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Abstract: Gestational diabetes mellitus (GDM) is a common condition with repercussions for both the
mother and her child. Machine learning (ML) modeling techniques were proposed to predict the risk
of several medical outcomes. A systematic evaluation of the predictive capacity of maternal factors
resulting in GDM in the UAE is warranted. Data on a total of 3858 women who gave birth and had
information on their GDM status in a birth cohort were used to fit the GDM risk prediction model.
Information used for the predictive modeling were from self-reported epidemiological data collected
at early gestation. Three different ML models, random forest (RF), gradient boosting model (GBM),
and extreme gradient boosting (XGBoost), were used to predict GDM. Furthermore, to provide
local interpretation of each feature in GDM diagnosis, features were studied using Shapley additive
explanations (SHAP). Results obtained using ML models show that XGBoost, which achieved an
AUC of 0.77, performed better compared to RF and GBM. Individual feature importance using SHAP
value and the XGBoost model show that previous GDM diagnosis, maternal age, body mass index,
and gravidity play a vital role in GDM diagnosis. ML models using self-reported epidemiological
data are useful and feasible in prediction models for GDM diagnosis amongst pregnant women.
Such data should be periodically collected at early pregnancy for health professionals to intervene at
earlier stages to prevent adverse outcomes in pregnancy and delivery. The XGBoost algorithm was
the optimal model for identifying the features that predict GDM diagnosis.

Keywords: gestational diabetes mellitus; machine learning; prediction modeling; United Arab Emirates

1. Introduction

Gestational diabetes mellitus (GDM) is a common medical condition during pregnancy
and is characterized as any degree of glucose intolerance with onset or first recognition during
pregnancy [1]. This definition is applicable regardless of whether insulin or diet modifications
are used for treating GDM or whether the condition continues after pregnancy [2].

GDM increases the risk of maternal trauma, preeclampsia and eclampsia, premature
rupture of membranes, preterm delivery, and delivery by caesarean section [3–5]. In the
newborns, there is increased risk of macrosomia, shoulder dystocia, neonatal intensive care
unit admission, and perinatal death [3,6–8]. Moreover, mothers with GDM have increased
risk of type 2 diabetes and cardiovascular diseases later in life [9,10], while their children
have an increased risk for obesity, impaired glucose tolerance, metabolic syndromes, and
cardiovascular risk profiles during adolescence and early adulthood [11–13]. The current
evidence indicates that early detection and management of GDM improves outcomes for
both mothers and their children [14].

Previous research has shown that prediction modeling is very successful in relating
factors to future advent of GDM diagnosis [15]. One model developed by applying a

Information 2022, 13, 485. https://doi.org/10.3390/info13100485 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13100485
https://doi.org/10.3390/info13100485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9585-0232
https://orcid.org/0000-0003-2227-3299
https://orcid.org/0000-0002-2978-3729
https://orcid.org/0000-0001-5292-8212
https://doi.org/10.3390/info13100485
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100485?type=check_update&version=1


Information 2022, 13, 485 2 of 12

machine learning (ML) algorithm to data extracted from health records for the first trimester
to predict risk GDM at 24–28 weeks of gestation achieved an AUC of 0.86 and accuracy of
62.2%. This algorithm also included maternal factors such as age, parity, BMI, education,
and other hematological and biochemical test results [16]. It is uncertain whether these
models are applicable to local population in the UAE as such a study has not been done
here or in the region. Furthermore, there is lack of evidence whether the use of the relatively
feasible and easy to collect self-reported epidemiological data in these models would be
predictive in the local community. Therefore, the purpose of the present study was to
develop a simple model incorporating maternal self-reported data and triage results to
predict the risk of GDM amongst pregnant women in the UAE.

2. Materials and Methods

This analysis is based on the pregnant women from the Emirati population who partic-
ipated in a prospective cohort study in Al Ain, Abu Dhabi, UAE. Upon recruitment, women
completed a baseline questionnaire and were followed up during pregnancy via medical
records in the hospitals. The overall study has been described in detail elsewhere [17].
The study was approved by the United Arab Emirates University Human Research Ethics
Committee (ERH-2017-5512), the Al Ain Hospital Research Ethics Committee (AAHEC-03-
17-058) and the Tawam Hospital Research Ethics Committee (IRR–494). Informed written
consent was obtained from the participant prior to the data collection.

Data for the current analysis were extracted from the questionnaire administered
during the first point of contact with the participants recruited between May 2017 and
February 2021. The questionnaire contains questions on the demographics, psychosocial
factors, previous pregnancies, and behaviors during the participant’s current pregnancy.

GDM was diagnosed using the mandatory testing and diagnosis standards used in
all healthcare facilities in the emirate of Abu Dhabi. Specifically, between weeks 24–28 of
gestation, pregnant women are required to complete a standardized oral glucose tolerance
test (OGTT, fasting and 2 h post-glucose load) for GDM. Diagnosis of GDM was confirmed
if fasting plasma glucose ≥ 5.1 mmol/L, one-hour plasma glucose ≥ 10.0 mmol/L, or two-
hour plasma glucose ≥ 8.5 mmol/L [18]. Women diagnosed with GDM were categorized
into the GDM group and all other women were included in the comparison group. Women
with previous type 1 or 2 diabetes mellitus were excluded in this analysis.

Features selected included maternal age, number of previous pregnancies (gravidity),
previous GDM diagnosis, planned pregnancy status, infertility treatment, consanguinity,
education, employment, and physical activity during and before the current pregnancy.
The focus of these features was for data that were collected in the questionnaire. This
was to investigate the feasibility of prediction via self-reported data and hence features
collected from medical records such as most anthropometry and biomarker data were not
included. From the medical records, only information about the women’s GDM status and
their body mass index (BMI) were used for prediction. Features used in this study have
been previously shown to predict GDM diagnosis in pregnancies.

Descriptive statistics were performed to show and compare the distribution of charac-
teristics of the study population by GDM status. Continuous variables are presented as
means and standard deviations, while categorical variables are presented as counts and
percentages. Student’s t-tests were used to determine differences between group means
for continuous variables (e.g., maternal age) and Pearson chi-square tests were used for
categorical variables (e.g., maternal education). Statistical analyses were performed using
Stata 15.1 (Stata Corp, College Station, TX, USA). A p-value less than or equal to 0.05
defined statistical significance.
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The proposed methodology can be explained using Algorithm 1.

Algorithm 1 GDM diagnosis using ML model.

Input: X is the total dataset of Patients P.
Output: diagnosis of GDM for a Patient pi ∈ P such that i = 0 is normal and i = 1 is a GDM.

1. X imputed ← X . Predict the missing values in X using MissForest.
2. X train , X test ← X Imputed Divided X Imputed into X train and X test.
3. X train is used to train the ML model f (·).
4. Use trained model f (·) to predict patient pi in X test.
5. Return pi.

To build a GDM prediction model, the performance of three ML-based models, ran-
dom forest (RF), gradient boosting model (GBM) and extreme gradient boosting model
(XGBoost), were evaluated in this analysis. The RF is a ML model that consists of multiple
decision tress (DT), where each tree has its own prediction. The prediction of each DT is
then combined using averaging or majority vote to obtain overall output prediction. If there
are multiple DTs where each tree has their own prediction for each outcome, according to
RF algorithm the final prediction with the outcome being GDM will be:

RFout = maxvotes{Count(YesGDM), Count(NoGDM) } (1)

where YesGDM and NoGDM are the predictions of the DTs with the presence and absence of
GDM, respectively.

GBM is an ensemble ML classifier based on the idea of boosting, that is, if the weak
learners can be modified to strong learners in an iterative way [19,20]. In GBM, gradients
in the loss function are used to minimize the loss for weak learners (DTs). However, the
GBM suffers from overfitting if the iterative process is not properly [20]. XGBoost [19] is a
scalable ML model based on a gradient boosting framework used to build a low-depth DT
iteratively to minimize a loss function [21,22] The training process add DTs iteratively to
predict the errors from previous DTs before all the DTs are ensembled [23]. To express the
XGBoost model containing n number of DTs are represented as:

ypred =
n

∑
DT=1

fn(yactual) (2)

where yactual is the input sample and ypred is the predicted value by the model. In XGBoost,
training is performed in an additive manner with the aim to optimize the objective function.
The objective function O for m samples at the t-th iteration is represented as:

Ot =
m

∑
1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( fi) (3)

In Equation (3), l(.) is the loss function and Ω(fi) is the regulation function which can
be represented as:

Ω( fi) = γ. T +
1
2

λ
T

∑
i=1

ω2
i (4)

The Shapley additive explanations (SHAP) method [24] is based on cooperative game
theory [25] in which a group of team members cooperate to an outcome of a game and
obtain a certain gain. Some players may contribute more than the others team members
resulting in their payoff being more than others. SHAP values provide the solution to
distribute the gain based on each player’s contribution. Consider a game, G, consisting
of N players. Let C be the coalition of players and v(C) be the cost obtained from the
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coalition. Then, for each individual player i from the cost function v, the SHAP value Ø can
be obtained using:

φi(v) =
∑πεCN

(v(C(π, i))−
(

v
(

π,i
i

))
)

N!
(5)

where π represents the set of permutations and C(π,i) is the set of players in the coalition.
The higher the Øi(v), the larger is the payoff of the individual player. Similarly, in the GDM
model, each player is analogous to each feature. If the SHAP values is higher for a specific
feature, it means that the specific feature is contributing more to the diagnosis of GDM.

The missing data were imputed using missForest [26,27]. The dataset with the features
was divided randomly into 70–30 training–testing sets and each experiment was repeated
five times. SHAP values were calculated using Python implementation of TreeExplainer.
To evaluate the performance of each ML model for the propped GDM diagnosis, we first
obtained ROC using ML models followed by each feature’s importance using SHAP value.
Then, we described the positive and the negative impact towards the GDM diagnosis for
each feature using SHAP values (see Section 3). The feature contribution impact plot was
plotted, with a positive impact represented by a red bar and a negative impact represented
by a blue color bar. The impact of global feature importance using ML model corresponding
to each sample was obtained using a summary graph. Each sample in a summary graph is
represented in a dot that lies on the x-axis which is determined by a SHAP value shows
the contribution of that feature on the GDM diagnosis. When multiple sample lies on
the same points it creates a density. Finally, dependence plots are obtained for each
feature. In each dependence plot, the X-axis represents the feature while its interaction
with other dependent feature is represented on the Y-axis (right side) and the SHAP values
are represented on the left side of the Y-axis (see Section 3). All the experiments were
conducted using Python 3.8 on Inter(R) Core i9-9900 CPU@ 3.10 GHz 8 GB RAM.

3. Results

The baseline characteristics of 3858 women who had information on their OGTT are
presented in Table 1. Women who were diagnosed with GDM were older (32.8 vs. 29.9,
p < 0.001), more parous (3.4 vs. 2.7, p < 0.001), more likely to be employed (37.5% vs. 31.3%,
p = 0.006), and more likely to have self-reported previous GDM (56.0% vs. 15.6%, p < 0.001).

Table 1. Baseline characteristics of 3858 women by gestational diabetes mellitus (GDM) status in
Al Ain, UAE.

Characteristic All
(n = 3858)

No GDM
(n = 2977)

GDM
(n = 881) p-Value

Age a* 31.1 ± 6.08 30.2 ± 5.90 33.8 ± 5.84 <0.001
BMI at pregnancy a* 28.6 ± 5.82 28.0 ± 5.68 30.7 ± 5.79 <0.001

Number of pregnancies a* 2.91 ± 2.42 2.71 ± 2.34 3.61 ± 2.58 <0.001
Primiparity ** <0.001

Yes 718 (19.8%) 609 (21.7%) 109 (13.4)
No 2911 (80.2%) 2200 (78.3%) 711 (86.2)

Previous GDM diagnosis ** <0.001
Yes 875 (24.8%) 452 (16.6%) 423 (52.6%)
No 2657 (75.2%) 2276 (83.4%) 381 (47.4%)

Planned pregnancy ** 0.684
Yes 1894 (53.1%) 1467 (53.3%) 427 (52.5%)
No 1674 (46.9%) 1287 (46.7%) 387 (47.5%)

Infertility treatment ** <0.001
Yes 320 (9.1%) 219 (8.0%) 101 (12.6%)
No 3212 (90.9%) 2509 (92.0%) 703 (87.4%)

Consanguinity ** 0.727
Yes 1001 (84.2%) 794 (84.4%) 207 (83.5)
No 188 (15.8%) 147 (15.6%) 41 (16.5)

Education **
High school and below 1798 (50.8%) 1420 (52.0%) 378 (46.8%) 0.011

Above High school 1742 (49.2%) 1313 (48.0%) 429 (53.2%)
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Table 1. Cont.

Characteristic All
(n = 3858)

No GDM
(n = 2977)

GDM
(n = 881) p-Value

Employed ** 0.004
Not employed 2426 (68.4%) 1906 (69.7%) 520 (64.3%)

Employed 119 (31.6%) 830 (30.3%) 289 (35.7%)
Physical activity prior to current

pregnancy ** 0.582

Yes 1437 (44.3%) 1098 (44.1%) 339 (45.2)
No 1805 (55.7%) 1394 (55.9%) 411 (54.8)

Physical activity during current
pregnancy ** 0.026

Yes 1548 (46.8%) 1335 (52.2%) 323 (43.2)
No 1759 (53.2%) 1225 (47.8%) 424 (56.8)

a continuous values are expressed as mean (standard deviation). *, Student’s t-test; **, Pearson’s chi-square test.

The ROC plot represented in Figure 1 shows that the XGBoost model achieved the best
auROC of 0.770 compared to 0.764 and 0.624 achieved by RF and GBM, respectively. Therefore,
XGBoost-based GDM models were used for further analysis using the SHAP values.
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Figure 1. ROC curve for GDM prediction using three prediction models. XGBoost shows best
performance.

The impact of each feature towards GDM diagnosis is represented in Figure 2. The
figure shows that based on higher SHAP values, previous GDM diagnosis is the most
important factor for GDM diagnosis in the current pregnancy compared to any other
feature. Maternal age and BMI are the next most important factors in GDM diagnosis.
Features such as self-reported physical activity before and after pregnancy, employment,
infertility treatment, and planned pregnancy had very little impact on GDM diagnosis.
Again, previous GDM diagnosis was identified as the most important feature, and maternal
age and BMI were the second most predictive features contributing positively towards
GDM diagnosis using the SHAP values. On the other hand, self-reported physical activity
before and after pregnancy and higher education have a negative impact on the proposed
GDM model.
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Figure 2. Feature contributions for the GDM model using SHAP values. Red shows that the features
that positively contributed to GDM diagnosis while blue represents negatively contributed features.

A summary pot in Figure 3 shows that history of previous GDM leads to higher SHAP
values; thus, it has the most significant influence on GDM diagnosis. Similarly, higher
values for maternal age and BMI results in higher SHAP values. Higher education and
performing physical activity before and after pregnancy decreases the risk of developing
GDM diagnosis. Employment is also shown to have a negatively impact on GDM diagnosis.
Other features such as infertility treatment, planned pregnancy, and consanguinity only
have a slight positive impact on GDM diagnosis.
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Figure 3. Summary plot to represent the impact of each feature on model performance.

Figure 4 represents the dependence plot for the features using the SHAP values for
each sample. The plot shows that previous GDM diagnosis has a clear interaction with
gravidity, as shown in Figure 4a for women who have been previously diagnosed with
GDM and those who have a gravidity more than four. In this situation, the SHAP values
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increase and thus the women are at a higher risk of developing GDM. For age (Figure 4b),
the SHAP value increases when the age of the women is older than 35 years. Regardless
of previous GDM diagnosis, increased age is a risk of developing GDM. Nevertheless, we
also found that pregnant women whose age is less than 30 years are negatively impacted
in the GDM model. BMI (Figure 4c) shows an interaction with age, that is, a pregnant
woman whose BMI is more than 30 kg/m2 (considered obese) has an increased risk of
GDM, especially in older women. Younger pregnant women with a BMI less than 25 kg/m2

(considered of acceptable weight) are negatively correlated with GDM diagnosis. The
plot also shows that gravidity increases the risk of developing GDM. Women with lower
education (Figure 4e) are at a higher risk of developing GDM, especially if they are older
women. Primiparity has an interaction with education, as shown in Figure 4f, which shows
that women who attend higher education and who are not primiparous are at a lower risk of
developing GDM. Physical activity before pregnancy (Figure 4g) shows an interaction with
previous GDM. Women who do not perform physical activity, on the other hand, have >0
SHAP values, indicating a risk of GDM diagnosis. In Figure 4i, it is shown that unplanned
pregnancy in older women is a risk for developing GDM diagnosis. Employment and
education have an interaction, which show that women who are unemployed with lower
education may be at a higher risk of GDM diagnosis (Figure 4j). The dependence plot for
infertility treatment in Figure 4k shows that younger women who had infertility treatment
are at a higher risk of GDM diagnosis.
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4. Discussion

In this analysis from self-reported epidemiological data collected during early preg-
nancy, three ML prediction models were developed: XGBoost, RF, and GBM. Compared to
other models, the XGBoost was highly predictive (auROC = 0.77). Experiments performed
for the diagnosis of GDM show that the XGBoost algorithm performed well in comparison
to to GBM and RF. The models showed that previous GDM diagnosis, maternal age, body
mass index, and gravidity play a vital role in future GDM diagnosis.

The high predictivity of the XGBoost model in this analysis is consistent with the
findings of a recent study [28] which found that the XGBoost model had a higher AUC
than the logistic model (0.742 vs. 0.663, p = 0.001). XGBoost is an ensemble of multiple
decision trees. XGBoost is an optimized gradient tree boosting system which also controls
overfitting [29]. XGBoost can create diverse and accurate DTs that can be the reason of
better performance [28,30]. Moreover, it handles the non-linear relationship in the data,
and it is robust to outliers in the data. However, the black box nature of DT ensemble
algorithms [31] remains a challenge to provide the local interpretations of each feature
which leads to GDM diagnosis. Therefore, to provide the local interpretation of each
feature we used SHAP with XGBoost algorithm for GDM diagnosis. Individual feature
importance using SHAP value shows that previous GDM diagnosis is the most important
factor for GDM diagnosis, followed by the age of the pregnant woman. The incorporation
of SHAP value with XGBoost model enabled these local interpretations of each feature
which contributes towards GDM diagnosis. XGBoost and RF which are main parts of the
proposed GDM model can easily be generalized for similar populations. The GBM model
is prone to noise, requires expensive parameter tuning, and may suffer from overfitting;
therefore, the performance of the GBM was poor compared to RF and XGBoost. The
problem of overfitting can be solved by using the optimized objective function obtained
from booted trees in the XGBoost model.

The features included in this analysis are easily collected from pregnant women at
antenatal care visits. As such, prediction of future GDM diagnosis using self-reported
epidemiological data at early pregnancy is extremely feasible. This is crucial for many
reasons. The easy prediction of women at risk of GDM is an important step to allow
better antenatal care and interventions during pregnancy and even before conception [32].
Nutritional management should remain the focus, as it has shown the best prognosis for
better neonatal and maternal outcomes in women with GDM [33]. The early recognition
of such women using simple predictors makes management inherently manageable for
both the women and the caregivers. Furthermore, practical interventions can be set up
to ensure women with GDM are being proactive in their approach to dealing with the
diagnosis. Many applications exist in the areas of diabetes-related dietary and physical
activity management, and a customized application can be explored as per the factors
highly associated with the diagnosis in each population.

A systematic review [11], reported that the risk for recurrent GDM in subsequent
pregnancy was as high as 30–84% in women with prior GDM, and the variations in
the GDM recurrence rate were dependent on the presence of other risk factors. The
combination of high BMI with high abdominal circumference and elevated fasting glucose
was associated with a 13-fold increased risk of GDM as compared to women who did not
have this combination of symptoms [34]. According to Liu et al. [35], BMI and maternal
age were two of the most used features for GDM prediction. Our findings showed that
regardless of previous GDM history, the risk of GDM increases after the age of 35, with
women under the age of 30 having a lower risk. Advanced maternal age is an independent
risk factor for GDM [36]. Physical activity during pregnancy has also been shown to predict
GDM in other populations. In the same meta-analysis mentioned above, physical activity
both during and prior to pregnancy was associated with lower odds of GDM in pregnancy.
The identification of women with sedentary behavior or poor activity via simple data such
as those of this study allows for early intervention and better follow up. The predictive
models also showed interactions between socio-economic factors such as education and
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employment in decreasing the probability of future GDM diagnosis. The clear interaction
between older and uneducated women and their association to GDM diagnosis shows a
clearly defined population who should be targeted for intervention. This is the same for
women with previous infertility treatments who are inactive or sedentary. Such interactive
models allow for defined populations to be targeted, ensuring that higher risk populations do
not eventually get diagnosed with GDM so long as appropriate interventions are provided.

One of the strengths of this study is the focus of self-reported epidemiological data in
predicting GDM diagnosis among pregnant women. Other studies show prediction models
work well with data that are more invasive to collect, such as those from complete blood
counts and anthropometry [37]. The focus of this study, however, was to give importance
to features that might be easily collected from pregnant women at early gestation. This
allows for close monitoring as early as possible. Women can also be told of their risk of
being diagnosed and given appropriate interventions, as mentioned earlier. There are some
limitations to this study. Firstly, self-reported data suffers from their own set of bias. From
the ML perspective, ML models usually require enough amount of training data for better
prediction. Although there is a reasonable amount of data for the GDM model, only a
limited number of risk factors were used in this analysis. Other authors have used large
number of features and a sufficient amount of training data. For instance, Artzi et al., Qiu
et al., and Wu et al. used 2355, 50, and 50 features, respectively [16,38,39]. Another major
issue is the class imbalance, as GDM cases were fewer compared to those who were not
diagnosed, which makes the algorithm biased. Therefore, to balance all the classes, data
balancing algorithms such SMOTE and GANS will be used in the future. Furthermore, the
prediction of the proposed XGBoost can further be improved by incorporating more robust
optimization techniques such as Bayesian particle swarm optimization.

5. Conclusions

ML models using self-reported epidemiological data are useful and feasible in pre-
diction models for GDM diagnosis amongst pregnant women. Such data should be peri-
odically collected at early pregnancy for health professionals to intervene at earlier stages
to prevent adverse outcomes in pregnancy and delivery. The XGBoost algorithm was the
optimal model for identifying the features that predict GDM diagnosis. SHAP values using
XGBoost further identify the interactions of some variables in determining GDM diagnosis.

Author Contributions: Conceptualization, L.A.A., N.A., W.K., A.A. and M.M.M.; methodology,
N.A. and W.K.; software, N.A. and W.K.; validation, L.A.A., A.A. and M.M.M.; formal analysis,
N.A. and W.K.; investigation, N.A. and W.K.; resources, N.A., W.K, A.A. and L.A.A.; data curation,
N.A.; writing—original draft preparation, N.A. and W.K.; writing—review and editing, all authors;
visualization, W.K.; supervision, L.A.A. and A.A.; project administration, L.A.A. and A.A.; funding
acquisition, L.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grant from the Zayed Center for Health Sciences, United Arab
Emirates University (31R239).

Informed Consent Statement: Informed written consent was obtained from all subjects involved in
the study.

Data Availability Statement: The data presented in this study can be made available on request
from the Mutaba’ah study. Approval from research ethics committee may be required.

Acknowledgments: We thank the women who took part in the overall study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buchanan, T.A.; Xiang, A.; Kjos, S.L.; Watanabe, R. What is gestational diabetes? Diabetes Care 2007, 30 (Suppl. S2), S105–S111.

[CrossRef] [PubMed]
2. McIntyre, H.D.; Colagiuri, S.; Roglic, G.; Hod, M. Diagnosis of GDM: A suggested consensus. Best Pract. Res. Clin. Obstet.

Gynaecol. 2015, 29, 194–205. [CrossRef] [PubMed]

http://doi.org/10.2337/dc07-s201
http://www.ncbi.nlm.nih.gov/pubmed/17596457
http://doi.org/10.1016/j.bpobgyn.2014.04.022
http://www.ncbi.nlm.nih.gov/pubmed/25242583


Information 2022, 13, 485 11 of 12

3. Keller, J.D.; Lopez-Zeno, J.A.; Dooley, S.L.; Socol, M.L. Shoulder dystocia and birth trauma in gestational diabetes: A five-year
experience. Am. J. Obstet. Gynecol. 1991, 165, 928–930. [CrossRef]

4. Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.;
Coustan, D.R.; Hadden, D.R.; et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and
obesity with pregnancy outcomes. Diabetes Care 2012, 35, 780–786. [CrossRef]

5. Lao, T.; Ho, L. Does maternal glucose intolerance affect the length of gestation in singleton pregnancies? J. Soc. Gynecol. Investig.
2003, 10, 366–371. [CrossRef]

6. He, X.-J.; Qin, F.-Y.; Hu, C.-L.; Zhu, M.; Tian, C.-Q.; Li, L. Is gestational diabetes mellitus an independent risk factor for macrosomia:
A meta-analysis? Arch. Gynecol. Obstet. 2015, 291, 729–735. [CrossRef]

7. Gasim, T. Gestational diabetes mellitus: Maternal and perinatal outcomes in 220 Saudi women. Oman Med. J. 2012, 27, 140.
[CrossRef]

8. Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse
perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [CrossRef]

9. Bellamy, L.; Casas, J.-P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review
and meta-analysis. Lancet 2009, 373, 1773–1779. [CrossRef]

10. Kessous, R.; Shoham-Vardi, I.; Pariente, G.; Sherf, M.; Sheiner, E. An association between gestational diabetes mellitus and
long-term maternal cardiovascular morbidity. Heart 2013, 99, 1118–1121. [CrossRef]

11. Kim, S.Y.; England, J.L.; Sharma, J.A.; Njoroge, T. Gestational diabetes mellitus and risk of childhood overweight and obesity in
offspring: A systematic review. Exp. Diabetes Res. 2011, 2011, 541308. [CrossRef] [PubMed]

12. Vohr, B.R.; Boney, C.M. Gestational diabetes: The forerunner for the development of maternal and childhood obesity and
metabolic syndrome? J. Matern.-Fetal Neonatal Med. 2008, 21, 149–157. [CrossRef] [PubMed]

13. Lee, H.; Jang, H.C.; Park, H.K.; Cho, N.H. Early manifestation of cardiovascular disease risk factors in offspring of mothers with
previous history of gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2007, 78, 238–245. [CrossRef] [PubMed]

14. Buckley, B.S.; Harreiter, J.; Damm, P.; Corcoy, R.; Chico, A.; Simmons, D.; Vellinga, A.; Dunne, F. Gestational diabetes mellitus in
Europe: Prevalence, current screening practice and barriers to screening. A review. Diabet. Med. 2012, 29, 844–854. [CrossRef]

15. Smirnakis, K.V.; Plati, A.; Wolf, M.; Thadhani, R.; Ecker, J.L. Predicting gestational diabetes: Choosing the optimal early serum
marker. Am. J. Obstet. Gynecol. 2007, 196, 410.e1–410.e7. [CrossRef]

16. Qiu, H.; Yu, H.Y.; Wang, L.Y.; Yao, Q.; Wu, S.N.; Yin, C.; Fu, B.; Zhu, X.J.; Zhang, Y.L.; Xing, Y.; et al. Electronic health record
driven prediction for gestational diabetes mellitus in early pregnancy. Sci. Rep. 2017, 7, 16417. [CrossRef]

17. Al Haddad, A.; Ali, N.; Elbarazi, I.; Elabadlah, H.; Al-Maskari, F.; Narchi, H.; Brabon, C.; Ghazal-Aswad, S.; AlShalabi, F.M.;
Zampelas, A.; et al. Mutaba’ah—Mother and Child Health Study: Protocol for a prospective cohort study investigating the
maternal and early life determinants of infant, child, adolescent and maternal health in the United Arab Emirates. BMJ Open
2019, 9, e030937. [CrossRef]

18. Department of Health. HAAD Standard for Routine Antenatal Screening and Care; HAAD/ANSC/SD; Department of Health: Abu
Dhabi, United Arab Emirates, 2011; pp. 1–8.

19. Chen, T.; Carlos, G. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
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