, comorbidities, GP visits, medi-
cations, and demographics. The features included in these groups are pre-processed and
transformed into forms appropriate for the analysis. We then create all possible subsets of
groups (i.e., thirty-one groups), as shown in Figure 2. In the next step, we apply undersam-
pling and SMOTE [67] to each subset to obtain two sampled datasets. Next, five machine
learning techniques, namely CART, C5.0, random forest, naïve Bayes, and SVM, are applied
to each sampled dataset, generating 310 prediction models. We use the area under the
receiver operating characteristic curve (AUROC) to report the performance of these models.
To help users compare and explore the analytic results, we make them accessible to users
through interactive visualizations. The Interactive Visualization module uses an interactive
visual interface to show the results of the Analytics module. It allows users to explore the
prediction models and compare their performance. The interface is supported by several
controls, such as a search bar, selection buttons, and drop-down menus. Finally, several
interactions are built into the system to allow users to manipulate the results.
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7. The Design of VERONICA

We use VERONICA to identify the subset of groups that has the most substantial
predictive power in the classification of AKI. VERONICA applies several machine learning
techniques to each subset and allows exploration of the analysis results through interactive
visualizations. In this section, we describe the two main components of the system. We
explain how the data is processed and analyzed in the Analytics module. We then describe
the Interactive Visualization module and how it assists users in the interpretation and
exploration of the results.

7.1. Analytics Module

The Analytics module utilizes a representative set of machine learning and sampling
techniques to identify the subset that best represents the data in identifying AKI. Three
tree-based classifiers (CART, C5.0, and random forest), one kernel-based classifier (SVM),
and one probabilistic classifier (naive Bayes) are used in this analysis. In this section, we
explain how these techniques can be employed to analyze the data.

We classify features stored in our clinical dataset into five main groups based on
the domain knowledge—namely demographics, comorbidities, medications, hospital en-
counter codes, and GP visits. For each feature included in these groups, the last recorded
value before the index date is chosen. The features in comorbidity, medication, hospital
encounter code, and GP visit groups are set to either “Y” or “N”. If an individual is
prescribed medication or has a comorbid condition, then its corresponding value is set to
“Y”. If there is evidence of a particular hospital encounter code present for a patient, we set
its corresponding value to “Y”. We create multiple dummy variables for the age feature
where each variable represents a specific age range. If a patient’s age lays within a specified
range, then the corresponding variable is set to “1”. The region feature takes either “R”
or “U”, representing rural or urban, respectively. The sex feature takes either “M” or “F”
for males and females. The income feature takes an integer value that lies within 1 to 5 to
represent the income quintile. All features included in the cohort are transformed into a
scale and format suitable for further analysis by machine learning techniques.

A total of 924,533 participants are included in the final cohort, of which 5993 ex-
perienced AKI after being discharged from the index encounter. This dataset has an
imbalanced class distribution, where the negative class (i.e., non-AKI) is represented by a
large number of patients (i.e., 899,449 patients) compared to the positive class (i.e., 5993).
The proposed system supports a number of sampling techniques such as random over-
sampling, Borderline-SMOTE [82], and Adaptive Synthetic Sampling. In this paper, we
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use undersampling and SMOTE. We configure these techniques so that the number of
positive cases becomes equal compared to the negative cases. We use the DMwR package
in R to implement the SMOTE algorithm. The “k” (i.e., nearest neighbors) and “perc.over”
variables of the SMOTE algorithm are set to 5 and 100, respectively.

To develop the prediction models, we first split the dataset into training and test
sets. The training and test set includes 903,442 and 2000 cases, respectively. In the next
step, we create every possible subset of groups, as shown in Figure 2. The total number
of subsets is 25 − 1 = 31, where 5 is the number of groups. We then apply both under-
sampling and SMOTE to each subset to obtain two sampled datasets. We develop ten
prediction models for each subset by applying five machine learning techniques, namely
CART, C5.0, random forest, naive Bayes, and SVM, to the sampled datasets. We created
a total of 31 ∗ 2 ∗ 5 = 310 models, where 31, 2, and 5 are the number of subsets, sampling
approaches, and machine learning techniques, respectively. In each model, AKI is the
response variable and all features included in the subset are predictor variables. The
CART and C5.0 classifiers are implemented using the “rpart” and “C50” packages in R,
respectively. We use the “e1071” package in R to implement naive Bayes and SVM with a
radial kernel (kernel = “radial”). Random forest is implemented using the “randomForest”
package in R with fifty trees (i.e., ntree = 50).

We compare the performance of all the generated models using AUROC [83,84]. A
ROC curve shows the trade-off between sensitivity and specificity across different decision
thresholds. Sensitivity measures how often a test classifies a patient as “at-risk” correctly.
On the other hand, specificity is the capacity of a test to classify a patient as “risk-free”
correctly [85]. The AUROC ranges from 0.51 to 0.89 for the classification of AKI among the
generated models.

In total, VERONICA generates 310 models that are built by applying five machine
learning techniques mentioned above on two sampled datasets (i.e., undersampled and
SMOTE) for each subset. As a result, a large number of models and subsets are generated,
which makes it difficult for users to understand the results. To overcome this issue, the
data items generated by the Analytics module are made available to users through an
interactive visual interface.

7.2. Interactive Visualization Module

VERONICA is composed of an interactive visual interface and several selection con-
trols, such as a search bar, drop-down menus, and selection buttons. In this section, we
explain how data items produced by the Analytics module and subsets of groups are
mapped into visual representation to allow users to accomplish various tasks.

As shown in Figure 3, groups of features (i.e., comorbidities, demographics, medi-
cations, hospital encounter codes, and GP visits) and their subsets are represented by a
two-layer graph structure. In the first layer, the group nodes are mapped by color-coded
rectangles, where each rectangle is labeled with a code representing the first letter of its
corresponding group’s name (Table 3). For instance, the rectangle representing the comor-
bidity group is color-coded in pink and is labeled with “C”. The second layer includes
all the nodes representing subsets of groups, where each node includes a grey circle and
a combination code in the text format. The combination code for each subset contains
the first letters of all the groups that are included in the subset. For instance, as shown
in Figure 3, the first grey circle from the top represents the subset of all groups, and it is
labeled with “MHDGC”. The connections between the nodes in the first and second layers
are shown by color-coded links where the link’s color is identical to its corresponding
group node’s color. Two nodes from the first and second layers are connected if the node
in the first layer (i.e., group node) is included as one of the groups that make up the node
in the second layer (i.e., subset node).
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Table 3. Groups and their representing codes.

Groups Codes

Comorbidities “C”

Demographics “D”

GP visits “G”

Hospital encounter codes “H”

Medications “M”

VERONICA uses a sortable heatmap to show the result of the Analytics module, as
shown in Figure 3. It enables users to compare the performance of the generated models by
placing the analysis techniques in the columns and subsets of groups in the rows. Each cell
in the heatmap includes a color-coded numerical value representing the AUROC achieved
by applying an analysis technique to a subset in the connecting column and row. The color
of the cells of the heatmap is light grey by default. However, through different interactions,
users can observe the cell’s color based on the value of test AUROC corresponding to that
cell. This color-coding is based on two gradient scales. The first gradient scale is created
by blending different shades of green. It represents all the cells corresponding to models
where AUROC is greater than 0.8. It is interesting to note that most of the models are
densely clustered between 0.8 and 0.9. Thus, the second scale is built by blending different
shades of blue to represent all the cells corresponding to models where AUROC is less
than 0.8. We included a legend to assist users in interpreting the heatmap based on these
gradient scales. There is also a help button (“?”) located to the right of the legend that
provides users with additional information on how to interact with the heatmap.
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Users can hover the mouse over any rectangle representing a group to highlight all
the subset nodes that include the hovered group, links connecting the hovered group and
highlighted subsets, and cells corresponding to the highlighted subsets (Figure 4A). In
addition, VERONICA allows users to select group nodes by clicking on their corresponding
rectangles (Figure 4B). The system then highlights all the subset nodes that contain all the
groups corresponding to the selected rectangles, links connecting the selected groups and
highlighted subsets and rows of cells corresponding to the highlighted circles. In addition,
to get additional information, users can move their mouse over the circles representing
subsets to bring out tooltips. Furthermore, the system enables users to select any number
of subsets by clicking on their corresponding circles.
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This interaction highlights all the cells corresponding to the selected subsets, group
nodes that contain the selected subset, and links connecting the selected subset node and
highlighted group nodes (Figure 5).

Users can observe the performance of different analysis techniques by clicking on
circles representing the combinations. This interaction highlights all the cells in the heatmap
representing the selected column. When a circle gets selected, its color changes to dark blue.
As shown in Figure 6, when several subset nodes (or group nodes) and circles representing
analysis techniques are selected simultaneously, the color of all the cells that both their
rows and columns are selected changes based on the gradient scales mentioned above (i.e.,
shades of green or blue based on the value of the cell’s AUROC).
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Users can also hover the mouse over the cells in the heatmap to highlight the labels
and circles representing the hovered cell. Additionally, this interaction changes the cell’s
color based on its corresponding AUROC value. The system enables users to sort the cells
by rows and columns based on their corresponding AUROC values by clicking on the
pink sort icons. For instance, cells in the heatmap are sorted by the “MHGDC” subset and
“undersampling-SVM” technique in Figure 6.

The horizontal and vertical groups of “Select All” and “Deselect All” buttons on the
top left corner of the heatmap allow users to select/deselect all the subsets and techniques.
These buttons help users easily get an overview of all the performances without selecting all
the circles individually. VERONICA provides users with a search bar and four drop-down
menus on the top left corner of the screen. Suppose users are interested in learning about
a specific subset. In that case, they can enter the combination code corresponding to that
subset in the search bar to change its color from black to green in the interface. In addition,
when users hover their mouse over the help button placed beside the search bar, a tooltip
appears with information on how to use the search bar.

The drop-down menus allow users to interactively filter subsets and techniques based
on different criteria. This gives users great flexibility to focus on the data points of interest.
The drop-down menus provide filtering based on groups, sampling techniques, machine
learning techniques, and subsets from top to bottom, respectively. Each drop-down menu
provides users with several options to choose from using radio buttons. The “Groups”
menu allows users to focus on a specific group of features. If users select a group, the
system only displays all subsets that contain the chosen group. For instance, Figure 7 shows
how the system updates the interface if the “Medications” option is chosen from the menu.
The “Sampling Techniques” and “Machine Learning Techniques” menus allow users to
filter the columns of the heatmap based on sampling and machine learning techniques,
respectively. For instance, if users are interested to learn how a specific combination of
sampling and machine learning techniques such as SMOTE and random forest performs,
they can select them in the second and third drop-down menus, respectively, as shown in
Figure 8. The “Subsets” menu provides users with an option to compare all models that
only include a specific number of groups. For instance, if users are interested in comparing
the performance of all the techniques on subsets that only include two groups, they can
choose “Subsets of Two” from the last menu (Figure 9). Users can filter data points based
on different criteria by choosing an option from each menu (Figure 10). All these menus
give users an option to reset the interface based on all groups, subsets, and techniques.
Additionally, if users select any groups, subsets, or techniques, the system restores all the
selections when it gets updated using any of the drop-down menus.
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8. Limitations

This tool should be evaluated with respect to four limitations. The first limitation
relates to the problem of using undersampling. The main issue with this sampling approach
is that it results in the loss of potentially useful data that could be essential for the induction
process. The second limitation is that the system only supports a limited number of
data mining and sampling techniques. Third, the system is designed for imbalanced
datasets. The sampling techniques are unnecessary if the dataset is balanced. Forth,
most of the guidelines for AKI diagnosis rely on an increase in serum creatinine as a
gold standard. However, these guidelines need a premorbid serum creatinine value to
be used as a baseline creatinine, which was not available for all patients in this research.
Therefore, the episode of AKI was identified using the ICD-10 code. The fifth limitation is
that although the healthcare experts at ICES have found VERONICA helpful and usable
through the participatory design process, we have not conducted a formal study to evaluate
the system’s performance or the efficiency of its user-information discourse mechanism.
Finally, the system only accepts a complete dataset that is correctly labeled because it does
not incorporate any active learning mechanisms.

9. Conclusions and Future Work

In this paper, we demonstrate how VA systems can be designed to address the chal-
lenges stemming from the high dimensional EHRs to identify the subset of feature groups
with the most predictive power in the classification of AKI systematically. To accomplish
this, we have reported the development of VERONICA, a VA system designed to assist
healthcare providers at ICES’ KDT program. VERONICA incorporates two components:
Analytics and Interactive Visualization modules. The Analytics module identifies the
best representative subset of data in detecting the patients at high risk of developing AKI
using different sampling and machine learning techniques. It incorporates two sampling
techniques—undersampling and SMOTE. It also uses a representative set of machine learn-
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ing techniques, including CART, C5.0, random forest, SVM, and naive Bayes. Our clinical
dataset includes comorbidities, demographics, hospital encounter codes, GP visits, and
medications. The system generates a large number of prediction models by applying sam-
pling and machine learning techniques mentioned above to each subset. The performance
of all the generated models is reported using AUROC. The system enables users to access,
explore, and compare these models through interactive visualizations. The Interactive
Visualization module is composed of an interactive visual interface and several selection
controls, such as a search bar, drop-down menus, and selection buttons. The interactive
visual interface assists users in the exploration of the analytic results by providing them
several interactions such as arranging, drilling, searching, filtering, transforming, and
selecting.

In terms of VERONICA’s scalability and extensibility, we design it in a modular way
so that it can accept new data sources and sampling and machine learning techniques.
VERONICA can be used to analyze high-dimensional datasets in many other domains,
such as insurance, bioinformatics, and finance, where the features included in the dataset
have a group structure.

Future research directions include (but are not limited to) the following. Further
research is needed to effectively evaluate the performance of the system by comparing it
with other standard feature selection techniques. In addition, we plan to measure the effec-
tiveness of the system for different datasets that support natural groupings. Furthermore,
since the proposed system is developed in an access-restricted virtual machine [20,86],
we could not evaluate the systems’ scalability. Thus, further efforts are needed to access
VERONICA more comprehensively by conducting formal studies.
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Appendix A

Table A1. List of databases held at ICES (an independent, non-profit, world-leading research organization that uses
population-based health and social data to produce knowledge on a broad range of healthcare issues).

Data Source Description Study Purpose

Canadian Institute for Health
Information Discharge Abstract
Database and National
Ambulatory Care Reporting
System

The Canadian Institute for Health Information
Discharge Abstract Database and the National
Ambulatory Care Reporting System collect diagnostic
and procedural variables for inpatient stays and ED
visits, respectively. Diagnostic and inpatient procedural
coding uses the 10th version of the Canadian Modified
International Classification of Disease system 10th
Revision (after 2002).

Cohort creation, description,
exposure, and outcome estimation

Ontario Drug Benefits

The Ontario Drug Benefits database includes a wide
range of outpatient prescription medications available to
all Ontario citizens over the age of 65. The error rate in
the Ontario Drug Benefits database is less than 1%.

Medication prescriptions,
description, and exposure

Registered Persons Database

The Registered Persons Database captures demographic
(sex, date of birth, postal code) and vital status
information on all Ontario residents. Relative to the
Canadian Institute for Health Information Discharge
Abstract Database in-hospital death flag, the Registered
Persons Database has a sensitivity of 94% and a positive
predictive value of 100%.

Cohort creation, description, and
exposure

Ontario Health Insurance Plan

The Ontario Health Insurance Plan database contains
information on Ontario physician billing claims for
medical services using fee and diagnosis codes outlined
in the Ontario Health Insurance Plan Schedule of
Benefits. These codes capture information on outpatient,
inpatient, and laboratory services rendered to a patient.

Cohort creation, stratification,
description, exposure, and
outcome

Table A2. Coding definitions for comorbid conditions.

Variable Database Code Set Code

Major cancer

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision

150, 154, 155, 157, 162, 174, 175, 185, 203,
204, 205, 206, 207, 208, 2303, 2304, 2307,

2330, 2312, 2334

International
Classification of Diseases

10th Revision

971, 980, 982, 984, 985, 986, 987, 988, 989,
990, 991, 993, C15, C18, C19, C20, C22, C25,

C34, C50, C56, C61, C82, C83, C85, C91,
C92, C93, C94, C95, D00, D010, D011, D012,

D022, D075, D05

Ontario Health Insurance
Plan Diagnosis 203, 204, 205, 206, 207, 208, 150, 154, 155,

157, 162, 174, 175, 183, 185

Chronic liver disease

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision

4561, 4562, 070, 5722, 5723, 5724, 5728, 573,
7824, V026, 571, 2750, 2751, 7891, 7895

International
Classification of Diseases

10th Revision

B16, B17, B18, B19, I85, R17, R18, R160,
R162, B942, Z225, E831, E830, K70, K713,
K714, K715, K717, K721, K729, K73, K74,

K753, K754, K758, K759, K76, K77

Ontario Health Insurance
Plan

Diagnosis 571, 573, 070

Fee code Z551, Z554
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Table A2. Cont.

Variable Database Code Set Code

Coronary artery disease
(excluding angina)

Canadian Institute for
Health Information
Discharge Abstract

Database

Canadian Classification of
Diagnostic, Therapeutic
and Surgical Procedures

4801, 4802, 4803, 4804, 4805, 481, 482, 483

Canadian Classification of
Health Interventions 1IJ50, 1IJ76

International
Classification of Diseases

9th Revision
412, 410, 411

International
Classification of Diseases

10th Revision
I21, I22, Z955, T822

Ontario Health Insurance
Plan

Diagnosis 410, 412

Fee code R741, R742, R743, G298, E646, E651, E652,
E654, E655, Z434, Z448

Diabetes

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision
250

International
Classification of Diseases

10th Revision
E10, E11, E13, E14

Ontario Health Insurance
Plan

Diagnosis 250

Fee code Q040, K029, K030, K045, K046

Heart failure

Canadian Institute for
Health Information
Discharge Abstract

Database

Canadian Classification of
Diagnostic, Therapeutic
and Surgical Procedures

4961, 4962, 4963, 4964

Canadian Classification of
Health Interventions

1HP53, 1HP55, 1HZ53GRFR, 1HZ53LAFR,
1HZ53SYFR

International
Classification of Diseases

9th Revision
I500, I501, I509, I255, J81

International
Classification of Diseases

10th Revision
I21, I22, Z955, T822

Ontario Health Insurance
Plan

Diagnosis 428

Fee code R701, R702, Z429

Hypertension

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision
401, 402, 403, 404, 405

International
Classification of Diseases

10th Revision
I10, I11, I12, I13, I15

Ontario Health Insurance
Plan Diagnosis 401, 402, 403
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Table A2. Cont.

Variable Database Code Set Code

Kidney stones

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision

5920, 5921, 5929, 5940, 5941, 5942, 5948,
5949, 27411

International
Classification of Diseases

10th Revision

N200, N201, N202, N209, N210, N211,
N218, N219, N220, N228

Peripheral vascular
disease

Canadian Institute for
Health Information
Discharge Abstract

Database

Canadian Classification of
Diagnostic, Therapeutic
and Surgical Procedures

5125, 5129, 5014, 5016, 5018, 5028, 5038,
5126, 5159

Canadian Classification of
Health Interventions

1KA76, 1KA50, 1KE76, 1KG50, 1KG57,
1KG76MI, 1KG87, 1IA87LA, 1IB87LA,
1IC87LA, 1ID87LA, 1KA87LA, 1KE57

International
Classification of Diseases

9th Revision
4402, 4408, 4409, 5571, 4439, 444

International
Classification of Diseases

10th Revision
I700, I702, I708, I709, I731, I738, I739, K551

Ontario Health Insurance
Plan Fee code

R787, R780, R797, R804, R809, R875, R815,
R936, R783, R784, R785, E626, R814, R786,
R937, R860, R861, R855, R856, R933, R934,

R791, E672, R794, R813, R867, E649

Cerebrovascular disease
(stroke or transient

ischemic attack)

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision

430, 431, 432, 4340, 4341, 4349, 435, 436,
3623

International
Classification of Diseases

10th Revision

I62, I630, I631, I632, I633, I634, I635, I638,
I639, I64, H341, I600, I601, I602, I603, I604,

I605, I606, I607, I609, I61, G450, G451, G452,
G453, G458, G459, H340

Chronic kidney disease

Canadian Institute for
Health Information
Discharge Abstract

Database

International
Classification of Diseases

9th Revision

4030, 4031, 4039, 4040, 4041, 4049, 585, 586,
5888, 5889, 2504

International
Classification of Diseases

10th Revision

E102, E112, E132, E142, I12, I13, N08, N18,
N19

Ontario Health Insurance
Plan Diagnosis 403, 585

Table A3. Diagnostic codes for health care utilization characteristics.

Variable Database Code Set Code

Family physician
visit

Ontario Health
Insurance Plan Fee code A001, A003, A004, A005, A006, A007, A008, A900, A901, A905, A911, A912,

A967, K131, K132, K140, K141, K142, K143, K144, W003, W008, W121
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Table A4. Diagnostic codes for exclusion criteria.

Variable Database Code Set Code

Dialysis

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of
Diagnostic, Therapeutic and

Surgical Procedures
5127, 5142, 5143, 5195, 6698

Canadian Classification of
Health Interventions

1PZ21, 1OT53DATS, 1OT53HATS, 1OT53LATS,
1SY55LAFT, 7SC59QD, 1KY76, 1KG76MZXXA,

1KG76MZXXN, 1JM76NC, 1JM76NCXXN

International Classification of
Diseases 9th Revision V451, V560, V568, 99673

International Classification of
Diseases 10th Revision T824, Y602, Y612, Y622, Y841, Z49, Z992

Ontario Health Insurance Plan Fee code

R850, G324, G336, G327, G862, G865, G099, R825,
R826, R827, R833, R840, R841, R843, R848, R851,
R946, R943, R944, R945, R941, R942, Z450, Z451,
Z452, G864, R852, R853, R854, R885, G333, H540,
H740, R849, G323, G325, G326, G860, G863, G866,
G330, G331, G332, G861, G082, G083, G085, G090,
G091, G092, G093, G094, G095, G096, G294, G295

Kidney
transplant

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of
Health Interventions 1PC85

Ontario Health Insurance Plan Fee code S435, S434
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