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Abstract: We consider a power-down system with two states—“on” and “off”—and a continuous set
of power states. The system has to respond to requests for service in the “on” state and, after service,
the system can power off or switch to any of the intermediate power-saving states. The choice of
states determines the cost to power on for subsequent requests. The protocol for requests is “online”,
which means that the decision as to which intermediate state (or the off-state) the system will switch
has to be made without knowledge of future requests. We model a linear and a non-linear system,
and we consider different online strategies, namely piece-wise linear, logarithmic and exponential.
We provide results under online competitive analysis, which have relevance for the integration
of renewable energy sources into the smart grid. Our analysis shows that while piece-wise linear
systems are not specific for any type of system, logarithmic strategies work well for slack systems,
whereas exponential systems are better suited for busy systems.

Keywords: online algorithms; competitive analysis; green energy; renewable energy; power-down

1. Introduction
1.1. The Power-Down Problem and Online Competitive Analysis

The power-down problem is formally defined as follows: Consider here a system
that has two states, called “ON” and “OFF”, and additionally a continuous or finite set of
intermediate states. In the continuous case, the set of states is s ∈ [0, 1], where the value
0 is mapped to the ON-state; the value 1 is mapped to the OFF state; and the interval
(0, 1) is mapped to intermediate states. The running cost of the device in the ON state is
proportional to the time of usage, while the device in the OFF state consumes zero amounts
of energy; the intermediate states serve as sleep states, where the running cost is also
proportional to time but has a smaller cost 0 < a(s) < 1. There is no cost for switching
from ON to OFF or any of the intermediate states, but a fixed cost 0 < d(s) < c occurs
when switching from any of the intermediate states to ON, with c representing the cost of
switching from OFF to ON. For systems with a finite number of states, instead of mapping
from [0, 1], the states are {0, . . . , k}, with 0 being the ON-state and k being the OFF-state.

At any time the device may be in any state but it must be swithced to the ON state
when service is requested. Let ts

1, . . . , ts
n and te

1, . . . , te
n be non-negative real values that

represent requests for service between the start of service times ts
i and end of service times

te
i , (i = 1, 2, . . . , n). Note that 0 ≤ ts

1 < te
1 < ts

2 < te
2 < · · · < ts

n < te
n holds. Thus, at time

ts
i , the state of a device must be in ON until time te

i . In between requests, the device can
remain in the ON state, proceed to the OFF state or switch to any of the intermediate states.

We assume that as service requests are made our algorithm must determine how to
switch the system without knowledge of future input. For the power-down problem, this
means that an online algorithm will decide at each moment how to switch states without
knowing what the next request will be. In contrast, an offline algorithm can make decisions
based on the full knowledge of the entire input sequence. We say that algorithm A has
competitive ratio C for a given request sequence σ, if the following is the case:
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CostA(σ) ≤ c · Costopt(σ), (1)

with CostA(σ) being the cost of A to serve σ and Costopt(σ) representing the cost of the
optimal offline algorithm on σ. We say that algorithm A is has competitive ratio C if
the inequality holds for all request sequences. Refer to Borodin and El-Yaniv [1] for a
comprehensive treatise of online competitive algorithms.

Note that if te
i is very close to ts

i+1, it may be inefficient for switching the device off.
Instead, it would likely be advantageous to keep the machine switched on or perhaps to
operate the device in any of the intermediate states. We also observe that during usage, the
device must be ON—both offline and online—and worst case competitiveness is achieved
for sequences where the length of the service te

i − ts
i is small and, in effect, infinitesimally

short. The issue is whether the machine switches to a new state at time te
i . Under worst-case

analysis, we will, thus, assume for our request sequences that the usage times of the device
are infinitesimal: we redefine the input sequence as ti := ts

i = te
i , and we define a request

sequence in terms of the arrival time of request i.
We summarize that for this problem the offline algorithm knows the duration of the

idle time ri after request i until the next request and can, thus, pick the most cost effective
state for this idle time. The online algorithm, however, has to decide on state transitions
without knowledge of the length of ri.

1.2. Background and Related Work

Power-down mechanisms are common in electronic control from power optimization
for hand-held devices to work stations to data centers. Power-saving states are routine for
laptop computers and smart phones used in everyday life. See [2–7] for background of this
research area.

However, the model is also useful for handling power-down phenomena in an emerg-
ing electrical grid, which predominantly relies on renewable energy; see our paper [8] for a
survey on algorithmic approaches for a dependable smart grid. In that paper, we argue
that game-theoretic approaches are essential for modeling the distributed smart grid, in the
spirit of the approach taken almost four decades ago to model an emerging internet where
requests are not driven by a well-defined distribution but are largely unpredictable.

The online competitive model has the advantage that statistical assumptions are not
necessary. This is important for modeling a distributed smart grid, which incorporates
renewables. In the traditional energy grid, when renewables produce a surplus of energy,
such surplus generally does not affect the operation of traditional power plants. Instead,
renewables are throttled down or the surplus is simply ignored. However, in the future, the
majority of power is generated by renewables, and this is not tenable. Rather, traditional
power plant output needs be throttled down or switched off in response to less predictable
renewable supplies. Online competitive models have the advantage that little statistical
insight is needed.

It be could argued that a game-theoretic approach that assumes an omniscient adver-
sary may not be so realistic for modeling the grid; however, this kind of modeling provides
performance guarantees in the absence of reliable forecasting. For example, climate scien-
tists have noted unusual weather patterns related to a change in Arctic Oscillation (OA)
and North Atlantic Oscillation (NAO) [9]. Recently, unprecedented winter storms across
Texas in February 2021 caused wide-spread power outages [10]. See also Maimó-Far et
al. [11] for unpredictability issues around renewables. In order to guarantee a resilient grid,
worst case assumptions must be taken into account.

In [12], we have extensively studied the power-down problem when there is a finite
number of intermediate power states. For that discrete version of the power-down problem,
we have also developed adaptive algorithms (see [13]). In our recent journal paper [14], we
have developed a decrease and reset technique that responds to the frequency of requests
by increasing idle times as requests become sparse.
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In a majority-renewables grid, power gaps may be filled by a limited number of
fossil fuel generation plants, such as gas turbines [8]. Guelen [15] points out that “the
most efficient, clean, and fast-responding power-plants are natural gas-fired turbine power
plants”. There is now extensive interest in gas turbines (see the recent handbook by
Winterbone and Turan [16]). Such turbines come in many guises but a commonality is that
throttling is continuous rather than finite.

Our paper expands our work on finite state systems given in [12] to continuous
scenarios. The paper provides a unified framework based on earlier studies presented
at previous ITNG meetings [13,17,18], but simulations in this paper are geared towards
modeling throttling traditional power plants in a majority-renewables smart grid. We
consider an abstracted set of functions that scale to a wide range of systems and compare
three different strategies, namely “exponential”, “logarithmic” and “piecewise linear”
under competitive analysis. From our analysis, we derive policies that are suited best for
different scenarios, such as a highly fickle system or a system with a high degree of slack.

1.3. Organization of Paper

Our paper is organized as follows: In Section 2, we provide the continuous state model
and define corresponding idle and power-up costs. The functions are motivated by the
control of gas turbines in a majority-renewables grid. Section 3 solves the power-down
problem for the model when all requests are known in advance. In Section 4, we provide
general results for online strategies and analyze in the next two sections (Sections 5 and 6)
two specific parameterized strategies—namely logarithmic and exponential—that are
both useful in practice. We provide further simulation results regarding logarithmic and
exponential strategies in the Appendix A. Section 7 discusses the piece-wise linear strategy,
which is useful but simpler. In both sections, we provide a comprehensive analysis of
competitive ratios. Section 8 provides quantitive analysis of the strategies. Section 9 places
our results into further perspectives.

2. The Power Model

We study a continuous power model with a set of states {s ∈ R | 0 ≤ s ≤ 1}; each
state has an associated idle cost a(s) and power up cost d(s)—the switching cost to the “ON”
state that is indexed by 0. As mentioned before, the model considered here is motivated
by the cycling of gas turbines. Gas turbines can be throttled to different levels of power
generations. Today, they are often still used in combination with steam turbines to make
a combined cycle gas turbine power plant. The temperature range of the combined cycle
is greater than the range of either of the individual components, and load control can be
achieved by changing the number of gas turbines coupled to the steam turbine [16]. Thus,
the idle cost and power up cost may be quite different across different types of turbines. We
will consider here a generic system, with idle cost function a(s) and power up cost function
d(s) as follows.

a(s) = 1− sa (2)

d(s) = csd (3)

The system models various real-world situations, such as the powering up of a power
plant, where the power cost decreases at a polynomial rate as the system throttles to a lower
state, and the power up cost increases at a polynomial rate as the system throttles down.
Such a system can be used to model a wide variety of situations. We mention that state 0 is
the highest power “ON” state, state 1 is the “OFF” state and all real numbers between 0
and 1 are intermediate states (c.f. Figure 1a). For modeling, we choose somewhat arbitrarily
values including a = 5, c = 1 and d = 5. We will describe below that with this choice of
parameters we can describe important qualitative differences of various online strategies,
and we demonstrate in the the Appendix A that these characteristics remain valid for a
variety of other parameter choices.
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Figure 1. Power Systems. (a) General power system. (b) Linear power system.

We will also discuss the special case of a linear system provided by the following:

a(s) = 1− s (4)

d(s) = cs, (5)

where, as before, we chose somewhat arbitrarily c = 1 (c.f. Figure 1b). We will refer to the
system of Figure 1b as the “Linear System” and the system of Figure 1a as the “General
System”.

3. Offline Strategy

The optimal offline algorithm chooses a state that minimizes cost r · a(s) + d(s). We
can minimize this cost by using r · a(s) + d(s) dy

ds = 0, we then solve for s, which we rename
StrategyOFF, which is a function of r as follows:

StrategyOFF(r) =
(

a · r
d · c

) 1
d−a

(6)

where r is the idle duration. We choose a state when the machine would proceeds to be
idle and remains in this state for r units before power up to the “ON” state. The cost of the
offline algorithm can be shown by the following.

CostOFF(r) = r · a(StrategyOFF(r)) + d(StrategyOFF(r)) (7)

We use Equation (6) to determine the point in time when the offline algorithm would
utilize the “OFF” state throughout its idle duration by setting the equation to 1, i.e., the
“OFF” state. We denote this “threshold” time as τ.(

a · τ
d · c

) 1
d−a

= 1 (8)

τ = c·d
a (9)

Thus, if r ≥ τ, the offline strategy would remain “OFF” throughout the idle duration
in order to be optimal. We note that, for the linear system, offline strategy utilizes the “ON”
state throughout idle time until time τ.

4. Online Strategies

We analyze a set of possible online strategies for the power model introduced in
Section 2. As noted before, an online algorithm cannot make assumptions about future
events; thus, the time spent idle is unknown. An online algorithm starts at the highest
power state (“ON” or 0) the moment the machine becomes idle and begins powering down
to lower power states until the request arrives. The power up cost from the state that the
online algorithm is using is then incurred to the power cost of being idle. If we have some
online strategy StrategyON, then its cost is as follows.
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CostON(r) =
∫ r

0
a(StrategyON(u))du + d(StrategyON(r)) (10)

Using Equations (7) and (10), we can compute the competitive ratio.

Competitive Ratio = max
0≤r≤τ

{
CostON(r)
CostOFF(r)

}
(11)

Equation (11) provides us with the competitive ratio for each request with wait time r.

Theorem 1. For any continuous online strategy, once the wait time reaches τ, online strategy
powers down in order to minimize its competitive ratio.

Proof. We set up the proof by contradiction that, when the idle time is τ, the online strategy
does not power down. This strategy is optimal. Thus, the machine switches to the “OFF”
state either before or after τ. The trivial case is when the machine powers down after τ or
r > τ. Then, from Equation (10), we have the following competitive ratio:∫ τ+δ

0 a(StrategyON(u))du + d(StrategyON(τ + δ))

1
.

where δ > 0, the offline algorithm choses the “OFF” state throughout the idle duration and
δ increases the online cost, consequentially increasing the competitive ratio. The other case
where online strategy powers down before the τ would yield the following competitive
ratio using Equations (7) and (10).∫ τ−δ

0 a(StrategyON(u))du + 1
r · a(StrategyOFF(τ − δ)) + d(StrategyOFF(τ − δ))

.

We substitute 1 for d(StrategyON(τ− δ)) for the power up cost since the online strategy
powers down at some time τ− δ, where δ > 0. For any δ value , d(StrategyON(τ− δ)) < 1—
thus, the online cost will incur an extra cost of 1− d(StrategyON(τ − δ)) when powered
down before τ. Consequently, online cost becomes larger so the competitive ratio is not
minimal. Thus, the competitive ratio can only be minimal if online strategy powers down
at when the idle duration is τ.

In the next sections, we analyze various online strategies.

5. Logarithmic Strategies

We use the following function as a template for a set of logarithmic strategies:

Strategyln(r) =
ln Λr
ln Λτ

(12)

where r is the idle time, τ is the threshold time where the machine would power down to
the “OFF” state and Λ is a control parameter that controls the transition rate. Each online
strategy has a different Λ value.

Figures 2a and 3b are the same set of online strategies applied on the general system
and linear system, the competitive ratios can be seen in Figures 2b and 3b, respectively.
The logarithmic strategy switches to lower power states rapidly at the beginning of the
idle period and then slowly as the duration reaches τ. We observe that competitive ratios
are maximal at the beginning of the idle durations and then decreases to its minimal
competitive ratio when the idle duration reaches the value of τ. We see this pattern when
logarithmic strategy is applied on both the general and linear system; however, the results
are more extreme in the linear power system.
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Figure 2. Logarithmic Strategy. (a) Transition rates for logarithmic strategies, general system;
(b) competitive ratios for logarithmic strategies, general system.
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Figure 3. Logarithmic Strategy. (a) Transition rates for logarithmic strategies, linear system; (b) com-
petitive ratios for logarithmic strategies, linear system.

6. Exponential Strategies

For exponential strategies, we use the following function template the following:

Strategyexp(r) =
eΛr − 1
eΛτ − 1

(13)

where r is the idle time, τ is the threshold value and Λ is the control parameter that
determines the transition rate. Using a set of Λ values, we can construct different online
strategies, where each strategy transitions to lower power states at an exponential rate.

Figures 4a and 5b show exponential strategies used in the experimentation. For
exponential strategies, we see transition rate changes gradually, then towards the end of
the idle period, the transition increases rapidly. The competitive ratios for these strategies
on a general and linear system are shown in Figures 4b and 5b, respectively. In both
power systems, we can notice similar patterns, where the competitive ratio is minimal at
the beginning of the idle period. Then, it increases throughout the idle duration and is
maximized when the duration is τ, with the exception of one of the strategies when Λ is
large when experimenting in the linear system.
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Figure 4. Exponential Strategy. (a) Transition rates for exponential strategies, general system;
(b) competitive ratios for exponential strategies, general system.
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Figure 5. Exponential Strategy. (a) Transition rates for exponential strategies, linear system; (b) com-
petitive ratios for exponential strategies, linear system.

When compared to the logarithmic strategy, we see that the two systems are rather
opposites of each other. Logarithmic strategies are at their maximum at the beginning of the
idle period and then become minimal towards the end, and the exponential strategies are
minimal at the beginning and reach its maximum towards the end. The experiments sug-
gests that exponential strategies are more favorable overall, since the maximal competitive
ratio is achieved towards the end and only for a short duration, and for the majority of the
time spent idle it has a favorable competitive ratio. However, even though the logarithmic
strategies are larger than the exponential strategies for the most part, the competitive ratios
of logarithmic strategies are favorable at time τ. Thus, idle durations are consistently large,
then the logarithmic strategy is favorable; however, in most of the cases, the exponential
strategies are favorable.

7. Piece-Wise Linear Strategies

The previous strategies—exponential and logarithmic—had the pattern of either
transitioning at a slower rate earlier in the idle period and then transitioned at a faster
rate towards the end of the idle period and vice versa. This online strategy uses two
control parameters: a given slope m and the given amount of time t spent at the beginning
and end using transition rate m. Using the given transition rate m, the strategy would
transition to lower power states during the duration [0, t], which can also be denoted by
[0, x1]; then, a new transition rate m′ is computed, and the online strategy transitions at rate
m′ in durations (t, τ − 2t], which we can denote this duration (x1, x2], and then strategy
transitions at rate m once again for t units in the duration (τ − 2t, τ], which we denote
(x2, τ]. We use the three linear functions to model this strategy:

f1(r) = mr (14)

f2(r) = m′r + b (15)

f3(r) = mr + τ −m (16)

where m′ = 2m(1−t)+1
1−2t and b = t(m−m′). We then can construct the following piece-wise

linear function below.

StrategyON =


f1(r) if r ≤ x1

f2(r) if x1 < r ≤ x2

f3(r) if x2 < r < τ

1 if r ≥ τ

(17)

Since we have two given control values m and t for the piece-wise linear strategies,
we conduct experiments where, in our first experiment, we choose a transition rate m and
cycle through a set of t values, and then, for the other experiment, we choose the duration t
and cycle through a set of transition rates.
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Figures 6a and 7a show the strategies used for experimentation. For all strategies, we
chose m = 0.50 and cycled through a set of t values, the competitive ratios when we run
these strategies on a general and linear power system can be observed in Figures 6b and 7b,
respectively. For the general power system, we observe a similar behavior as with the
exponential strategy where the competitve ratio is minimal at the beginning of the idle
duration and rapidly increases from x1 to x2 and then gradually increases from x2 to τ.
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Figure 6. Fixed slope m = 0.50. (a) Online strategies for piece-wise linear functions, general system;
(b) competitive ratios for piece-wise linear functions, general system.
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Figure 7. Fixed slope m = 0.50. (a) Online strategies for piece-wise linear functions, linear system;
(b) competitive ratios for piece-wise linear functions, linear system.

For the linear system, the competitive ratio surges at the beginning but decreases
gradually from 0 to x1; then, the competitive ratio increases in duration x1 to x2 for some of
the strategies where x1 to x2 is a larger duration and, thus, has a smaller m′ transition rate.
The competitive ratio decreases as the duration is approaching x2, and then from x2 to τ,
the competitive ratios decrease. For general and linear power systems, the pattern that we
can observe is that the competitive ratio values are similar at the beginning and converge
to similar results at the end, but the strategy with the larger t, which results in a smaller
duration from x1 to x2, causes a larger m′ transition rate that has a larger competitive ratio
during that x1 to x2 duration. Thus, the conclusion is that the strategy that uses a larger t
value results in the largest competitive ratio and, thus, the least favorable strategy.

Figures 8a and 9b are online strategies applied on a general and linear system. In
these strategies, we chose a fixed t duration for all strategies, and we cycle through a set of
transition rates m during the beginning and ending intervals. The competitive ratio shown
in Figure 8b shows the minimal competitive ratios at the beginning and then increases
towards the end, similar to the exponential strategy shown earlier. However, we observe
that the strategy with the larger m and larger m′ value is minimal throughout the idle
duration except at time τ, and the strategy with the smallest m and m′ has the largest
competitive ratio except at time τ. Overall, the strategy with the largest m value has the
favorable competitive ratio for the majority of the idle time.
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Figure 8. Fixed duration = 0.25. (a) Online strategies for piece-wise linear functions, general system;
(b) competitive ratios for piece-wise linear functions, general system.
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Figure 9. Fixed duration = 0.25. (a) Online strategies for piece-wise linear functions, linear system,
(b) competitive ratios for piece-wise linear functions, linear system.

When the same set of online strategies are simulated on a linear power system shown
in Figure 9b, they all have a surge in competitive ratio at the very beginning, then most of
the strategies decrease after the surge, and then they increase after x1, then the competitive
ratios decrease as the idle time approaches x2, and then the strategies all decrease their
competitive ratios from x2 to τ, with the only exception to the strategy being the largest m
value. The strategy with the better competitive ratio at the beginning is the strategy with
the smallest m value, then the second half of the idle period the strategy with the larger m
value has a better competitive ratio.

8. Comparative Analysis

In [14], we have defined the notion of a slackness degree. Roughly speaking, a system
is slack, if requests seldom arrive, and a system is busy if requests arrive in quick succession.
We argued that it important to analyze systems for the worst case; in that sense, one would
not classify competitive results in terms of being slack or busy. However, in practice, a
worst-case analysis that takes into account this single property is very useful.

Looking at the general system, Figure 3 shows that the competitive ratio is favorable
when the idle time is larger than 0.5. On the other hand, exponential strategies (see Figure 5)
exhibit the opposite characteristic: the competitive ratio is favorable when idle times are
less than 0.5. Figures A1 and A2 in the Appendix A show this to be present for various
systems with different parameter values.

For piecewise-linear strategies, observations are not as easily classified, but generally
those strategies are more akin to exponential strategies. However, by setting up the slope
carefully, the behavior can be finetuned to more specific characteristics.

9. Conclusions

A choice of logarithmic, exponential and piece-wise linear strategies was modeled on a
linear as well as a more general power system. From our work, we observe that there is no
one best strategy. Every strategy on each power system had periods where it had favorable
competitive ratios and instances where the competitive ratios would be large. The highest
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competitive ratio for that strategy on a power system is considered the competitive ratio
for the strategy. However, the worst-case may not be the most important consideration
for real-world applications. Thus, our results can guide strategy choices depending on
the application.

Our work is important for the integration of fossil fuel power plants into a majority-
renewables electrical grid. The fickle nature of solar and wind power is often cited as a
major impediment for the speedier adoption of renewables. Online competitive models
play an important role in creating a resilient renewable grid.
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Appendix A

1. Simulations Parameter Values and Logarithmic Strategy
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Figure A1. Simulations logarithmic strategies for various parameter values.
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2. Simulations Parameter Values and Exponential Strategy
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Figure A2. Simulations exponential strategies for various parameter values.
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