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Abstract: Neural encoder-decoder models for language generation can be trained to predict words
directly from linguistic or non-linguistic inputs. When generating with these so-called end-to-end
models, however, the NLG system needs an additional decoding procedure that determines the
output sequence, given the infinite search space over potential sequences that could be generated with
the given vocabulary. This survey paper provides an overview of the different ways of implementing
decoding on top of neural network-based generation models. Research into decoding has become
a real trend in the area of neural language generation, and numerous recent papers have shown
that the choice of decoding method has a considerable impact on the quality and various linguistic
properties of the generation output of a neural NLG system. This survey aims to contribute to a more
systematic understanding of decoding methods across different areas of neural NLG. We group the
reviewed methods with respect to the broad type of objective that they optimize in the generation of
the sequence—likelihood, diversity, and task-specific linguistic constraints or goals—and discuss
their respective strengths and weaknesses.

Keywords: neural language generation; decoding; beam search; sampling; diversity

1. Introduction

The rise of deep learning techniques in NLP has significantly changed the way natural
language generation (NLG) systems are designed, developed, and trained with data.
Traditional, rule- or corpus-based NLG systems typically modeled decisions at different
levels of linguistics processing in an explicit and symbolic fashion [1,2].

In contrast, recent neural network architectures for generation can be trained to predict
words directly from linguistic inputs or non-linguistic data, such as database records or
images. For this reason, neural generators are commonly referred to as “end-to-end
systems” [3–7].

It is less commonly noticed, however, that the neural end-to-end approach to gener-
ation is restricted to modeling word probability distributions, whereas the step of deter-
mining the output sequence is not handled in the model itself. Thus, neural NLG system
generally need an additional decoding procedure that operates in symbolic space and de-
fines how words are strung together to form sentences and texts. This survey focuses on
the decoding stage in the neural language generation process. It provides an overview of
the vast range of decoding methods that have been developed and used in recent research
on neural language generation and discusses their respective strengths and weaknesses.

The development of a neural architecture for generation involves many steps and
aspects, starting from the definition of the task, the collection and preparation of data, the
design of the model and its training, and the evaluation. Recent surveys in NLG cover
these aspects very well but do not address the topic of decoding in particular, e.g., Gatt and
Krahmer [2]’s very extensive survey on different NLG tasks, architectures, and evaluation
methods. Similarly, in many recent papers on NLG systems or tasks, the decoding method
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does not play a central role. Often, it is reported as a technical detail of the experimental
set-up. At the same time, research into decoding has become a real trend in the area
of neural language generation. Numerous papers have been published in recent years
showing that the choice of decoding method has a considerable impact on the quality and
various linguistic properties of the generation output. This survey aims to make this trend
more visible and to contribute to a more systematic understanding of decoding and its
importance for neural NLG.

1.1. Motivation and Overview

In a neural NLG system, the decoding method defines the way the system handles its
search space over potential output utterances when generating a sequence. Generally, in
neural language generation, this search space is infinite, i.e., it grows exponentially with
the length of the output sequence. Therefore, the decoding procedure is an important part
of the neural NLG pipeline where non-trivial design decisions are taken by the developer
of the NLG system. The first goal of this survey is to introduce the notion of decoding and
show its importance for different neural (and non-neural) NLG frameworks (Section 2).

The most well-known and de-facto standard decoding procedure in NLG is beam
search, a general and traditional search algorithm which dates back to Lowerre [8]’s work
on speech recognition. Since the advent of neural NLG, however, researchers have noticed
shortcomings of beam search and its many variants that are used more or less systematically
in practice. The second goal of this survey is to provide an in-depth overview of definitions
and analyses of beam search in neural NLG (Section 3).

While beam search is designed to maximize the likelihood of the generated sequence,
many recently developed decoding methods prioritize other generation objectives. Most
notably, a considerable body of work has investigated decoding methods that increase
the so-called “diversity” of generation output. Section 4 introduces different notions of
diversity used in the decoding literature and reviews the corresponding methods.

While likelihood-oriented and diversity-oriented decoding is rather task-indepen-
dent, other lines of work have investigated decoding methods that explicitly introduce
task-specific objectives and linguistic constraints into the generation process. Modeling
constraints that control the behavior of an NLG system for particular tasks or situations
is a notorious problem in neural NLG, given the complex black-box design of neural
network architectures. Decoding seems to offer an attractive solution (or work-around)
to this problem as it operates on the symbolic search space representing generation candi-
dates. Section 5 will summarize works that view decoding as a means of controlling and
constraining the linguistic properties of neural NLG output.

Finally, the decoding methods reviewed in this survey do not only constitute inter-
esting algorithms on their own, since they are closely connected to general themes and
questions that revolve around neural NLG. As the above overview has already shown,
decoding methods show important differences with respect to their objectives and under-
lying assumptions of the generation process. Section 6 provides some discussion of the
challenges and open questions that are brought up by decoding, but concern neural NLG
in general.

In short, the goals of this survey can be summarized as follows:

• overview decoding across different neural NLG frameworks (Section 2),
• review of different variants of beam search-based decoding and summarize the debate

about strengths and weaknesses of beam search (Section 3),
• discuss different notions of diversity in the decoding literature and summarize work

on diversity-oriented decoding methods (Section 4),
• summarize work on task-specific decoding (Section 5), and
• discuss challenges in neural NLG brought up by work on decoding (Section 6).
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1.2. Scope and Methodology

This survey focuses on decoding methods for neural NLG-but how do we define
NLG in the first place? A very popular definition of NLG is the one by Reiter and Dale [9],
which states that NLG is “is concerned with the construction of computer systems than can
produce understandable texts in English or other human languages from some underlying
non-linguistic representation of information”. In recent years, however, the research ques-
tions and modeling approaches in NLG overlap more and more with questions addressed in
areas, such as text-to-text generation (e.g., summarization) [10,11], machine translation [10],
dialog modeling [12], or, notably, language modeling [11]. Here, the input is not necessar-
ily language-external data but linguistic input, e.g., text. Gatt and Krahmer [2]’s survey
focuses mostly on “core” NLG where the input to the system is non-linguistic. In our
discussion of decoding, we will see that this distinction is very difficult to maintain as
methods for neural data-to-text generation are often directly inspired by and compared
to methods from other areas subsumed under or related to NLG, particularly in machine
translation and language modeling. Hence, in most of this article, we will adopt a rather
loose definition of NLG and report on decoding methods used to generate text in neural
encoder-decoder frameworks.

This survey aims at a comprehensive overview of different approaches to decoding
and their analysis in the recent literature. Therefore, it includes a diverse set of papers
published at major international NLP, ML, and AI venues since the development neural
NLG in 2015, i.e., papers that introduce particular decoding methods, that present anal-
yses of decoding, or that report relevant experiments on decoding as part of a particular
NLG system. This survey also includes papers published before the advent of neural
NLG, introducing foundational work on decoding methods that are still widely used in
neural NLG. Furthermore, this survey provides a perspective on decoding methods from
a practical perspective. We have compiled a list of papers on well-known NLG systems
spanning the different NLG tasks just discussed and report their decoding method, even
if it is not central in that paper. Tables 2 and 3 show this list, which contains systems
that either implement a decoding method relevant for this survey or constitute a popular
approach in their sub-area according to their number of citations and publication venue.
Table 2 summarizes the text-to-text generation systems which process linguistic inputs,
whereas Table 3 lists data-to-text systems that take non-linguistic data as input. This takes
up the distinction between different types of NLG tasks discussed above and allows for a
comparison between these overlapping areas.

2. Decoding Across NLG Frameworks and Tasks

This survey is devoted to decoding methods that are defined as inference procedures
external to the neural NLG model and that can be used broadly and independently across
different NLG tasks and architectures. Hence, most of this survey will abstract away from
the inner workings of neural NLG architectures and models. At the same time, we will also
see that many decoding methods are designed to address particular shortcomings of neural
generation systems and challenges that arise in the neural encoder-decoder generation
framework. Therefore, before going into the details of decoding methods in the remainder
of this article, this section will briefly introduce some basic NLG frameworks and discuss
why and where they require a decoding procedure. We will start with pre-neural statistical
NLG systems in Section 2.1, move on to autoregressive neural generation in Section 2.2
and non-autoregressive models in Section 2.3. Section 1.2 gives an overview of different
NLG tasks considered in this survey.

2.1. Pre-Neural NLG

First of all, template- or rule-based approaches constitute an important type of NLG
system that is often relevant in practical applications. These systems offer “hand-built”
solutions for specific generation domains or specific parts of a generation pipeline [13–16]
and can be designed at varying levels of linguistic complexity [17]. Generally, they explicitly
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restrict the system’s search space to a finite set of utterances, use rules to fill in pre-specified
utterance templates, and do not require a decoding method.

Other NLG frameworks have integrated grammar-based components into hybrid
architectures that leveraged a statistical component to rank or score decisions specified
by the grammar. Early approaches in corpus-based NLG followed a generate-and-rank
approach where a (more or less sophisticated) grammar was used to produce an exhaustive
set of generation candidates which was subsequently ranked globally by a language model
or some other type of scoring or reranking model [18–21]. These systems deal with a larger
search space than fully template- or rule-based systems, but still search the entire, finite
hypothesis space for the globally optimal output candidate.

Subsequent work on stochastic language generation aimed at methods which avoid an
exhaustive ranking or traversal of the candidate space. Another way to integrate grammar-
based generation with statistical decision making was introduced in the probabilistic
CFG-based generator by Belz [22]. Their system was built for the task of weather forecast
generation and features expansion rules with weights or probabilities learned from a
corpus. Belz [22] experiment with three decoding strategies for searching the space of
possible expansions: greedy search, viterbi search and greedy roulette-wheel generation.
The latter two correspond to two main types of decoding methods discussed in this survey,
i.e., viterbi search as a search-based decoding method and roulette-wheel generation as a
sampling-based method that favors diversity. Belz [22]’s experiments showed that greedy
search outperformed the other decoding methods.

Subsequent and concurrent work on statistical NLG has aimed at implementing
generation models that do not require a grammar as a backbone and can be learned in an
end-to-end fashion and trained directly on input-output pairs. Angeli et al. [23] present
a simple, domain-independent method for training a generator on different data-to-text
generation corpora that align sentences to database records. Their system decomposes
the generation process into a sequence of local content selection and realization decisions,
which are handled by discriminative classifiers. Thus, in contrast to recent, neural end-to-
end systems (see Section 2.2), their model does not directly predict words from a given
input, but implements an intermediate level of processing that models the structure of the
output sequence. Angeli et al. [23] discuss the possibility to use different decoding methods,
i.e., greedy search, sampling and beam search, but state that greedy search outperformed
beam search in their setting.

In a similar vein, Konstas and Lapata [24] present an approach to concept-to-text
generation which they call unsupervised as it does not assume explicit alignments between
input representations (database records) and output text. Their framework is based on a
basic probabilistic CFG that captures the syntactic relations between database records, fields,
and words. Importantly, their system represents the search space as a set of trees encoded in
a hyper-graph. A core component of their system is a relatively advanced decoding method
as a naive traversal of the hyper-graph would be infeasible. For decoding, they adopt
cube-pruning [25], a variant of beam-search for syntax-based machine translation which
allows them to interleave search with language model scoring. Mairesse and Young [26]
developed the BAGEL system as a fully stochastic approach for generation in a dialog
system setting. Their approach does not rely on a hand-coded grammar, but frames the
generation task as a search over Factored Language Models. These can be thought of
as dynamic Bayesian networks and constitute, according to Reference [27], a principled
way of modeling word prediction in a large search space. Thus, in BAGEL, the language
generator’s task is to predict, order and realize a sequence of so-called semantic stacks
(similar to slots). A core component of BAGEL is a decoding procedure that divides the
search problem into three sequential sub-tasks, i.e., the ordering of mandatory stacks, the
prediction of the full sequence of stacks and the realization of the stacks [26].

Next to the aforementioned approaches for end-to-end data-to-text generation, an-
other important line of work in pre-neural statistical NLG has investigated models for
realizing and linearizing a given hierarchical meaning representation or syntactic structure,
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e.g., as part of the surface realization challenges [28,29]. Here, the most successful systems
adopted statistical linearization techniques. For instance, the system by Bohnet et al. [30]
and Bohnet et al. [31] were trained to map trees to output sequences using a series of classi-
fication and realization models. These linearization decisions are implemented as decoding
procedures via beam search. More recent work on linearization has typically adopted
AMR-based meaning representations and used different translation or transduction models
to map these to output sentences, using decoding mechanisms from phrase-based MT
systems [32,33].

Thus, implementations of decoding algorithms in NLG have often been based on
general search algorithms or algorithms developed in the area of MT. In research on MT,
different decoding mechanisms have been explored and described in great detail for a range
of alignment-based or phrase-based systems [25,34,35]. For instance, the well-known beam
search decoder implemented in the Pharaoh system [35] operates on a phrase table that
aligns words or phrases in an input sentence with different translation candidates in the
output sentence. The decoding problem is to find a high-scoring combination of translation
hypotheses and, at the same time, reduce the search space which grows exponentially with
the length of the input sentence. Other work on decoding in MT has investigated methods
for exact inference or optimal decoding aimed at finding the best possible translation in the
huge space of candidates [36,37].

2.2. Neural Autoregressive NLG

The NLG systems described in Section 2.1 explored a variety of computational ap-
proaches for modeling language generation with statistical methods while, importantly,
assuming some form of underlying structure or linguistic representation of the sequence to
be generated. Recent work in the area has focused to a large extent on the neural gener-
ation paradigm where the sequence generation task is framed as a conditional language
modeling problem. Neural generation architectures are frequently called “encoder-decoder
architectures” as they first encode the input x into some hidden, continuous representation
and then decode this representation to some linguistic output in a word-by-word manner.
It is important to note the difference between the term “decoder” which refers to a part of
the neural model that maps the encoded input to word probabilities and the “decoding
procedure” which is an algorithm external to the model applied during inference. This
survey focuses on the latter type of decoding.

Neural text generation systems generally assume that the output text is a flat sequence
of words (or symbols, more generally) drawn from a fixed vocabulary V. The probability of
a sequence over this vocabulary can be factorized into conditional word probabilities. More
specifically, the probability of a word yj (to be generated at the position j in the sequence)
is conditioned on some input x and the preceding words of the sequence:

logP(y|x) =
J

∑
j=1

logP(yj|y
j−1
1 , x). (1)

Such a generation model assigns a probability to all potential sequences over the given
vocabulary V, i.e., it scores every y, y ∈ V∗, which is the main idea underlying traditional
and neural language models. The word probabilities are typically conditioned on an input
x that is given in training data, e.g., some database record, a meaning representation or an
image. In the case of so-called open text generation, the input can be empty and the formula
in Equation (1) is identical to a language modeling process. In addition, in auto-regressive
sequence generation, each word is conditioned on the word generated at the previous
time step.

There are several neural network architectures that can be used to implement sequence
generation systems as defined in Equation (1). A common example is recurrent neural
networks (RNNs) that are able to consume or encode input sequences of arbitrary length
and transform them into output sequences of arbitrary length [38,39]. The main idea of
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RNNs is to learn to represent the hidden states of the sequence, i.e., h, which represents a
sort of memory that encodes preceding words in the sequence:

logP(y|x) =
J

∑
j=1

logP(yj|y
j−1
1 , x, h). (2)

In a simple recurrent architecture, the processing of a sequence is implemented, at
least, with the following hidden layers:

ht = σ(Whxx + Whhht−1)

yt = softmax(Wyhht)
.

An important limitation of RNNs is that they process both the input and the output in a
strict left-to-right fashion and make it difficult to pass information between the encoder and
the decoder in a flexible way. Therefore, the transformer architecture by Vaswani et al. [40]
has now replaced RNNs in many neural generation settings. The central element of the
transformer are self-attention heads. The layers of the transformer are built out of many
such attention heads which operate in parallel. The self-attention in the encoder is not
directional, as the attention at a particular position can attend to all other positions in
the input sequence. The decoder of the transformer is most often implemented in an
autoregressive fashion, masking out all positions following the current position. The
decoder can attend to all positions up to the current one via self-attention, and includes
encoder-decoder attention layers that allow the decoder to attend to all positions in the
input sequence. Thus, most, but not all, neural generation systems are autoregressive, see
the next Section 2.3 for a brief summary of non-autoregressive approaches in generation.

While neural autoregressive NLG models generally model the probability of a se-
quence as a sequence conditional word probabilities, there are different ways in which
these models can be optimized during training. A standard approach is to train in a super-
vised manner and maximize the likelihood of a word by minimizing the cross-entropy loss
between predicted tokens and tokens given in the training examples. This training regime
entails that the training signal is given to the model only on the word level. A popular
alternative to word-level supervised training are methods from reinforcement learning (RL)
which make it possible to give sequence-level rewards to the model [41–45]. A well-known
example is Ranzato et al. [41]’s self-critical sequence training used to optimize RNNs, as a
variant of the REINFORCE policy gradient optimization algorithm [46]. In this approach,
the prediction of the next word corresponds to an action which updates the state of the
RL environment (here, the hidden state of an RNN). Importantly, the model receives the
reward at the end of the sequence, such that the reward represents a sequence-level goal
or quality criterion. A common reward function is the BLEU metric [47], which is also
frequently used for automatic evaluation of generated sequences. It is important to note,
however, that training a neural sequence generation from scratch using only RL-based
sequence-level rewards is not deemed feasible in practice. In Ranzato et al. [41] and other
RL-based training regimes, the generation model is pre-trained using cross-entropy loss and
used as the initial policy which is then fine-tuned with sequence-level training. Section 5.3
discusses further connections between decoding and RL-based sequence-level training.

Regardless of the choice of architecture (e.g., recurrent or transformer models) and
training regime (word-level or sequence-level), existing neural generation models do not
provide a built-in mechanism that defines the reconstruction of the sequence from the
given word probabilities. This stands in contrast to other statistical generators sketched
in Section 2.1 where the sequence generation process is typically restricted by a grammar,
template or tree structure. For this reason, the decoding procedure (external to the model)
has a central role in the neural generation process as it needs to determine how the output
sequence is assembled and retrieved from the exponentially large space of candidate
sequences. Given the factorization of the sequence generation problem from Equation (1),
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the decoding step needs to compose an output utterance in an incremental word-by-
word fashion.

2.3. Neural Non-Autoregressive Generation

Shortly after the discovery of the transformer architecture by Vaswani et al. [40], re-
searchers have started exploring the idea of parallelizing not only the encoder, but also the
decoder of the neural generation architecture, leading to so-called non-autoregressive mod-
els. One of the first successful implementations of parallel decoding (here understood as the
decoder part of the model) was the WaveNext architecture for text-to-speech synthesis by
Oord et al. [48]. Gu et al. [49] proposed a model for non-autoregressive machine translation,
with the aim of fully leveraging the performance advantage of the Transformer architecture
during decoding and avoid slow, potentially error-prone decoding mechanisms, such as
beam search. The main idea of non-autoregressive modeling is that, at inference time, the
model does not have to take into account dependencies between different positions in the
output, such as this naive baseline:

logP(y|x) = logpL(T|x1:T′) +
T

∑
j=1

logP(yt|xT′
1 ). (3)

This simple non-autoregressive model predicts the target length of the sentence
from its input and conditions the word probabilities only on the input, not on preced-
ing output words. This, unsurprisingly, has not been found to work in practice as this
model exhibits full conditional independence. Generally, attempts at implementing non-
autoregressive models, to date, have been more or less successful. Most studies show
that non-autoregressive models typically generate output of lower quality then outputs
of autoregressive models. However, they are much faster and in some domains, such
as speech synthesis or machine translation, good quality can be reached by using tech-
niques of knowledge distillation [49], probability density distillation [48], or iterative
refinement [50].

Besides speeding up conventional procedures for decoding in autoregressive genera-
tion, some work on non-autoregressive or partially autoregressive models aims at going
beyond the assumption that output needs to be produced in a fixed left-to-right generation
order. Gu et al. [51] present a transformer that treats generation order as a latent variable
in sequence generation. They train their transformer to predict the next word and, based
on the next word, the next position in a given partial sequence. Since the learning of a
model that optimizes the likelihood marginalized over generation orders is intractable,
they approximate the latent generation orders using beam search to explore the space
of all permutations of the target sequence. In a similar vein, Stern et al. [52] develop
the Insertion Transfomer which is trained to predict insertions of words into a partial
sequence. By adopting different loss functions, their model can accommodate different
generation orders, including orders that can be parallelized (e.g., balanced binary trees).
Both Gu et al. [51]’s and Stern et al. [52]’s experiments show that insertion-based decod-
ing models reach state-of-the-art performance in tasks, such as MT, code generation, or
image captioning.

Generally, the design of non-autoregressive models typically involves a built-in mecha-
nism that defines the assembly of the sequence, in contrast to the autoregressive generation
models discussed in Section 2.2. For instance, the Insertion Transformer by Stern et al. [52]
explicitly learns operations that manage the construction of the sequence generation,
whereas these operations would be handled by the decoding method in autoregressive
generation. Hence, this survey focuses on decoding methods for autoregressive generation.

2.4. Summary

The brief summary of some pre-neural statistical NLG systems in Section 2.1 has
shown that decoding mechanisms have always played a certain role in statistical generation
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systems: except the early generate-and-rank architectures where classifiers where used
to score full sentences, subsequent systems have generally decomposed the generation
process into smaller decisions that can be learned from a corpus, e.g., the selection of
the next slot from a meaning representation or database record, the prediction of the
next word, or the ordering of two words in a tree, etc. This decomposition entails that
most statistical generation frameworks deal with a large number of potential output
sequences. Handling this search space over generation outputs has been investigated
and tackled in some pre-neural systems, especially in early end-to-end systems for data-
to-text generation. Here, a couple of elaborate decoding methods have been proposed
as, e.g., in Konstas and Lapata [24]’s or Mairesse and Young [26]’s work. However, there
has been little effort in pre-neural NLG on generalizing these methods across different
frameworks, apart from research on decoding in MT which has explicitly studied the
effect of different decoding procedures. The recent neural encoder-decoder framework,
introduced briefly in Sections 2.2 and 2.3, has led to NLG models that do not impose any
hard constraints or structures controlling how word-level predictions should be combined
in a sequence. Handling the search space in neural generation, therefore, becomes a real
challenge: exhaustive search is intractable and simple search (e.g., greedy decoding) does
not seem to work well in practice.

In short, the main points discussed in Section 2 can be summarized as:

• research on decoding in non-neural frameworks based on structured search spaces
(e.g., hypergraphs, factored language models),

• autoregressive (left-to-right) neural NLG generally requires a decoding method defin-
ing the assembly of the sequence, and

• non-autoregressive generation methods are faster and define operations for assem-
bling the sequences as part of the model, but often perform worse than autoregres-
sive approaches.

3. Decoding as Search for the Optimal Sequence

The most widely used, and debated, decoding algorithm in various sequence-to-
sequence frameworks to date is beam search, a basic breadth-first search algorithm. Many
of the more advanced or specialized decoding methods discussed below build upon beam
search or aim to address its limitations. In the following, we will generally introduce
decoding as a search problem (Section 3.1) and discuss a basic example of beam search
(Section 3.2). Section 3.3 surveys different variants and parameters of beam search used
in the recent NLG and MT literature. Section 3.4 summarizes the recent debate about
strengths and weaknesses of beam search, and Section 3.5 concludes with an overview of
how beam search is used in practice. Table 1 summarizes these various aspects and papers
related to beam search discussed in Section 3.

3.1. Decoding as Search

In neural NLG, decoding is most commonly viewed as a search problem, where the
task is to find the most likely utterance y for a given input x:

ŷ = arg maxy∈V∗P(y|x). (4)

A principled approach to solving this equation would be exact search over the entire
search space. This is typically unfeasible given the large vocabulary that neural generators
are trained on and the long sequences they are tasked to generate (i.e., sentences or even
entire texts). More formally, Chen et al. [53] prove that finding the best string of polynomial
length in an RNN is NP-complete.

When viewed from a search perspective, the objective of decoding is to generate an
output text that is as close as possible to the optimal output that could be found with
exhaustive search. The simplest way to approximate the likelihood objective is to generate
the most likely word at each time step, until an end symbol has been generated or the
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maximal number of time steps has been reached. This greedy search represents a rather
naive approach as it optimizes the probability of the sequence in an entirely local way.
Consequently, it has been shown to produce repetitive or invariable sentences [54]. A more
widely used way of approximating exact search in decoding is beam search. The discovery
of this algorithm is attributed to Lowerre [8]. The main ideas, variants, and shortcomings
of this algorithm will be discussed in the following.

Table 1. Overview of papers on beam search reviewed in Section 3.

Papers

Standard definitions Lowerre [8], Graves [39], Klein et al. [55], Stahlberg
and Byrne [56], Meister et al. [57]

Variants
stopping criteria Klein et al. [55], Huang et al. [58], Newman et al. [59]

length normalization Graves [39], Klein et al. [55]

length reward Huang et al. [58], He et al. [60],
Murray and Chiang [61]

shrinking beam Bahdanau et al. [62]
coverage Klein et al. [55]

pruning thresholds Freitag and Al-Onaizan [63]
formal reformulations Rush et al. [37], Meister et al. [57]

Analyses

negative effect of large beam width Yang et al. [64], Koehn and Knowles [65], Cohen and
Beck [66]

positive effect of large beam width Vinyals et al. [67], Karpathy and Fei-Fei [68]

bias towards short sequences
Graves [39], Huang et al. [58], Murray and Chiang

[61], Sountsov and Sarawagi [69], Zarrieß and
Schlangen [70], Newman et al. [59]

repetitive output Karpathy and Fei-Fei [68], Li et al. [54],
Holtzman et al. [71]

bias towards same prefix hypotheses Freitag and Al-Onaizan [63], Shao et al. [72],
Kulikov et al. [73]

usefulness of beam search objective Stahlberg and Byrne [56], Meister et al. [74]

3.2. Beam Search: Basic Example

Beam search is a pruned version of breadth-first search that keeps a fixed number
of candidates on the beam, at each step of the search procedure. It can be implemented
as a graph-based algorithm that builds up a tree of output sequences by incrementally
adding words to the high-scoring candidates on the beam, as shown in Figure 1. The key
parameter in beam search is the beam width k which determines the number of candidates
that will be kept at each time step or level of the tree. Each (partial) output sequence or
hypothesis is associated with a score, e.g., the probability assigned to it by the underlying
neural language model. All hypotheses that have a score lower than the top-k candidate
are pruned. Beam search with k = 1 is identical to greedy search which generates a single
hypothesis with the most probable word given the previous words at each time step. Beam
search with an infinite beam amounts to full breadth-first search. For a formal definition of
the algorithm, see the pseudo code in Algorithm 1, taken from Graves [39].

The graph-based visualization in Figure 1 illustrates an example search with k = 5:
first, the root of the tree, the start symbol, is expanded with the five most likely words
that can follow the start symbol. In the second step, one of these paths ((start)-(unk)) is
abandoned, while another path splits into 2 hypotheses (start-in-diesem, start-in-der). The
hypothesis that is most likely at time step 2 ((start)-(das)-(ist)) is abanoned at time step 4. The
reason for this is that one of the candidates from time step 3 ((start)-(die)-(Kommission)-(ist))
leads to 4 high-scoring candidates at time step 4. One of these is the final output candidate
((start)-(die)-(Kommission)-(ist)-(geschlossen)-(.)-(<end>)) as it contains the end symbol and
achieves the best score.
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Algorithm 1: Beam search as defined by Graves [39].

Initialise: B = {∅}; Pr(∅) = 1
for t = 1 to T do

A = B;
B = {};
for y ∈ A do

Pr(y)+ = ∑ŷ∈pre f (y)∩A Pr(ŷ)Pr(y|ŷ, t)
end
while B contains less than W elements more probable than the most probable in A

do
y∗ = most probable in A;
remove y∗ from A;
Pr(y∗) = Pr(y∗)Pr(∅|y, t);
Add y∗ to B;
for k ∈ Y do

Pr(y∗ + k) = Pr(y∗)Pr(k|y∗, t);
Add y∗ + k to A;

end
end
Remove all but the Wmost probable from B;

end
Return: y with highest logPr(y)/|y| ∈ B

Figure 1. Visualization of beam search, example taken from OpenNMT.
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3.3. Variants of Beam Search

It is important to note that beam search is a heuristic that can be defined and parametrized
in different ways, beyond the width parameter k. Nevertheless, beam search is rarely
explicitly defined in research papers. Algorithms 1–3 show three definitions of beam
search from the recent literature. Interestingly, they are referred to as “standard” beam
search in the respective papers but still show slightly different configurations for search:
Algorithms 1 and 2 both run for a fixed number of time steps, whereas Algorithm 3
terminates once the top-most candidate on the beam ends with the special end-of-sequence
symbol. Algorithms 2 and 3 do not expand hypotheses that end in an end-of-sequence
symbol, whereas Algorithm 1 does not account for this case. Algorithm 1 includes a length
normalization in the final selection step (last line), Algorithm 2 uses a generic scoring
function which might include normalization or not, Algorithm 3 does not consider length
normalization, etc.

Algorithm 2: Beam search as defined by Meister et al. [57].
Input: x : source sentence, k : maximum beam size,

nmax : maximum hypothesis length, score(·, ·) : scoring function
B0 ← {〈0, BOS〉}
for t ∈ {1, ..., nmax − 1} do

B← ∅
for 〈s, y〉 ∈ Bt−1 do

if y.last() = EOS then
B.add(〈s, y〉)

end
for y ∈ V do

s← score(x, y ◦ y)
B.add(〈s, y ◦ y〉)

end
end
Bt ← B.top(k)

end
Return: B.max()

Algorithm 3: Beam search as defined by Stahlberg and Byrne [56].
Input: x : source sentence, n : beam size
Hcur ← {〈ε, 0.0〉}
repeat

Hnext ← ∅
for y, p ∈ Hcur do

if y|y| = 〈s〉 then
Hnext ← Hnext ∪ {(y, p)}

else
Hnext ← Hnext ∪

⋃
w∈T(y · w, p + logP(w|x, y)))

end
end
Hcur ← {(y, p) ∈ Hnext : |{(y′, p′) ∈ Hnext : p′ > p}| < n}
(ỹ, p̃)← arg max(y,p)∈Hcur

p
until ỹ|ỹ| = 〈/s〉;
Return: ỹ

Different usages of beam search have been discussed for a long time in the MT
community, where it was the standard method in non-neural syntax- and phrase-based
models [37]. In these classical phrase-based MT systems, however, candidates were all
completed in the same number of steps, whereas sequence-to-sequence models generate
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hypotheses of different length. Thus, beam search in neural generation requires a good
stopping criterion for search or some way of normalizing scores between candidates in
order to avoid a bias towards short generation outputs [39,58].

A generic solution for dealing with candidates of different length is shown in the
algorithm by Graves [39] in Algorithm 1: the search terminates after a predefined number
of time steps and scores for candidates are simply divided by their length. In practice,
however, many neural generation systems have adopted more elaborate normalization and
stopping criteria. The MT toolkit OpenNMT [55] provides a widely used implementation
of beam search and includes three metrics for normalizing the coverage, length and end of
sentence of candidate translations. The length penality lp is defined as follows:

lp(Y) =
(5 + |Y|)α

(5 + 1)α
, (5)

with Y as the current target length, and α as a hyperparameter that needs to be set. The
length penalty is used in combination with an end of sentence penalty ep:

ep(X, Y) = γ
|X|
|Y| , (6)

with γ as a further hyperparameter, and |X| as the length of the source sentence. As
this penalty depends on the length of the source sentence, it is not generally available in
neural language generation, i.e., this penalty does not generalize to generation task beyond
translation. In OpenNMT, the search stops once the top candidate obtained in the current
step is completed (i.e., with an end symbol).

Another common neural MT framework [62] uses a shrinking beam where beam size
is reduced each time a completed hypothesis is found, and search terminates when the
beam size has reached 0.

Next to these implementations of beam search in standard MT frameworks, others
have proposed to extend the beam search scoring function with a length reward, in order
to avoid the inherent bias towards short hypotheses. He et al. [60] define a “word reward”
a simple word reward as

s′(e) = s(e) + γm, (7)

with s as the scoring function, e as the hypothesis, m as the hypothesis length, and γ as the
scaling factor for the reward. He et al. [60] evaluate this reward along with a features of a
neural MT system and show that is beneficial in their framework. Murray and Chiang [61]
present a way of tuning the simple word reward introduced by He et al. [60] and compare
it to other length normalization procedures. They find that a simple word reward works
well and that a tuned word reward generally performs best in their MT experiment.
Huang et al. [58] introduce a related variant of beam search that is guaranteed to finish in
an optimal number of steps, given a particular beam size and combine this with a “bounded
length reward” that rewards each word, until an estimated optimal output length has been
reached. They show that their decoding method outperforms OpenMNT’s implementation
of beam search and the shrinking beam in Bahdanau et al. [62].

In sequence-to-sequence generation beyond MT, not a lot of work has been done on
defining general stopping and normalization criteria. Zarrieß and Schlangen [70] present
a study on decoding in referring expression generation (REG), a relatively constrained
NLG sub-task where the length of the generated output is deemed central. They find
that a variant of beam search that only keeps hypotheses if the same length, i.e., discards
complete hypotheses that are not top candidates in the current time step, provides a better
stopping criterion for REG than other criteria that have been explored in the MT literature.

Freitag and Al-Onaizan [63] extend the idea of a dynamic beam width in
Bahdanau et al. [62]’s shrinking beam and implement pruning of candidates from the beam
that are far away from the best candidate. They investigate different pruning schemes, i.e.,
relative or absolute probability thresholds for pruning and a pruning scheme that fixes the
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number of candidates that are expansions of the same hypothesis. They find that pruning
speeds up decoding and does not decrease translation quality.

While the above papers extend beam search with specific parameters, others have
aimed at more efficient formalizations of beam search. Rush et al. [37] present a variant of
beam search for syntax- and phrase-based MT that comes with guarantees a bound on the
possible decoding error and is faster. Meister et al. [57] develop a generic reformulation of
beam search as agenda-based best-first search. Their implementation is faster than standard
implementations and is shown to return the top hypothesis the first time it encounters a
complete hypothesis.

The different variants and parameters of beam search discussed in this section are
summarized in Table 1.

3.4. Beam Search: Curse or Blessing?

The discussion of different beam search versions is directly connected to is limitations
which have been widely noted in the recent literature. One of these limitations has become
known as “the beam search curse” and will be discussed below, together with other issues.
At the same time, some recent work has argued that beam search should be seen as a
blessing as it implicitly compensates for deficiencies of neural generation models. The
current section will give a summary of this debate.

In 2017, Koehn and Knowles [65] mentioned beam search as one of the six most
important challenges in neural MT. One year later, Yang et al. [64] referred to this challenge
as the “beam search curse”: both Yang et al. [64] and Koehn and Knowles [65] showed
that increasing the width of the beam does not increase translation quality: the quality of
translations as measured by the BLEU score drops with higher values of k. Theoretically,
this should not happen as a wider beam takes into account a larger set of candidates
and, therefore, should eventually decode the optimal generation output more often than a
decoder that searches a smaller space of candidate outputs.

This highly undesired and unexpected negative correlation between quality and
beam width has been discussed in relation to the length bias of sequence-to-sequence
models [58,61,69]. It has long been noticed that neural sequence transduction models are
biased towards shorter sequences [39] and that this bias results from the fact that neural MT
and other generation models build probability distributions over candidates of different
lengths. Murray and Chiang [61] show that correcting the length bias with a simple word
reward helps eliminating the drop in quality for wider beams, though they do not obtain
better BLEU scores from wider beams with their method. Interestingly, Stern et al. [52] also
note that their non-autoregressive insertion transformer obtains better performance (up to
4 points in BLEU) when using an EOS penalty, i.e., a scalar that is substracted from the log
probability of the end token.

Newman et al. [59] take up the issue of stopping or generating the special EOS symbol
in sequence-to-sequence models. They compare two settings: models that are trained on
sequences ending in EOS (+EOS) and models trained on sequences without EOS (-EOS). They
find that the -EOS models achieve better length generalization on synthetic datasets, i.e.,
these models are able to generate longer sequences than observed in the training set. They
observe that the +EOS models unnecessarily stratify their hidden state representations by
linear position in the sequence, which leads to better performance of the -EOS models.
Thus, similar to the study by Stahlberg and Byrne [56], Newman et al. [59] do not attribute
sub-optimal decisions in stopping to the decoding procedure, but to model design and
model failure.

To date, the length bias has mostly been discussed in the MT literature, but a few
studies report mixed results on the effect of beam search and beam size. Work on visual
storytelling found that a larger beam size deteriorates quality of the generated stories [75].
Vinyals et al. [67] find the opposite for the decoding of their well-known image captioning
model and observe a positive effect of a large beam size (k = 20) as opposed to a beam size
of 1 (i.e., greedy search). Interestingly, in a later replication of their study, Vinyals et al. [76]
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carry out further experiments with varying beam width and show that a reduction of the
beam size to k = 3 greatly improves performances compared to k = 20. Karpathy and
Fei-Fei [68] find that a larger beam size (k = 7) improves the quality of generated image
descriptions but also leads to less novel descriptions being generated, a smaller beam size
deteriorates quality and repeats less captions from the training set. The most compre-
hensive study of performance degradation caused by larger beam widths is presented by
Cohen and Beck [66], who investigated this effect in MT, summarization and captioning.
They find a negative effect of width on generation quality in all these tasks and explain it
with so-called “discrepancies”, i.e., low-probability tokens that are added to early to the
beam and compensated later by high-probability tokens.

Another shortcoming of beam search observed in previous work is that the beam
tends to contain many candidates that share the same (most likely) prefix [63,72,73]. The
bias towards hypotheses with the same prefix is also nicely illustrated in our beam search
example in Figure 1: at time step 3, the beam contains 5 hypotheses that expands 3
preceding hypotheses. At time step 4, however, the diversity of the beam is substantially
reduced: 4 of the 5 candidates are expansions of a single, very probable candidate from the
preceding time step. This means that a relatively high value for beam size would be needed
to ensure that more diverse hypotheses that could potentially lead to more probable output
are not excluded too early. This, unfortunately, contradicts other studies that report a rather
detrimental effect of a large beam size. A range of works have, therefore, have looked at
modifying the objective of beam search such that more diverse candidates are considered
during decoding. These methods will be discussed in Section 4.

Holtzman et al. [71] observe even more dramatic weaknesses of likelihood-based
decoding which they describe as the phenomenon of neural text degeneration: they argue
that the likelihood objective used for decoding open text generation with large language
models (such as GPT-2) systematically leads to degenerate text that is “generic, akward
and repetitive". They find that repeated phrases incur a positive feedback loop during
decoding the language model: the probability of a generating a phrases, such as, e.g., “I
don’t know” increases with every repetition of the phrase. In practice, this feedback loop
leads to text that contains sequences of the same, likely sentence, as they qualitatively show
in their paper. Therefore, Holtzman et al. [71] argue that generation models should not aim
at maximizing the likelihood of the output sequence, but produce text that is not the most
probable text. They introduce nucleus sampling which will be discussed in Section 4.

While the studies discussed up to this point emphasize the limitations of beam search,
others suggest that beam search is a blessing rather than a curse, as it implicitly corrects
certain built-in biases and defects of neural models. Stahlberg and Byrne [56] compare
beam search to exact inference in neural MT. Interestingly, they find that the underlying
MT model assigns the global best score to the empty translation in more than half of the
cases, which is usually not noticed as exact inference is not used for already discussed,
for practical reasons. Beam search fails to find these globally optimal translations due to
pruning in combination with other parameters, such as length normalization. Stahlberg
and Byrne [56] interpret this as evidence for the failure of neural MT models to capture
adequacy. The fact that the BLEU scores drop when decoding with a wider beam should
not be blamed on beam search but on deficiencies of the model.

Meister et al. [74] follow up on Stahlberg and Byrne [56] and hypothesize that beam
search incorporates a hidden inductive bias that is actually desirable in the context of text
generation. They propose a more generalized way of modifying the objective of beam
search and formulate regularized decoding, which adds a strategically chosen regular-
ization term to the likelihood objective in Equation (4). They argue that beam search is
implicitly biased towards a more general principle from cognitive science: the uniform
information density (UID) hypothesis put forward by Levy and Jaeger [77]. This hypothesis
states that speakers prefer utterances that distribute information uniformly across the
signal. Meister et al. [74] demonstrate the connection between the UID and beam search
qualitatively and test a range of regularized decoding objectives that make this explicit.
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Unfortunately, they do not directly relate their observations to Holtzman et al. [71]’s ob-
servations on neural degeneration. While Meister et al. [74] argue in favor of decoding
objectives that minimize the surprisal (maximize probability), Holtzman et al. [71] state
that “natural language rarely remains in a high probability zone for multiple consecutive
time steps, instead veering into lower-probability but more informative tokens”, which
seems to contradict the UID hypothesis. Thus, the debate about the merits and limitations
of beam search and likelihood as a decoding objective for text generation has not reached a
conclusive state in the current literature. Section 6 comes back to this general issue.

3.5. Beam Search in Practice

Tables 2 and 3 list a range of recent neural NLG systems for different text and data-to-
text generation tasks along with their decoding strategy. These tables further corroborate
some of the observations and findings summarized in this section: on the one hand, beam
search is widely used and seems to be the preferred decoding strategy in most NLG tasks,
ranging from translation and summarization to dialog, data-to-text generation and surface
realization. On the other hand, the fact that beam search comes with a set of variants and
heuristics beyond the beam widths is not generally acknowledged and potentially less well
known, especially in work that does not deal with MT. Here, many papers do not report
on the stopping criterion or normalization procedures, but, even in MT, the exact search
parameters are not always mentioned.

The central parameter, beam width k sometimes differs widely for systems that model
the same task, e.g., the dialog generation system by Ghazvininejad et al. [78] uses a width
of 200, whereas the system by Shuster et al. [79] uses a width of 2 (and additional trigram
blocking). Some sub-areas seem to have developed common decoding conventions, e.g., in
MT where advanced beam search with length and coverage penalty is common or image
captioning where simple beam search versions with moderate variations of the beam width
are pre-dominant. In other areas, the decoding strategies vary widely, e.g., in dialog or
open-ended text generation where special tricks, such as trigram blocking, are sometimes
used and sometimes not. Moreover, in these areas, beam search is often combined with
other decoding strategies, such as sampling, which will be discussed below.

In short, the main points discussed in Section 3 can be summarized as:

• beam search is widely used for decoding in different areas of NLG, but many different
variants do exist, and they are not generally distinguished in papers,

• many variants and parameters of beam search have been developed and analyzed
exclusively for MT,

• papers on NLG systems often do not report on parameters, such as length normaliza-
tion or stopping criteria, used in the experiments,

• the different variants of beam search address a number of biases found in decoding
neural NLG models, e.g., the length bias, performance degradation with larger beam
widths, or repetitiveness of generation output,

• there is an ongoing debate on whether some of these biases are inherent in neural
generation models or whether they are weaknesses of beam search, and

• the main research gap: studies on beam search, its variants, and potentially further
variants for core NLG tasks beyond MT.
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Table 2. Neural text generation systems and their decoding settings.

System Search Sampling Hyperparameters Eval

Machine Translation
Bahdanau et al. [62] X - - (shrinking beam, cf. Reference [58]) -

Wu et al. [80] X - length penalty α 0.2, coverage penalty β
0.2, pruning, beam width 3

X

Sennrich et al. [81] X - width 12, probs normalized by sentence
length

Johnson et al. [82] ? ? ? ?
Klein et al. [55] X - width 5 -

Vaswani et al. [83] X - width 4, length penalty α = 0.6 -
Ott et al. [84] X - width 4, length penalty α = 0.6 -

Song et al. [85] ? ? ? ?
Rothe et al. [10] X - width 4, length penalty α 0.6 -

Summarization
See et al. [86] X - width 4 -

Gehrmann et al. [87] X - length penalty, coverage penalty,
repetition penalty, trigram blocking

X

Kryściński et al. [88] X - trigram blocking -
Narayan et al. [89] X - width 10 -

Liu and Lapata [90] X - width 5, tuned length penalty, trigram
blocking

-

Dong et al. [91] X - width 5, trigram blocking, tuned max.
length

Song et al. [85] X - width 5 -
Radford et al. [11] - X top-k sampling, k = 2

Rothe et al. [10] ? ? ? ?

Dialog Response Generation
Vinyals and Le [92] X - greedy -

Wen et al. [3] - X - -
Serban et al. [12] X X - X

Dušek and Jurčíček [93] X - width 20 -
Li et al. [94] X - width 20 -

Shao et al. [72] X X stochastic beam search X
Das et al. [95] ? ? ? ?

Ghazvininejad et al. [78] X - width 200, max. length 30, word count
penalty, likelihood penalty as in Reference

[96]

-

Baheti et al. [97] X - width 20, distributional constraints
Wolf et al. [98] X X width 5 -

Shuster et al. [79] X - width 2, trigram blocking -

Story and Open-ended Text Generation
Fan et al. [99] - X top-k sampling, k = 10 -

Holtzman et al. [100] X X width 10, top-k sampling (temp. 1.8) -
See et al. [101] - X top-k sampling, 1 < k < 105 X

Zhai et al. [102] X - width 100 -
Caccia et al. [103] X X temperature range, stochastic beam search X
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Table 3. Neural data-to-text or image-to-text systems and their decoding settings.

System Search Sampling Hyperparameters Eval

Data-To-Text Generation
Kiddon et al. [104] X - width 10, custom candidate selection

(checklist)
-

Wiseman et al. [105] X - width 1/5 X
Puzikov and Gurevych [106] X - custom candidate selection -

Gehrmann et al. [107] X - width 10, length and coverage penalty,
custom repetition blocking

-

Marcheggiani and
Perez-Beltrachini [108]

? ? ? ?

Puduppully et al. [109] X - width 5 -
Kale and Rastogi [110] X - width 1 -

Zhao et al. [111] ? ? ? ?

Image Captioning
Vinyals et al. [67] X - width 20 X

Xu et al. [112] ? ? ? ?
Karpathy and Fei-Fei [68] X - width 7 X

Rennie et al. [42] X - width 1/3 X
Lu et al. [113] X - width 3 -

Anderson et al. [114] ? ? ? ?
Cornia et al. [115] X - - -

Ippolito et al. [116] X X diverse settings X

Referring Expression Generation
Yu et al. [117] X - -

Castro Ferreira et al. [5] X - tuned with between 1 and 5, length
normalization (α = 0.6)

Zarrieß and Schlangen [70] X - diverse settings X
Panagiaris et al. [118] X X diverse settings X

Image or Video Paragraph Generation
Yu et al. [119] X - customized stopping criterion -

Krause et al. [120] X X 1st sentence beam, then sampling
(baseline)

-

Krishna et al. [121] X X width 5
Melas-Kyriazi et al. [122] X - repetition penalty, trigram blocking X

Chatterjee and Schwing [123] - X -
Wang et al. [124] X - - -

Salvador et al. [125] - X - -

AMR-To-Text Generation
Song et al. [126] X - width 6 -
Wang et al. [127] X - width 6 -
Mager et al. [128] X X width 5/10/15, nucleus sampling X

4. Decoding Diverse Sets of Sequences

The previous section described decoding from the perspective of search for the opti-
mal or a highly probable generation output. We have seen, however, that maximizing the
likelihood objective during decoding has negative effects on certain linguistic properties of
the output: generation outputs tend to be short and lack what is often called “linguistic
diversity” [96,116,118]. Research on achieving and analyzing diversity has become an
important trend in the recent literature on neural NLG, and it is often investigated in the
context of decoding. In the following, we will first discuss various definitions and evalua-
tion methods for assessing diversity of generation output (Section 4.1) We then provides an
overview of methods that aim at achieving different types of diversity, which can be broadly
categorized into methods that diversify beam search (Section 4.2) and sampling-based
methods (Section 4.3). Despite important conceptual and technical differences between
these methods, they generally adopt a view on decoding that is directly complementary to
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the view of decoding as search: rather than deriving a single, highly probable generation
output, the goal is to produce varied sets of outputs. Indeed, the discussion in Section 4.4
will show that there is an often observed trade-off between quality (which is optimized by
search-based decoding) and diversity. Table 4 shows an overview of the paper reviewed in
this section.

4.1. Definition and Evaluation of Diversity

Diversity or variation has always been a central concern in research on NLG (cf. Ref-
erence [2]). It was one of the major challenges for traditional rule-based systems [22,129],
and it remains a vexing problem, even in state-of-the-art neural NLG systems [96,130–132].
Generally, the need for diverse output in NLG can arise for very different reasons and
in very different tasks, e.g., controlling register and style in documents [133], generating
entertaining responses in chit-chat dialogs [96], generating responses with certain personal-
ity traits [27], or accounting for variation in referring expressions [118,134,135] or image
captioning [122,136–139]. Given the widespread interest in diversity, it is not surprising
that many different definitions and assumptions on what diversity in NLG is exist in the
literature. Moreover, the issue of diversity is closely linked to evaluation of NLG systems,
which is generally considered one of the big challenges in the field [140–144]. Importantly,
different notions of diversity adopted in work on NLG are not to be confused with “diver-
sity” investigated in linguistics, where the term often refers to typological diversity across
different languages as, e.g., in Nichols [145].

One common thread in the generation literature on diversity is to go beyond evaluating
systems only in terms of the quality of the top, single-best generation output. Instead,
evaluation should also take into account the quality and the diversity of the n-best list, i.e.,
a set of generation candidates for a single input. This amounts to the notion of local diversity
(in contrast to global diversity discussed below, meaning that a generation system should
be able to produce different words and sentences for the same input. Another common
thread is that generation outputs should be diverse when looking globally at the outputs
produced by the system for a dataset or set of inputs. Thus, global diversity means that the
generation system should produce different outputs for different inputs.

An early investigation into local diversity is carried out by Gimpel et al. [146], who
argues that MT systems should aim at producing a diverse set of candidates on the n-best
list, in order to help users inspect and interact with the system in the case of imperfect
translations. They conduct a post-editing study where human participants are asked to
correct the output of an MT system and find that editors benefit from diverse n-best list
when the quality of the top translation is low (they do not benefit, however, when the top
translation is of high quality). Similar definitions of local diversity of have been taken
up in neural generation, as for instance, in Vijayakumar et al. [147] and Li et al. [54] (see
Section 4.2 for further discussion).

Local diversity can be assessed straightforwardly by means of automatic evaluation
metrics. Ippolito et al. [116] present a systematic comparison of different decoding methods
in open-ended dialog generation and image captioning and assess them in terms of local
diversity. They use perplexity over the top 10 generation candidates for an input and the
Dist-k measure by Li et al. [54], which is the total number of distinct k-grams divided by
the total number of tokens produced in all the candidates for an input. Additionally, they
include the Ent-k measure introduced by Zhang et al. [148] that takes into account the
entropy of the distribution of n-grams in the top candidates.

A complementary view on diversity is proposed by van Miltenburg et al. [132], who
analyze the global diversity of image captioning systems which they define as the ability of
the generation system to use many different words from the vocabulary it is trained on.
The main challenge here is that this vocabulary will usually have a Zipfian distribution. A
system that generates globally diverse output will, therefore, need to have the ability to
generate rare words from the long tail of the distribution. van Miltenburg et al. [132] test a
range of metrics for quantitatively measuring global diversity: average sentence length,
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number of types in the output vocabulary, type-token ratio, and the percentage of novel
descriptions. Their general finding is that most image captioning systems from the year
2018 or earlier achieved a low global diversity.

The distinction between local and global diversity is not always clear-cut or, at least,
not always made explicit in the reported evaluation. Another way to measure diversity that
seems to have been proposed independently in different papers is a variant of the BLEU,
which is typically used to score the overlap between human references and generated
sentences. In the context of diversity, BLEU can also be used to score the overlap between a
set of model outputs, either for a single input or an entire test set [130,149–151], where a
lower self-BLEU or mBLEU would signal higher diversity.

Generally, diversity is often discussed in open-ended or creative text generation task
(see discussion in Section 4.4). Here, diversity is sometimes defined in a more loose way.
For instance, Zhang et al. [148] aim at building a system that generates informative and
diverse responses in chit-chat dialog, where the goal is to avoid “safe and bland” responses
that “average out” the sentences observed in the training set. A related view can be found
in the study by Reference [152]. They view diversity as related to the model’s ability to
generalize beyond the training set, i.e., generate novel sentences. They argue that human
evaluation, which is often seen as a gold standard evaluation is not a good way of capturing
diversity as humans are not able to assess what the model has been exposed during training
and whether it simply repeats sentences from the training data. Hashimoto et al. [152]
propose HUSE, a score that combines automatic and human evaluation, and it can be
decomposed into HUSE-D for diversity and HUSE-Q for quality.

Table 4. Overview of papers on diversity-oriented decoding reviewed in Section 4.

Papers

Evaluation approaches

local diversity
Gimpel et al. [146], Vijayakumar et al. [147],
Li et al. [96], Ippolito et al. [116],
Zhang et al. [153]

global diversity van Miltenburg et al. [132]

BLEU-based Shetty et al. [130], Wang et al. [149],
Zhu et al. [150], Alihosseini et al. [151]

other Hashimoto et al. [152], Zhang et al. [148]

Methods

Diversified beam search

Li et al. [54], Freitag and Al-Onaizan [63],
Kulikov et al. [73], Ippolito et al. [116],
Kriz et al. [154], Tam [155],
Melas-Kyriazi et al. [122], Hotate et al. [156]

Sampling Ackley et al. [157], Holtzman et al. [71],
Fan et al. [99], Caccia et al. [103]

Combined search and sampling Caccia et al. [103], Massarelli et al. [158]

Analyses

quality-diversity trade-off
Ippolito et al. [116], Panagiaris et al. [118],
Mager et al. [128], Schüz et al. [159],
Zhang et al. [160]

verifiability-diversity trade-off Massarelli et al. [158]

4.2. Diversifying Beam Search

As discussed in Section 3.4, a common problem with beam search is that the number
of candidates explored by beam search is small, and these candidates are often similar to
each other, i.e., are expansions of the same candidate from the previous step of beam search.
Hence, beam search is generally not a good choice when local diversity is a target for
decoding. In the literature, a whole range of heuristics and modifications of what is often
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called “standard” beam search have been proposed that all share the idea of diversifying
beam search. Typically, these diverse beam search versions incorporate an additional
method that scores similarities of candidates or groups beam histories to make sure that
future steps of beam search expand different, diverse histories.

A simple but well-known method for diverse beam search has been proposed by
Li et al. [54]. They aim at generating diverse n-best lists using beam search. They introduce
a penalty that downranks candidates which have a sibling on the beam with a higher score,
where a sibling is a candidate that is obtained by expanding the same hypothesis from the
previous step of the search:

Ŝ(Yk
t−1, yk,k′

t |x) = S(Yk
t−1, yk,k′

t |x)− γk′. (8)

In Equation (8), yk,k′
t is a word that is added to a hypothesis Yk

t−1, and k′ denotes that

ranking of yk,k′
t among other candidates that expand the same hypothesis. The goal of this

penalty is to exclude bottom-ranked candidates among siblings and to include hypotheses
that might have a slightly lower probability but increase the diversity of the candidates on
the beam.

A similar heuristic is proposed for MT by Freitag and Al-Onaizan [63]: they set a
threshold for the maximum number of sibling candidates that can enter the beam. This
approach is independently proposed and dubbed top-g capping in Ippolito et al. [116]
(where g is the threshold for candidates that can enter the beam and have the same
history). A slightly more involved method to encourage diverse candidates during beam
search is proposed in Vijayakumar et al. [147] for image captioning: they partition the
candidates on the beam into groups. When expanding a candidate in a certain group, the
scores (i.e., log probabilities) of each word are augmented with a dissimilarity term. The
dissimilarity measure that is found to perform best empirically is hamming diversity which
penalizes the selection of a token proportionally to the number of times it was selected in
previous groups.

Kulikov et al. [73] implement iterative beam search for neural conversation modeling:
they run beam search multiple times (with a fixed beam width k) and, for each iteration,
score each hypothesis for its dissimilarity to hypotheses found in previous iterations.
Tam [155] goes one step further and introduces clustered beam search. Here, similarity
between candidates is determined by K-means clustering of hypothesis embeddings. These
clusters are then used as groups in References [54,63], i.e., only the top candidates from
each cluster are selected for the next step of the search. This method is designed for
generation in chatbots, where standard neural generators often produce very short and
generic responses. To exclude these, Tam [155] introduces a further language model
threshold during decoding, filtering responses which have a language model score above
a certain threshold. A similar idea seems to have been introduced independently for
sentence simplification by Kriz et al. [154], but they cluster candidates post decoding and
select the candidates nearest to the cluster centroids. Ippolito et al. [116] also experiment
with post-decoding clustering (PDC) but select candidates with the highest language model
score from each cluster.

Work on generating longer texts, such as, e.g., image paragraphs faces the problem that
the output texts tend to contain repetitions [120]. Melas-Kyriazi et al. [122] present a model
that uses self-critical sequence training to generate more diverse image paragraphs, but they
need to combine this with a simple repetition penalty during decoding. Hotate et al. [156]
implement diverse local beam search for grammatical error correction.

4.3. Sampling

An alternative way of increasing the diversity of language generation output is to
frame decoding not as a search but as a sampling problem. When decoding by sampling,
the generator randomly selects, at each time step, a candidate or set of candidates from the
distribution predicted by the underlying NLG model. While sampling typically produces
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diverse text, the obvious caveat is that, eventually, very low probability outputs are selected
that might substantially decrease the overall quality and coherence of the text. Thus,
while beam search naturally trade-offs diversity in favor of quality, the opposite is true
for sampling.

Therefore, existing sampling procedures for neural generators do not apply pure
sampling but use additional heuristics to shape or truncate the model distributions. A
traditional method is temperature sampling [157] that shapes the probability distribution
with a temperature t and can be seen as a parameter of the softmax calculation [71]:

P(xl |xt−1...1) =
exp(ul/α)

∑l∈V exp(ul/α)
, (9)

where ul are the logits of the language model for elements of the vocabulary. Temperature
sampling is often used with low temperatures, i.e., α < 1, as this skews the distribution to
the high probability events. A detailed evaluation of the effect of temperature on quality
and diversity is reported by Caccia et al. [103]: they find the neural language models
trained with a standard MLE objective outperform GANs in terms of the quality-diversity
trade-off, and temperature can be used to systematically balance this trade-off.

Furthermore, nucleus [71] and top-k sampling [99] are well-known decoding methods
aimed at increasing diversity. Both strategies are very similar in that they sample from
truncated language model distributions: In each decoding step, a set of most probable next
tokens is determined, from which one item is then randomly selected. They differ, however,
in how the distribution is truncated. Top-k sampling always samples from a fixed number
of k items. The sum of the probabilities of the top k items, p′ = ∑x∈V(k) P(x|xi<t), is then
used as a rescaling factor to calculate the probability of a word in the top-k distribution:

p′ =

{
P(xl |xt−1...1)/p′ ifx ∈ V(k)

0 otherwise
. (10)

Depending on the shape of the distribution at a given time step, p′ can vary widely,
as noticed by Holtzman et al. [71]. Thus, if the distribution is very peaked, p′ might be
close to 1; if it is flat, p′ might be a small value. For this reason, it might be difficult to
select a value for k that performs consistently for different distribution shapes throughout
a generation process.

This shortcoming of top-k sampling is addressed in Reference [71]’s nucleus sampling
method: here, the decoding samples from the top-p portion of the accumulative probability
mass, where p is a parameter that determines the vocabulary size of the candidate pool.

x ∈ V(p), if P(x|xi<t) ≥ p. (11)

As the probability distribution changes, the candidate pool expands or shrinks dy-
namically. This way, nucleus sampling can effectively leverage the high probability mass
and suppress the unreliable tail.

In practice, top-k and nucleus sampling are often found in combination with tempera-
ture sampling. Moreover, sampling can be integrated with beam search and replace the
typical likelihood scoring. Caccia et al. [103] call this procedure stochastic beam search:
the width of the beam defines the number of words that are sampled for each hypothesis
at each time step. Massarelli et al. [158] propose a similar method, called delayed beam
search, where the first L tokens of a sentence are generated via sampling, and the rest of
the sentence is continued via beam search.

4.4. Analyses of Trade-Offs in Diversity-Oriented Decoding

Tables 2 and 3 include neural NLG systems that implement decoding strategies
targeted at diversity. Generally, the sample of systems shown in these tables suggests
that diversity-oriented decoding is used in practice, but is most widespread in “open”
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generation task, such as story generation or dialog, and in tasks where output longer
than a single sentences needs to be generated. In these NLG domains, even the first
papers that implemented neural systems mentioned the need to integrate sampling or
diversification to prevent the output from being unnaturally repetitive [92,99]. In the case
of story generation or paragraph generation, sampling is further combined with additional
constraints aimed at avoiding repetitions in long texts, such as, e.g., trigram blocking in
Melas-Kyriazi et al. [122].

Among the many papers that described decoding in MT systems in Table 2, there is not
a single paper that uses diversity-oriented decoding, and the same holds for data-to-text
generation. In summarization, Radford et al. [11]’s system uses top-k sampling, but their
work does not primarily aim at improving the state-of-the-art in summarization. In image
captioning and referring expression generation, two studies explicitly aim at understanding
the impact of diversity-oriented decoding in these tasks [116,118], whereas other systems
do not seem to generally adopt them. For AMR-to-text generation, Mager et al. [128]
compare search-based decoding and sampling and find that the latter clearly decreases the
performance of the system.

One of the most exhaustive studies on diverse decoding is presented by Ippolito et al. [116]:
they compare 10 different decoding methods, both search- and sampling-based, for the tasks
of image captioning and dialog response generation. They propose a detailed evaluation
using automatic measures for computing local diversity (in terms of entropy and distinct
n-grams, see Section 4.1) and correlating them with human judgements of adequacy,
fluency and interestingness. They observe that there generally seems to be a trade-off
between quality and diversity, i.e., decoding methods that increase diversity typically do
so at the expense of quality, and vice versa. Using a sum-of-ranks score over different
evaluation metrics, they establish that clustered beam search and standard beam search
with a relatively large beam width (k = 100) perform best for dialog generation. In
image captioning, the sum-of-rank score favors random sampling with top-k sampling and
PDC. The same trade-off is observed and analyzed by Panagiaris et al. [118] for referring
expression generation.

Another trade-off of sampling-based diversity-oriented decoding is discussed by
Massarelli et al. [158]: they investigate open text generation, where a large language
models is tasked to continue a given textual prompt. They evaluate the verifiability of
these freely generated texts against Wikipedia, with the help of an automatic fact-checking
system. They show that sampling-based decoding decreases the repetitiveness of texts at
the expense of verifiability, whereas beam search leads to more repetitive text that does,
however, contain more facts that can be supported in automatic fact checking.

Finally, we observe that most of the decoding methods discussed in this section are
designed to increase the local diversity of generation output. van Miltenburg et al. [132]
present a study that evaluates the global diversity of image captioning systems using
available generated image descriptions. They do not take into account possible effects of
the systems’ decoding methods. Schüz et al. [159] compare the global diversity of beam
and greedy search, nucleus decoding, and further task-specific, pragmatically-motivated
decoding methods in the more specific setting of discriminative image captioning; see
Section 5.3.

4.5. Summary

This section has shown that diversity is an important issue that arises in many tasks
concerned with the generation of longer or creative text, and that has been tackled in a
range of recent papers. At the same time, existing methods that push the diversity of the
generation output of neural systems in one way or another, i.e., by diversifying search or
by sampling, seem to generally suffer from a quality-diversity trade-off. We will resume
the discussion of this observation in Section 6.

In short, the main points discussed in Section 4 can be summarized as:
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• different notions of diversity have been investigated in connection with decoding
methods in neural NLG,

• diversity-oriented decoding methods are either based on beam search or sampling, or
a combination thereof,

• analyses of diversity-oriented decoding methods show trade-offs between diversity,
on the one hand, and quality or verifiability, on the other hand,

• diversity-oriented decoding is most often used in open generation tasks, such as, e.g.,
story generation, and

• the main research gap: studies that investigate and consolidate different notions of
diversity, methods that achieve a better trade-off between quality and diversity.

5. Decoding with Linguistic Constraints and Conversational Goals

In the previous sections, we discussed rather domain-general decoding procedures
that apply, at least theoretically, to most neural NLG systems and NLG tasks. This follows
a general trend in research on neural NLG where, in recent years, systems have become
more and more domain-independent and developers often refrain from building domain-
specific knowledge into the architecture. In many practically-oriented or theoretically-
motivated NLG systems, however, external knowledge about the task at hand, particular
hard constraints on the system output, or simply linguistic knowledge on the involved
phenomena are given at training and/or testing time. In neural NLG systems, it has become
difficult to leverage such external constraints and to control them in terms of their linguistic
behavior [161,162], as most of the processing is carried out on continuous representations
in latent space. Thus, since decoding operates in the symbolic search space, it constitutes a
natural place in the neural architecture to incorporate domain- or task-specific knowledge or
reasoning and control mechanisms that target particular linguistic aspects of the generation
output. This section discusses such approaches to decoding, which can be divided into
methods that introduce lexical constraints (Section 5.1), constraints on the level of structure
and form (Section 5.2), or pragmatic reasoning (Section 5.3). An overview of the different
methods is shown in Table 5.

Table 5. Overview of papers on decoding with linguistic constraints (Section 5).

Task Decoding Method

Lexical constraints long text generation beam search with simple candidate filter, Kiddon et al. [104]

data-to-text bema search with simple candidate filter, Puzikov and
Gurevych [106]

open vocabulary image captioning constrained beam search Anderson et al. [161]

post-editing in MT grid beam search, Hokamp and Liu [163]; grid beam search,
Post and Vilar [164]

dialog generation beam search with topical and distributional constraints,
Baheti et al. [97]

Structure and form poetry generation
beam search with simple filtering, Zhang and Lapata [165];
automaton-based decoding, Ghazvininejad et al. [166] and

Hopkins and Kiela [167]
task-oriented dialog constrained beam search, Balakrishnan et al. [162]

Pragmatics image captioning RSA, Andreas and Klein [168], Cohn-Gordon et al. [169];
discriminative beam search, Vedantam et al. [170]

zero-shot REG modified RSA, Zarrieß and Schlangen [171]

data-to-text distractor-based and reconstructor-based decoding,
Shen et al. [172]

dialog generation modified RSA, Kim et al. [173]
MT trainable decoding, Gu et al. [174]
REG trainable decoding, Zarrieß and Schlangen [70]
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5.1. Lexical Constraints

The need to incorporate lexical constraints in an NLG architecture can arise in different
tasks and for different reasons. In some cases, they might be integrated as simple filters
or criteria in standard beam search decoding. For instance, Kiddon et al. [104] present
a neural checklist model for long text generation, where a list of agenda items is given
in the input. They decode the model using beam search and select the most probable
candidate which mentions most items from a given agenda. A similar “trick” is used in the
data-to-text generation system by Puzikov and Gurevych [106], where they make sure that
the candidate that mentions most attributes from the input representation is selected from
the beam.

It is, however, not a convincing solution to generally incorporate lexical constraints
at the end of search as a very large beam width could be required to produce the desired
candidates. This is the case when, for instance, lexical constraints are complex and span
several words or when the corresponding words are assigned low probabilities by the
underlying model. Anderson et al. [161] make such a case for image captioning and use
lexical constraints during decoding to extend the models coverage to a wider set of object
classes. They argue that a severe limitation of image captioning systems is that they are
difficult to extend and adapt to novel types of concepts and scenes that are not covered
in the training data, whereas simple image taggers are easier to scale to new concepts.
They develop constrained beam search, illustrated in Figure 2a, which guides the search
to include members from given sets of words (external image labels, in their case) during
decoding. The main idea of the algorithm is that the set of constraints is represented as a
finite-state machine, where each state maintains its own beam of generation candidates.
Interestingly, they observe that their constrained-based approach outperforms a competing
system that uses similar knowledge to extend the training data of the system.

(a)

(b)

Figure 2. Versions of the beam search that incorporate lexical constraints. (a) Constrained beam
search [161]. (b) Grid beam search [163].

A similar use case for MT is addressed in Hokamp and Liu [163], where lexical
constraints are provided by users that post-edit the output of a translation system. Hokamp
and Liu [163]’s grid beam search is illustrated in Figure 2b and, in comparison to the
constrained beam search in Anderson et al. [161], also targets phrasal lexical constraints
that span multiple words and multi-token constraints where spans might be disconnected.
This beam search variant distinguishes 3 operations for expanding a candidate on the
beam: open in a new hypothesis (add a word from the model’s distribution), start a
new constraint, and continue a constraint. For each constraint, the algorithm allocates a
separate beam B0B1...BC that groups hypotheses that meet i constraints from the set. At
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the end, the algorithm returns the highest scoring candidate from BC, i.e., the sub-beam
with hypotheses that meet all constraints. Their experiments show that grid beam search is
useful for interactive post-editing and for modeling terminology in domain adaptation.

Post and Vilar [164] note that both constrained beam search and grid beam search
have a high complexity that grows linearly (for grid beam search) or exponentially (for
constrained beam search) with the number of constraints. They present a faster variant of
grid beam search that has a global, fixed beam width and dynamically re-allocates portions
of the beam to groups of candidates meeting a different number of constraints and being
available at a given time-step. Their algorithm prevents the model from generating the EOS
symbol unless all constraints have been met in a given candidate. In their analysis, Post and
Vilar [164] take up the discussion in the MT literature, revolving around the issue of larger
beam sizes resulting in lower BLEU scores by Koehn and Knowles [65] (see Section 3.4).
Post and Vilar [164] observe an effect they call “aversion to references”. They show that,
by increasing the beam width and including partial references (i.e., constraints) during
decoding, the model scores decrease, but the BLEU scores increase, which is complementary
to the model scores increasing and BLEU scores decreasing in the experiment of Koehn
and Knowles [65].

While the above approaches incorporated lexical constraints in a symbolic way, Ba-
heti et al. [97] propose a distributional approach to extend the decoding procedure for a
generator of conversational responses in open chit-chat dialog. They use an external topic
model and an external embedding to extend the objective of standard beam search with
two additional terms, scoring the topical and the semantic similarity of the source and
response sentence. Furthermore, they combine this objective with the diverse-decoding
method by Li et al. [54] and find that this combinations produces rich-in-content responses,
according to human evaluation.

5.2. Structure and Form

Other interesting applications of similar decoding techniques can be found in gen-
eration tasks, where the output text does not only need to obey certain lexical-semantic
constraints, but also structural and formal constraints. A prime example here is poetry
generation, where systems need to produce creative text that adheres to a certain topic and,
importantly, to the formal patterns of the genre, such as, e.g., rhythmic patterns, rhyme pat-
terns, or tonal patterns [165,167]. Compared to the rather local, lexical constraints discussed
in Section 5.1, these patterns are complex, need to be consistent on multiple levels (e.g.,
rhyme and rhythm), and need span the entire text. Nevertheless, the decoding techniques
used in poetry generation systems are surprisingly similar to the one already discussed
in this survey. Zhang and Lapata [165] present a recurrent neural network approach for
generating Chinese poetry. Their work focuses mostly on the neural model but mentions
that the tonal constraints are incorporated at the decoding stage. In their decoder, the first
line generated by the RNN determines the subsequent tonal pattern, and the following
lines that do not adhere to it are discarded. Ghazvininejad et al. [166] propose a similar
framework for generating sonnets but focus more on the decoding stage: they construct
a sophisticated finite-state automaton that represents the various formal constraints of
sonnets and use the state of this FSA as additional information during beam search. Their
beam search algorithm has a fixed width of 50, and they encounter the problem that this
width is sometimes too narrow and does not contain words that adhere to the required
rhyme patterns. Their solution is to generate the sonnet in reverse, starting from the
last rhymed word. Hopkins and Kiela [167] generalize this method and compare a neural
model for poetry generation, that is trained on content and formed jointly, with a model
that uses a generative neural language model for generating the content of a poem with a
discriminative weighted finite-state automaton that models the form of the poem. They
find that the model which incorporates formal constraints in a separate discriminative
model generates more formulaic poetry (e.g., makes less formal errors) and also generates
poems that are rated as very human-like in a distinguishability experiment with users.
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Work on incorporating structural constraints at the level of decoding is relatively
scarce, when looking at tasks beyond poetry generation. A noticeable exception is the
work by Balakrishnan et al. [162] presenting an approach for constrained decoding for
generation in task-oriented dialog (not to be confused with the constrained beam search
by Reference [161]). They tackle the often discussed issue of neural NLG systems producing
semantic errors or hallucinating content in generation task, such as the E2E challenge [7],
that require the accurate linguistic realization of given input data. Balakrishnan et al. [162]’s
system addresses this problem by training a neural sequence-to-sequence model to not
only generate sequences of words but output trees that conform to the structure of a given
input meaning representation. This allows them to check, during incremental decoding
of the tree structure, whether the opening bracket tokens in the output (part of the tree
structure) conform to the phrases in the input representation and whether the phrase has
already been included in the subtree in preceding timesteps. Their experiments show
that the generated outputs are more grammatical and semantically correct as compared to
systems that do not incorporate these structural constraints.

5.3. Conversational Goals

The aforementioned work on poetry generation has shown the idea of using a neu-
ral language model for generating the content of a message, which is subsequently
refined and constrained by an external decoding method that incorporates linguistic
knowledge. This idea is also spelled out in a recent line of work that aims at incor-
porating high-level pragmatic reasoning in the decoding of, e.g., neural image caption-
ing systems. While standard image captioning targets (more or less) neutral descrip-
tions of images, this task has been extended to pragmatically informative captioning in
Andreas and Klein [168], Vedantam et al. [170], and Cohn-Gordon et al. [169]. These works
train a neural NLG on standard image description datasets and decode this system, at test-
ing time, to produce captions that discriminate target images from a given set of distractor
images. These models are evaluated primarily in terms of their pragmatic informativeness,
i.e., using a “listener” model that resolves a generated caption to an image in the context
of distractor images. Generally, this setting is very similar to the well-known Referring
Expression Generation (REG) task [117,175,176], except the fact that the neural generation
model is trained on context-agnostic data.

The RSA framework [177] models informativity at the semantics-pragmatics interface,
i.e., it provides a formalization of how pragmatically informative utterances can be de-
rived from from literal semantics using Bayesian inference. Andreas and Klein [168] and
Cohn-Gordon et al. [169] have implemented RSA as a decoding strategy which integrates
pragmatic factors into the iterative unrolling of recurrent generation models. At the heart
of the RSA approach is a so-called rational speaker, who reasons about how an utterance
would be understood by a listener, in order to assess whether the utterance allows the
identification of the target. The speaker and listener are given a set of images W, out of
which one image w∗ ∈W is known to the speaker as the target image.

The rational speaker in RSA is based on a literal speaker, who produces initial utterance
candidates. In the simplest case, the literal speaker is a conditional distribution S0(u|w),
which assigns equal probability to all true utterances u ∈ U and zero probability to false
utterances. The pragmatic listener L0 then assesses the discriminative information of these
candidates and is defined as follows, according to Cohn-Gordon et al. [169]:

L0(w|u) ∝
S0(u|w) ∗ P(w)

∑w′∈W S0(u|w′) ∗ P(w′)
,

where P(w) is a prior over possible target images. The pragmatic speaker S1 is defined in
terms of the pragmatic listener:

S1(u|w) ∝
L0(w|u)α ∗ P(u)

∑u′∈U L0(w|u′)α ∗ P(u′)
,
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where P(u) is a uniform distribution over possible utterances U, and α > 0 is a ra-
tionality parameter determining the relative influence of the pragmatic listener in the
rational speaker.

The Emitter-Suppressor method (henceforth ES) proposed by Vedantam et al. [170]
follows a similar idea as RSA decoding but is not directly grounded in pragmatic theory.
ES has a less strict distinction between speakers and listeners, and it reshapes the literal
predictions of the model without Bayesian inference. In ES, a speaker (emitter) models a
caption for a target image It in conjunction with a listener function (suppressor) that rates
the discriminativeness the utterance with regard to a distractor image Id:

∆(It, Id) = arg max
s

T

∑
τ=1

log
p(sτ |s1:τ−1, It)

p(sτ |s1:τ−1, Id)1−λ
,

where s is the caption for the target image It in context of the distractor image Id, and T is
the length of the resulting caption. λ is a trade-off parameter that determines the weight
by which It and Id are considered in the generation of s. For λ = 1, the model generates
s with respect to It only, thus ignoring the context. The smaller the value of λ, the more
Id is weighted. In a later replication study, Schüz et al. [159] directly compared RSA and
ES decoding and showed that both methods lead to broadly comparable improvements
in discriminative image captioning, though there are some differences, depending on the
hyperparameters and the evaluation criterion.

Zarrieß and Schlangen [171] extend RSA-based reasoning to a zero-shot setting, where
the speaker’s task is to refer to target object of an “unknown” category that the literal
speaker has not encountered during training. This resembles the set-up described in An-
derson et al. [161], where the decoding procedure extends the capabilities of the underlying
language model to out-of-domain data, though Zarrieß and Schlangen [171]’s reason-
ing scheme does not widen the model’s vocabulary but aims at leveraging the training
vocabulary in efficient way for referring to unknown objects.

The aforementioned approaches deal with pragmatic reasoning in visual environ-
ments, where reasoning is based on a simple, single forced-choice task. Some extensions to
non-visual tasks have been explored: Shen et al. [172] implement a model for pragmatically
informative text generation, comparing so-called reconstructor-based and distractor-based
reasoning schemes: in a reconstructor-based set-up, the listener predicts a distribution over
all possible input contexts (e.g., meaning representations) for a generation output, whereas
distractor-based reasoning scores distinguishes an input from a set of alternate, distractor
inputs. Shen et al. [172]’s outperforms competitive neural generation systems without
pragmatic decoding on the E2E dataset [178]. Kim et al. [173] implement pragmatic reason-
ing for decoding a neural dialog response generator that aims at achieving so-called public
self-consciousness: the literal speaker is trained to generate responses on the PersonaChat
data [153], and the listener models the identification of the speaker’s underlying persona.
They show that this decoding scheme improves the consistency of the generated responses,
i.e., the response are less contradictory than outputs decoded without reasoning.

Up to this point, this survey has discussed decoding methods that are clearly separated
from the internal layers of a neural NLG architecture and that use heuristics and algorithms
to handle the symbolic search space during sequence generation. This distinction between
training-modeling, on the one hand, and testing-decoding, on the other hand, is common
but not always entirely clear-cut. Section 2.2 already mentioned RL-based methods for
optimizing the model with sequence-level rewards in training. This sequence-level opti-
mization aims to address the basic limitation in supervised training of standard neural
generators that are optimized to achieve likelihood on the word-level, i.e., without explicit
quality criteria at the sequence level. In that sense, sequence-level training is similar in
motivation to some of the decoding methods discussed so far. A potential advantage of
RL-based methods is that a given objective or conversational goal is not represented in a
presumably heuristic algorithm that needs to be implemented anew for every goal and task
but is optimized by the policy in the model. For this reason, Gu et al. [174] explore RL for
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decoding and introduce the notion of trainable decoding. As in other RL-based generation
approaches [41,42], they use a neural (MT) system that is trained in supervised fashion
as their base model. An important difference to Ranzato et al. [41]’s approach is that, for
decoding, they add an additional layer or “actor-network” to the trained model that will
be optimized with RL, while freezing the other, pretrained layers of the network. They
treat this actor network as a trainable decoder that learns to manipulate the hidden state of
the underlying pre-trained RNN and can be optimized with any given reward function.
Whereas Gu et al. [174] train the decoder actor network with a policy gradient method,
Chen et al. [179] present a supervised method to train the decoder. Of course, this notion
of trainable decoding is conceptually different from an actual inference procedure for se-
quence prediction. Thus, when applying their model, Gu et al. [174] combine the trainable
decoder with the beam search heuristic. Zarrieß and Schlangen [70] test Chen et al. [179]’s
supervised approach in an REG experiment and combine it with greedy search to avoid
the already discussed deficiencies of beam search, while Gu et al. [174] and Zarrieß and
Schlangen [70] rely on BLEU as a reward for the decoder, other metrics and rewards might
constitute more interesting options to optimize decoding for, e.g., conversational goals. For
instance, Panagiaris et al. [118] present a transformer-based model for REG that incorpo-
rates RL and various decoding methods to balance the diversity and informativeness of
referring expressions. Their approach suggests that different objectives during generation
might be achieved through a combination of modeling and decoding techniques.

5.4. Summary

This section has discussed a rather diverse range of generation systems and ways of
integrating task-specific constraints, knowledge, or linguistic reasoning into the generation
process at decoding time. A basic idea that underlies all these methods, however, is
that there might be a natural division of labor between a neural generation model and
a decoding methods for a given task: while the neural model can be straightforwardly
trained with a likelihood objective on a large-scale training set, the decoding method can
be easily set up to incorporate further constraints that extend the linguistic reasoning
capabilities of the model. This division is clearly spelled out, for instance, in the RSA-
based decoding in Section 5.3, where the language model represents a literal speaker, who
produces likely utterances and who can be extended to a pragmatic speaker with a Bayesian
decoder reasoning about informativeness in context. Contrary to the likelihood or diversity-
oriented decoding procedures surveyed in Sections 3 and 4, the corresponding decoding
methods are not included in Tables 2 and 3, as they are conceptually and technically
diverse and often tailored to specific tasks. Here, future work might aim for a more
systematic comparison with other decoding methods (see Section 6 for further elaboration
on this point).

In short, the main points discussed in Section 5 can be summarized as:

• decoding methods offer themselves to be tailored to incorporate linguistic constraints
at different levels of the generation process,

• decoding methods with lexical or structural constraints typically present extensions
of beam search where candidates are filtered in more or less sophisticated ways,

• lexical constraints during decoding can extend a model’s vocabulary,
• decoding can be used to incorporate reasoning on high-level conversational or task-

related objectives, and
• the main research gap: generalize and transfer these methods across NLG tasks and

develop a more systematic understanding of objectives that can be implemented at
the decoding stage in NLG.

6. Research Gaps and Future Directions

This survey has shown that decoding methods in neural NLG can be developed and
analyzed from many different perspectives and tasks. Decoding is a core part of a neural
generation set-up, and many recent NLG papers have investigated its impact on generation
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quality. While the recent body of work on decoding has reached robust insights into effects
of certain decoding strategies, particularly beam search, a number of open questions and
challenges remain to be addressed. This section discusses the main research gaps that
follow from the observations made in this survey.

6.1. Exploring Decoding Parameters for Core NLG Tasks

A lot of research on decoding neural sequence-to-sequence models has been done in
the area of MT. Most of the studies on beam search discussed in Section 3 have looked
at effects of beam search exclusively in MT experiments. Consequently, many of the
parameters and variants developed for beam search make assumptions that apply only, or
mostly, in an MT setting. For instance, the end of sentence penalty in Klein et al. [55]’s beam
search implementation assumes that the length of the output text can be estimated from the
length of the input text. Missing exploration and analysis of these and further parameters
for settings, such as data-to-text generation, where there is much less similarity structural
between input and output, constitute an obvious research gap. Moreover, standardized
implementations of flexible search strategies would be of great practical use and could
support systematic evaluation and benchmarking of neural NLG.

6.2. The Status of Language Modeling in Neural Generation

Neural language models constitute a core part of state-of-the-art neural language
generation models. As compared to pre-neural architectures, one could say that the
relation between decoding and language modeling has been turned upside-down in neural
NLG: pre-neural systems defined the core model based on some target representation of the
output (e.g., a tree or template) and took advantage of language models during decoding,
to score the likelihood and fluency of a constrained set of output candidates. In neural
systems, the core model typically is a conditional language model scoring the likelihood of
the infinite set of output texts, and decoding is used to restrict this set with some target
heuristic. As language models are trained to maximize the likelihood of sequences of
words observed in corpora, it follows that likelihood has become a central objective in
neural NLG model. More than that, likelihood is the most well-understood objective in
language generation to date as it can be achieved by the common combination of word-
level supervised training and sequence-level beam search decoding. During training, it
seems to be an important criterion for, at least, technical reasons. For instance, work on
RL-based generation [41,42] has shown that training with more abstract sequence-level
constraints is not successful.

Generally, however, the importance and status of likelihood as an objective in computa-
tional language generation does not yet seem to be well understood. This survey has shown
that NLG researchers have found various weaknesses with purely likelihood-oriented gen-
eration, most notably its failures in reproducing the diversity of natural language in its
various forms [54,67,71,72,92,116,131,132,147]. Therefore, Holtzman et al. [71] argues that
language generation systems should produce texts that are likely but do not fully maximize
likelihood, i.e., avoid consecutive, high-probability zones in text. An opposite view is taken
by Meister et al. [74], who argue for the well-known principle of uniform information den-
sity from research in cognitive science. A promising method to investigate these questions
is sketched by Zhang et al. [160]. They conduct a human evaluation study testing system
outputs on the likelihood-diversity spectrum and confirm the likelihood trap discussed
by Holtzman et al. [71]. Their results show a positive correlation between average human
quality judgements and likelihood, but, importantly, they find an inflection point after
which high likelihood is negatively correlated with human quality ratings.

These studies reveal that there is still a substantial research gap in the theoretical
understanding of language modeling and likelihood in the training of NLG systems. An
interesting direction for future work would be theoretically- and cognitively-motivated
analysis and evaluation studies that deepen existing insights on the behavior of language
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models in NLG tasks. This research gap also connects to a current trend in NLP on analysis
methods for large neural language models (cf. Belinkov and Glass [180]).

6.3. Diversity, Effectiveness, and other Objectives in NLG

When speakers converse, their utterances are remarkably diverse and, at the same
time, remarkably precise and effective. For instance, in a widely used corpus of human
descriptions of images showing common objects, Devlin et al. [181] find that 99% of the
image captions are unique. Other work that has collected such descriptions in interactive,
game-based settings [182,183] found that speakers often only need a few words or utter-
ances to unambiguously refer to objects or generally make themselves understood in a rich,
communicative context. Theoretically, it is well established that speakers pursue objectives
and intentions other than likelihood maximization while producing their utterances. For
instance, many well-known theories on conversation and pragmatics have discovered and
formulated principles of intentional and goal-oriented language use in human interaction,
e.g., Grice [184] or Clark [185].

A striking result of our survey is that it is still surprisingly unclear what a good
objective is, when decoding (and training) a neural NLG system. A commonly adopted
solution is to relax, during decoding, the likelihood objective of the pretrained language
model and sample candidate words at inference time, thereby introducing randomness into
the generation process [3,71,72,98,99,116,118]. A complementary solution is to introduce
constraints, knowledge or some form of task-specific reasoning into the decoding procedure,
as in References [161,162,168], or to adopt some form of trainable decoding [41,174]. Except
some studies that have investigated the likelihood-diversity trade-off [116,152,160], there
is hardly any systematic understanding as to how these more abstract conversational
goals compare to each other and between generation task. Here, Schüz et al. [159] take a
first step and evaluate pragmatic reasoning in neural image captioning and compare it
to diversity-oriented decoding. They show that, although not aiming at diversity itself,
decoding with RSA does not only lead to more more informative utterances but also
increases linguistic variation, which, in turn, leads to increased lexical diversity. This brings
up the question whether certain objectives, e.g., linguistic diversity, might not need to be
implemented as an explicit objective, but it could arise naturally from a more systematic
understanding and implementation of conversational goals in neural NLG. A related
question is on generation tasks, where multiple objectives might need to be balanced. For
instance, Gkatzia et al. [186] formulate a multi-objective approach to generating summaries
that aims at fulfilling the needs of different user groups of generated text. For future work,
we see great potential for exploring different types of objectives in language generation, in
controlled and open-ended tasks, and studying them in terms of modeling and evaluation.

6.4. What to Model and How to Decode?

Generally, in this survey, we have seen that so-called end-to-end neural NLG systems
consist at least of the following two components: a typically complex neural model that
learns to predict words conditioned on some context, and a typically less complex decod-
ing heuristic that controls how words are strung together as sequences. In many cases,
the decoding method is “innocent” in the sense that it implements the same likelihood
objective as the model; in other cases, the decoding method adds substantial further as-
sumptions, goals, and constraints to the generation process. In either case, in neural NLG
architectures, there is necessary division of labor between the modeling and the decoding
step which results from the simple fact that sequence probabilities need to be factorized
into word probabilities.

In some papers discussed in this survey, the division of labor between modeling and
decoding is made very clear. For instance, the approaches in Section 5 precisely motivate
which aspect of linguistic reasoning was added to the model during decoding. However,
unfortunately, this is not generally the case. The overview of systems in Tables 2 and 3
clearly suggests that there is not yet a fully standardized, systematic practice in developing
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and reporting the decoding method incorporated in an NLG system. This might be, among
other things, a consequence of the fact that evaluation of neural generation models is
extremely challenging. Even the basic set-up of the core model involves a lot of parameters
such that it is impossible to precisely test the effect of these various elements of the
resulting framework, including the various parameters implemented in the decoding step.
Here, we see potential in future work to establish better development and evaluation
methodology that includes best practices for decoding neural NLG models. In our view,
another promising direction for future work is to arrive at a more systematic understanding
of the conceptual division of labor between modeling and decoding in neural NLG, i.e.,
which aspects of language generation should be taken care of in the model and which
aspects should be handled in the decoding algorithm.

7. Conclusions

This article has reviewed decoding methods in neural language generation. These
methods are external to the so-called end-to-end model and define an algorithm, often a
more or less sophisticated heuristic, that operates in the symbolic, infinite search space of
potential utterances that could be realized for a given input. Our survey was based on a
broad categorization of decoding methods according to their general objective. This has
shown that existing methods can be set up to optimize very different criteria and goals
in the language generation process, which is both a chance and a risk: decoding can be
leveraged to enhance and control the behavior of a given neural generation model that will
be typically trained to predict a likely next word. At the same time, future work still needs
to establish how exactly objectives, such as likelihood, diversity, or informativeness, can be
integrated in a way that they complement each other, rather than leading to trade-offs and
drops in quality.
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