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Abstract: The analysis of influential machine parameters can be useful to plan and design a plastic
injection molding process. However, current research in parameter analysis is mostly based on
computer-aided engineering (CAE) or simulation which have been demonstrated to be inadequate
for analyzing complex behavioral changes in the real injection molding process. More advanced
approaches using machine learning technology specifically with artificial neural networks (ANNs)
brought promising results in terms of prediction accuracy. Nevertheless, the black box and distributed
representation of ANN prevent humans from gaining an insight into which process parameters give
a significant influence on the final prediction output. Therefore, in this paper, we develop a simpler
ANN model by using structural learning with forgetting (SLF) as the algorithm for the training
process. Instead of typical backpropagation which generated a fully connected layer of the ANN
model, SLF only reveals the important neurons and connections. Hence, the training process of
SLF leaves only influential connections and neurons. Since each of the neurons specifically on
the input layer represent each of the injection molding parameters, the ANN-SLF model can be
further investigated to determine the influential process parameters. By applying SLF to the ANN
training process, this experiment has successfully extracted a set of significant injection molding
process parameters.

Keywords: artificial neural network; structural learning with forgetting; parameter analysis; injection
molding; quality prediction; rule-based learning

1. Introduction

Injection molding is considered the most significant technology for processing plastic
material which is heavily used in industries. The production of plastic-based goods or
components in the world through the injection molding process has approximately reached
up to 30% [1]. Injection mold-based products are either semifinal parts or final parts of
any kind of product [2]. We can take, for example, the production of a smartphone case
or interior components of an aircraft. The injection molding industry can be considered a
basic industry since it supplies the spare parts required for a production process in other
industries [3]. In this case, injection mold-based products are either semifinal parts or final
parts of any kind of product and intensively used in various industries from households,
electronics, and even automobiles. Another reason for the intensive use of injection molding
is its ability to process a large amount of plastic material for producing complex shapes [4].
Hence, the injection molding approach is considered a suitable production technique for
the mass production of plastic parts which require precise dimensions.

There are three basic phases in the injection molding process, namely, filling, holding,
and cooling [5]. At first, the molten plastic material is filled into the cavity to make the
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required shape of the product. Afterward, extra material is packed into the cavity to raise
the pressure on the holding stage. Finally, in the cooling phase, the temperature will be
lowered significantly to solidify the molten materials. The final stage guarantees that the
product of the molding process is stable enough for the ejection process. The product of the
injection molding process is considered acceptable when it does not contain any defects [6].
Nevertheless, due to the complexity of the thermoviscoelastic character of plastic material,
maintaining quality during the injection molding process is difficult. The unpredictable
behavioral change in injection molding factors commonly cause defective final products [7].
Obviously, the delivery of a defective product to the customer would decrease customer
satisfaction.

The types of defects in injection molding products can be classified into several
categories, namely, shrinkage and warpage, short-shot, and sink mark. This research
addresses the short-shot defect in the injection molding of plastic material. The different
types of defects are caused by different factors which influence the injection molding
process. In the case of a short-shot defect, it usually occurs during the filling process,
when the material injected into the mold is not sufficient enough to fill up the cavity [8].
Several factors lead to the occurrence of the short-shot defect such as incorrect selection of
plastic materials, the wrong configuration of processing parameters, etc. [9]. Among other
factors, the ones which can be controlled by the operator and can be adjusted during the
process are the processing parameters, which generally consist of pressure, temperature,
and processing time [10].

A product of the appropriate quality requires precise combinations of input process
conditions. To determine the configuration of the process condition, a trial-and-error
approach has frequently been utilized in manufacturing facilities that use the injection
molding process [11]. However, the trial-and-error approach involves a lot of uncertainty,
requires a lot of time and money, and heavily relies on molding workers’ experience.
Hence, traditional quality control based on the injection molding machine’s parameters
has limitations that result in inaccurate assessments of the part quality [12]. To solve this
problem, the early approach used computer-assisted engineering (CAS) to control the
process parameter of injection molding. The use of computer-aided engineering (CAE) can
be applied to simulate and investigate the effects of different configurations of injection
molding parameters on the quality of the final mold product [13]. Hence, the parameters of
the simulation model which yield the best result can be further used to optimize the real
process of injection molding [14]. Nevertheless, the CAE approach for optimizing injection
molding parameters required a lot of time and incorporated many prerequisite criteria of
the material properties [15].

The employment of a CAE-based approach for simulating injection molding provides
better results compared with the traditional approach. Nevertheless, CAE simulation failed
to deal with the nonlinearity of the viscoelastic character of plastic material [16]. Hence,
there is a need for a more sophisticated approach to improve the quality prediction of the
injection molding process. In recent years, there has been an increasing amount of work
on implementing a data-driven approach using machine learning technology in the manu-
facturing domain, including the process of injection molding [17,18]. Those works were
motivated by the development of sensing technology which is widely applied in manufac-
turing. The installment of a sensor within an injection molding machine generates valuable
data to investigate the behavioral changes during the molding process which can be used
to predict the final output [3,19]. Another AI-based approach by using computer vision
was also developed for injection molding process inspection and monitoring [20]. In that
research, the computer vision algorithm was deployed to detect any kind of defect. There
are several distinct approaches of machine learning applied to the injection molding process.
Among those approaches, the artificial neural network (ANN)-based method is the most
popular since it yields significantly higher performance compared with others [17]. For
instance, the multi-layered perceptron (MLP) architecture of ANN, which was developed
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by Ke and Huang [21], reaches 94% accuracy in predicting the defective/non-defective
output of the molding process.

The ANN-based approach which currently outperforms other machine learning tech-
niques is mainly due to its ability to identify complex nonlinearity relationships within
the dataset [21]. Therefore, in the case of injection molding, the relationship of process
parameters such as mold temperature, pressure, and cycle time with their corresponding
output can be modeled and optimized by using ANN [22]. Nevertheless, modeling the
nonlinearity within the data commonly leads to the complexity of the ANN itself. The
increasing complexity of the ANN model is identified by the increasing number of hidden
layers and neurons which represent more nonlinearity within the dataset. The complexity
of the ANN model makes it well known as a “black box” model [23]. Despite the great
success of ANN, the concern of a black box system has also received higher concern over
time [24,25]. Black box interpretation prevents people from gaining understandable knowl-
edge, which is essential for improving engineering design [26]. In terms of the injection
molding process, having a better understanding of what factors have significant influence
on the final results would give an advantage to the design of a better molding machine
or technology.

Some studies have tried to infer significant process parameters of injection molding
from the machine learning model. Zhou et al. [27] used an unsupervised approach named
sparse autoencoder to cluster the learned parameter within the neural network training of
various configuration injection molding experiments. Another study by Román et al. [28]
used the Bayesian approach to optimize the parameter selection of deep neural network
training for the defect prediction model of the injection molding surface. The developed
model has successfully selected the parameter which yields the optimal model. A similar
approach was proposed by Gim and Lee [29] by using interpretable machine-learning tech-
niques to explain the significance of each injection molding parameter. A more innovative
approach was deployed by using a transfer learning mechanism [30]. In that research, they
deployed the deep neural network model which was successfully developed for another
type of injection molding in their current experiment.

Regarding the efforts to develop better injection molding systems, there is much re-
search that investigates the influential parameters of the molding process. Some researchers
argued that cavity pressure has a significant parameter on the quality of injection molded
products [31–33]. For instance, in an experiment conducted by Chen et al. [34], four cavity
pressures, named peak pressure, gradient pressure, viscosity index, and energy index, were
used to estimate the quality of injection molding output. In addition, Gim and Rhee [29]
extracted five parameters from cavity pressure: initial pressure, maximum pressure, the
integral value of pressure changes from the initial to the end of the process, final pressure at
the filling stage, and final pressure from the cooling stage. Nevertheless, the determination
of significant parameters is a difficult task which leads to the question of which parameters
should be extracted from cavity pressure for accurate prediction [15].

This experiment aims to provide an innovative approach to analyzing the significant
attributes of the injection molding process by increasing the visibility of the ANN model.
Since the ANN model has a good performance for injection molding quality prediction,
reducing its model complexity without losing its performance hypothetically could reveal
the injection molding variables as the input of the ANN model has the most significant
influence on the prediction results. In this paper, an algorithm named structural learning
with forgetting (SLF) was employed to train the ANN architecture. Different from the
typical backpropagation algorithm commonly used in ANN training, SLF produced a
simpler ANN model compared with the fully distributed model representation of the back-
propagation training result. Hence, by using SLF for training the ANN model, significant
parameters of injection molding which are represented as the input layer of ANN architec-
ture can be further analyzed. The contributions of the present study can be summarized
as follows:
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(i). We employed SLF to train the ANN model and generate a simpler model as well as
to reveal the most significant attributes without any major degradation in prediction
performance;

(ii). We further analyzed the selected attributes to investigate the linear correlation among
those attributes by constructing rules and evaluating the performance of the rules for
quality prediction;

(iii). We undertook in-depth experiments comparing the proposed model to other predic-
tion models and findings from earlier research.

The remainder of this study is structured as follows. The dataset and detailed methods
are presented in Section 2, including ANN, SLF, and the evaluation method. Section 3
provides comprehensive experimental results, parameter analysis with rule extraction, and
comparison with earlier works. Section 4 presents the conclusion, including future research
directions. Finally, the list of acronyms and abbreviations used in this paper are provided
in the Abbreviations section.

2. Material and Methods
2.1. Dataset

The dataset used in this paper is gathered from the real injection molding process
in our experiment. The data were collected using Argburg AllRounder 270 S hydraulic
injection molding machine. This machine has a feature for online monitoring of process
parameters through the graphical interface. With the machine interface, the cavity pressure
and internal mold temperature can be investigated or even transmitted using a Kistler
sensor. The experiment was conducted to produce a standard rectangular shape of product
using LG Chemical’s ABS plastic material.

Table 1 outlines the attributes in our dataset which are derived from the injection
molding process parameters followed by the illustration depicted in Figure 1 for better
clarity of the phase of data collection for each attribute. In our dataset, there are 9 attributes
and a class. The class attributes denote the results of the injection molding process. There
are two class categories in our dataset, namely, defective (short-shot) and non-defective
(non-short-shot). From the experiment data, the class label was determined by manually
investigating the final plastic product of injection molding on each process instance. The
non-defective class determines the ideal parameter value combination for generating good
results in the injection molding process.
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Table 1. The parameter of the injection molding process.

Parameter Name Explanation Measurement Unit

Maximum Mold Temperature Maximum temperature reach during the
molding process on each cycle. Celsius

Cycle Time

The time required for completing a single batch
of the molding process from start to finish. A
single batch of the molding process is recorded
from the beginning of the molding process
until the end of molded material ejection.

Second

Maximum Pressure Value Maximum cavity pressure value reached
during the molding process on each cycle. Mpa

Minimum Pressure Value

The minimum cavity pressure value was
reached between the time when the maximum
pressure value was obtained to the end of the
injection molding process on each cycle.

Mpa

Time to Maximum Pressure
Time required to reach the maximum pressure
value from the start of the molding process on
each cycle.

Second

Time to Minimum Pressure
Time required to reach the minimum pressure
value from the maximum pressure value of the
molding process on each cycle.

Second

Integral Pressure to Maximum
The integral value of the pressure change curve
to reach maximum pressure from the start of
the molding process on each cycle.

-

Integral Pressure to Minimum
The integral value of the pressure change curve
to reach minimum pressure from the start of
the molding process on each cycle.

-

Total Integral Pressure
The integral value of the pressure change curve
from the start to the end of the molding
process on each cycle.

-

Output This is the class label, 0 denotes short-shot, 1
denotes non-short-shot -

To infer the parameter values at various cavity pressures and mold temperature,
the experiments were carried out with three different configurations for injection speed,
switching the point of pressure holder and coolant temperature as shown in Table 2.
Afterward, Table 3 explains the sequence of experiments based on the combination of the
three different settings outlined in Table 2.

Table 2. The configuration factors for experiments.

Configuration Factor Level 1 Level 2 Level 3

Injection speed (cm/second) 3 4 5
Switching point of pressure holder (cm) 1.5 2 2.5
Cooling water temperature (Celsius) 10 30 50
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Table 3. The experimental settings.

Experiment Number Cooling Water
Temperature Injection Speed Switching Point of

Pressure Holder

1 10 3 1.5
2 10 4 2
3 10 5 2.5
4 30 3 2
5 30 4 2.5
6 30 5 1.5
7 50 3 2.5
8 50 4 1.5
9 50 5 2

From the sequence of experiments shown in Table 3, each experiment was repeated
30 times, hence a total of 270 experiments were performed with different parameter config-
urations to produce a dataset that contains 270 instances. From the total number of data,
180 instances were used for training data (66.67%) and 90 instances were used for testing
data (33.33%). To further investigate the values of each injection molding parameter, Table 4
provides descriptive statistics of the dataset used in this research.

Table 4. The parameter of the injection molding process.

Parameter Name Max Min Mean Std. Dev.

Maximum Mold Temperature 72.58 23.43 44.46 18.57
Cycle Time 22.42 16.02 19.13 1.52
Maximum Pressure Value 290.38 21.43 134.43 70.61
Minimum Pressure Value 24.79 0 3.33 4.71
Time to Maximum Pressure 11.38 1.22 6.04 1.83
Time to Minimum Pressure 16.597 7.26 13.08 1.59
Integral Pressure to Maximum 946.37 71.40 364.87 70.61
Integral Pressure to Minimum 2764.44 84.21 717.89 575.81
Total Integral Pressure 3710.81 288.12 1082.76 663.55

From Table 4 we can see that the attributes on the dataset have different magnitudes.
Some of the attributes have a large value and range, while others have relatively small
values and range. Those kinds of differences will certainly lead to instability of the ANN
training process. Hence, to standardize the value range of the attributes we need to normal-
ize the attributes into the same value range. We then employ the Min-Max normalization
approach to scale the dataset into the range of 0 to 1. The formulation of Min-Max normal-
ization is depicted in the following Formula (1). In Formula (1), y defines the normalized
data, while X = (X1, , X2, . . . . . . , Xn) denotes the raw input of injection molding data on
each attribute.

yi =
Xi −min(X)

max(X)−min(X)
(1)

2.2. Artificial Neural Network

An artificial neural network (ANN) is an approach to information processing by
mimicking human nervous systems. ANN employs artificial neurons to transform a set of
input values into a set of output values. An ANN is made up of a perceptron in the form
of a node within a network to represent neurons of the human nervous system. Within
ANN, a set of neurons are grouped into layers [24]. There are three kinds of a layer in
ANN, namely, the input layer, hidden layer, and output layer. An ANN consist of at least
one input layer to represent the input data and one output layer that represents the target
output. A more complex ANN commonly has one or more hidden layers. Another part
of ANN is connections between the nodes at different layers. Those connections or links
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have a weight value generated during the training process to determine the strength of
the signal carried through the links [35]. The initial layer (or input layer) in this ANN is
connected to the first hidden layer. Afterward, the output of the hidden layer feeds any
more hidden layers that are directly transmitted to the output layer.

Multi-layered perceptron (MLP) is a type of ANN architecture that consists of fully
connected neurons in feed-forward networks. Due to its robustness and performance,
MLP is one of the most commonly used ANN architectures, either for research or practical
purposes [36]. Figure 2 shows the example of ANN with MLP architecture with one input
layer, one hidden layer, and one output layer. In the network, the diagram in Figure 2
depicts the lines representing the weight value. The thicker the line, the greater the weight
value. The solid line depicts the positive weight value, while the dashed line depicts the
negative value of the weight.
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The values of the weights are determined by the operation within the neurons using
an activation function. An activation function in a neural network describes how a node or
nodes in a layer of the network translate the weighted sum of the input into an output. This
function is a representation of the network’s method of information processing and trans-
mission. Since there are different types of activation functions, different activation functions
may be used in different regions of the model [37]. The choice of activation function has a
significant impact on the neural network’s capacity and performance. Despite this, there is a
need for a trial-and-error process to choose which activation to employ. The most commonly
used activation functions, due to their derivative qualities which make training easier, are
the linear, logistic/sigmoid, and hyperbolic tangent functions [38]. The formulation of
these three activation functions is depicted in Equations (2)–(4), consecutively.

f (xi) = kxi (2)

f (xi) =
exi

1 + exi
=

1
1 + e−xi

(3)

f (xi) =
2

1 + e−2xi
− 1, (4)

During the ANN process, the weights on each neuron connection training are calcu-
lated iteratively. During the iteration process, the weight value will change according to
the significance level of the connection to the accuracy of the prediction results [39]. The
activation function is used to implement mathematical operators for weights. Furthermore,
these values will be sent as a signal to the second hidden layer until it reaches the output
layer. The value will be compared with the actual value in the data set after reaching the
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output count to calculate the prediction error. Finally, the learning process then iterates
until the error is stable (the error value does not change).

There are various formulas for calculating the error of ANN prediction value during
the training process. In this research, we use one of the most widely used error functions,
namely, mean squared error (MSE). The calculation of MSE is done by using Equation (5).
In Equation (5), N depicts the number of data on the dataset used for benchmarking the
output prediction value, ŷk represents the prediction value, and yk corresponds to the actual
value on the training dataset.

MSE =
1
N ∑N

j=1(yk − ŷk)
2 (5)

2.3. Structural Learning with Forgetting

The results of ANN prediction are well known for their accuracy. Nevertheless, since
the prediction mechanism was hindered by its complex weight connection, it was unin-
terpretable by the user (black box process). Hence, inferring an interpretable rule from
such network architecture required a complex process and plausibly led to a complex rule
as the result. To overcome this drawback, an ANN training approach called structural
learning with forgetting (SLF) was proposed by Ishikawa [40]. The SLF approach modifies
the typical backpropagation learning algorithm by decaying the connection weight during
the training process. Hence, the representation of the ANN model is much simpler. Struc-
tural learning methods are capable of generating skeletal structured networks with easy
interpretation of hidden units instead of distributed representation which occurred during
the backpropagation training.

The key idea of SLF is the forgetting of connection weights. During the learning with
forgetting process, the connection weight which has no contribution to the learning process
disappears leaving only the influential weight connection on the network architecture [41].
The remaining weight connections are a skeletal network that shows the regularity in
training data. To implement the forgetting concept, the SLF-based neural network method
defined a penalty term to the criterion function to favor the connection weights with
small values. The criterion function in learning with forgetting is given by the following
Equation (6) [42].

J f = J + ε′ ∑i,j

∣∣wij
∣∣ = ∑i(oi − ti)

2 + ε′∑i,j

∣∣wij
∣∣ (6)

From the formulation of the above Equation (6), J f denotes total criterion. The penalty
standard for J is then represented by the equation’s remaining parts. In this situation, J can
be seen as being equal to the backpropagation method’s mean squared error. Afterward, ε′

represents the relative weight in the requirement for the forgetting criteria. The output of
the i-th output unit is then represented by oi, the expected value is represented by ti, and
the connection weight is represented by w, starting at a random value.

From the formulation depicted by Equation (6), the weight value of w is changed over
time during the iteration of the training process. The change in the connection weight, ∆wij,
is defined by Equation (7). In Equation (7), η is a learning rate, ε is the amount of forgetting
at each iteration, and sgn(x) is the sign function (1 if x > 0 and −1 otherwise).

∆wij = −η
∂J f

∂wij
= ∆w− ε sgn

(
wij

)
(7)

As learning progresses, the impact of initial connection weights also decreases. From
Equation (7) it can be seen that for each connection it will lose weight each time the weight
changes by the same amount of ε. Therefore, the word “forget” is used. Due to the forgetting
process, the resulting network contains only the connections that significantly affect the
final calculation of the output layer in the ANN architecture. Visually the difference
between the regular network generated through backpropagation training and the trimmed
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network using the SLF technique are consecutively shown in Figure 3a,b below. From
Figure 3b, we can roughly conclude that the ANN model produced by SLF training has a
simpler representation.
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2.4. Evaluation Method

The artificial neural network model has many parameters to be set within the training
process, and one can use these parameters to perform specific tasks. To determine the best
model, we used a set of evaluations to examine the prediction results during the learning
process. The first evaluation is the confusion matrix. A confusion matrix is an exploratory
evaluation approach that can be used to generally investigate how many true and false
predictions are generated by any classification model [42]. There are four elements used
in confusion metrics as explained in Table 5 which are also further used to calculate other
evaluation metrics employed in this experiment.

Table 5. Element of ANN evaluation metrics.

Acronym Element Name Explanation

TP True Positive The ANN model correctly predicts the positive class.
FP False Positive The ANN model predicts the positive class as negative.
TN True Negative The ANN model correctly predicts the negative class.
FN False Negative The ANN model predicts the negative class as positive.

From Table 5, in the case of injection molding quality prediction, the true positive
results indicate that the model gave a correct prediction of the non-defective/short-shot
results. The true negative occurred when the model correctly predicts the defective/non-
short-shot results. Meanwhile, the false positive result indicates that the model predicts
defective results while the actual value is non-defective. In the opposite direction, the false
positive occurred when the model predicted non-defective results while the actual value
was defective. From the elements explained in Table 5, we then constructed a confusion
matrix. The format of the confusion matrix is illustrated in Figure 4.



Information 2022, 13, 488 10 of 19

Information 2022, 13, x FOR PEER REVIEW 10 of 19 
 

 

defective results while the actual value is non-defective. In the opposite direction, the false 
positive occurred when the model predicted non-defective results while the actual value 
was defective. From the elements explained in Table 5, we then constructed a confusion 
matrix. The format of the confusion matrix is illustrated in Figure 4. 

 
Figure 4. Confusion matrix setup. 

The confusion matrix depicted in Figure 4 can be used to investigate the prediction 
quality of any classification task. The TP and TN boxes denote the correct prediction, 
whereas the FP and FN boxes indicate the wrong prediction. Therefore, the higher the 
values in TP and TN, the more accurate an ANN model results from the training process. 
We then used all of the elements (TP, FP, TN, and FN) on the confusion matrix to calculate 
a more meaningful evaluation of the ANN model. Four metrics can be derived from the 
confusion matrix, namely, precision, recall, specificity, accuracy, and F1-score [43]. 

The first metric derived from the confusion matrix is precision. Precision can be de-
fined as the percentage of examples that are correctly identified as positive when a model 
predicts a positive class. The formulation of precision can be seen in Equation (8). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ்௉்௉ାி௉ , (8) 

The second evaluation metric is recall. Equation (9) formulates the calculation of re-
call. Recall defines the proportion of correct prediction of positive class to the total number 
of the positive class. The formulation of recall measures the sensitivity of the model since 
it compares the sum of correct predictions with the total number of incorrect predictions. 𝑅𝑒𝑐𝑎𝑙𝑙 =  ்௉்௉ାிே , (9) 

The third evaluation metric is specificity or the ratio of true negatives. In opposite to 
recall, specificity measures the percentage of correct prediction of negative class. The for-
mulation specificity is defined by Equation (10). 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  ்ே்ேାி௉ , (10) 

The next metric is the F-score which combines precision and recall to measure the 
overall performance of the model. In general cases, we need to make a trade-off between 
precision and recall. Hence, for a more general measurement, F-score takes a harmonic 
mean of precision and recall. Equation (11) shows the formulation of the F-Score. 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  ଶ∗௉௥௘௦௜௖௜௢௡∗ ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟  , (11) 

The last metric is accuracy. The same as F-score, accuracy is used to measure the gen-
eral performance of the model in a more straightforward way. The formulation of accu-
racy incorporates all of the confusion matrix elements as shown in Equation (12). 

Figure 4. Confusion matrix setup.

The confusion matrix depicted in Figure 4 can be used to investigate the prediction
quality of any classification task. The TP and TN boxes denote the correct prediction,
whereas the FP and FN boxes indicate the wrong prediction. Therefore, the higher the
values in TP and TN, the more accurate an ANN model results from the training process.
We then used all of the elements (TP, FP, TN, and FN) on the confusion matrix to calculate
a more meaningful evaluation of the ANN model. Four metrics can be derived from the
confusion matrix, namely, precision, recall, specificity, accuracy, and F1-score [43].

The first metric derived from the confusion matrix is precision. Precision can be
defined as the percentage of examples that are correctly identified as positive when a model
predicts a positive class. The formulation of precision can be seen in Equation (8).

Precision =
TP

TP + FP
(8)

The second evaluation metric is recall. Equation (9) formulates the calculation of recall.
Recall defines the proportion of correct prediction of positive class to the total number of
the positive class. The formulation of recall measures the sensitivity of the model since it
compares the sum of correct predictions with the total number of incorrect predictions.

Recall =
TP

TP + FN
(9)

The third evaluation metric is specificity or the ratio of true negatives. In opposite
to recall, specificity measures the percentage of correct prediction of negative class. The
formulation specificity is defined by Equation (10).

Speci f icity =
TN

TN + FP
(10)

The next metric is the F-score which combines precision and recall to measure the
overall performance of the model. In general cases, we need to make a trade-off between
precision and recall. Hence, for a more general measurement, F-score takes a harmonic
mean of precision and recall. Equation (11) shows the formulation of the F-Score.

F− score =
2 ∗ Presicion ∗ Recall

Precision + Recall
(11)

The last metric is accuracy. The same as F-score, accuracy is used to measure the
general performance of the model in a more straightforward way. The formulation of
accuracy incorporates all of the confusion matrix elements as shown in Equation (12).

Accuracy =
TP + TN

TP + FP + TN + FN
. (12)
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3. Results and Discussion
3.1. ANN Model of Injection Molding Quality Prediction

This section explains the results of the suggested SLF approach. In this study, the
SLF technique and the typical backpropagation learning were run repeatedly to obtain
the optimal parameter configuration. At first, to estimate the defects of plastic injection
molding, a multi-layer perceptron neural network model was designed with an input layer,
one hidden layer, and an output layer. A three-layer neural network is theoretically able to
learn any non-linear relationship at the desired level of precision with a sufficient number
of hidden neurons in the network. The model has nine input neurons, where the inputs
can be the minimum pressure value (minPresVal), maximum pressure value (maxPresVal),
integral pressure to maximum (intPresToMax), integral pressure to minimum (intPresToMax),
total integral pressure (totIntPress), time to maximum pressure (timeToMaxPres), time to
minimum pressure (timeToMinPres), cycle time (cycTime), and maximum mold temperature
(maxMoldTemp). The output layer consists of two perceptrons, a value of 1 in the first
perceptron and 0 in the second perceptron indicates defection (short-shot), whereas a value
of 0 in the first perceptron and a value of 1 in the second perceptron indicates non-defect
injection molding result (non-short-shot).

After several trial-and-error training runs to determine the optimal parameter, we
have a parameter combination that reaches the minimum mean squared error (MSE) with
a learning rate of n = 0.1, forgetting rate = 0.003, and the number of the hidden unit is 9.
After the training process, we then compared the confusion matrix and the measurement
metrics of the model obtained by backpropagation training and SLF training to show the
efficacy of the suggested approach. Figure 5a shows the resulting structure of the neural
network trained by using a typical backpropagation algorithm, and Figure 5b shows the
resulting structure of the neural network trained using the SLF method. The solid lines
represent the positive connection weight, while the dashed lines represent the negative
connection weight. Then, the strength of the connections is represented by the line width.
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tural learning with the forgetting approach.

The ANN model consists of a set of connections between neurons in their layer with
their corresponding weights. Using backpropagation training, the connection weights
of each connection remain at a certain value at the end of the training process. Whereas,
by using SLF, the connection weights which have no significance to the final prediction
fade away during the training process. Hence, when the connection weight is too small
(e.g., under a certain threshold), the contribution to the output neurons was neglected.
Furthermore, the remaining connection weights between the input and hidden layers show
significant neurons in the input layer, namely, neurons in the input layer that still have
connections with neurons in the hidden layer. Given that the neurons in the input layer
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represent the injection molding parameters, we can investigate which parameters of the
injection molding process have a significant influence on the final quality prediction result.

Figure 6 illustrates the comparison of the MSE during the training process of the ANN
model using backpropagation and SLF. The MSE of both algorithms have similar curves
and start to converge to the minimum value of MSE on the 1000 epoch. The final value of
MSE for backpropagation and SLF are around 0.075 and 0.079, respectively, which is a very
small difference. Therefore, removing the weight connections of the insignificant attributes
from the training process does not significantly decrease the model performance.
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To assess the validity of the proposed approach, the performance evaluation of the
two ANN models was furtherly compared. The evaluation criteria previously outlined in
Section 2.4 were applied to both models. For evaluation purposes, the models were run
to predict the test dataset which consists of 90 data. The first performance comparison
is the confusion matrix as depicted in Figure 7. From Figure 7, we can see that there is
no significant distinction between the confusion matrix of the ANN model trained with
the backpropagation algorithm (see Figure 7a) and the ANN model trained with the SLF
approach (see Figure 7b). The ANN model trained with the SLF algorithm made 6 errors
(FP + FN) out of 90 predictions.

Information 2022, 13, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) (b) 

Figure 7. The confusion matrix evaluation of the ANN model is trained with (a) backpropagation 
and (b) structural learning with forgetting. 

For further investigation, we then calculated the evaluation metrics based on 
TP/FP/TN/FN values on the confusion matrix on both models as presented in Table 6. To 
evaluate the models, the 10-fold validation mechanism was run and obtained the perfor-
mance measures depicted in Table 6. From the evaluation comparison outlined in Table 
6, even the backpropagation ANN model outperformed the SLF ANN model in all meas-
urements, similar to the confusion matrix calculation, the value differences of each meas-
urement of both models are not significant. Thus, by connection reduction in the ANN 
model, we have a simpler model with only significant attributes involved and good pre-
diction performance. 

Table 6. Performance comparison of ANN model trained with backpropagation and SLF. 

Metrics 
Backpropagation SLF 

Mean Std. Deviation Mean Std. Deviation 
Precision 0.91 0.05 0.88 0.06 

Recall 1 0.04 0.94 0.04 
F-Score 0.95 0.05 0.91 0.05 

Specificity 0.95 0.06 0.93 0.07 
Accuracy 0.97 0.03 0.93 0.03 

3.2. Parameter Analysis with Rule Extraction 
Investigation of the connection weights enables the extraction of significant attrib-

utes. Comparing the results from Figure 5a with Figure 5b indicates that when trained 
using the SLF method, five significant attributes were selected, in which one attribute has 
an extremely high influence on the final results. All other attributes vanished in the sense 
that all the incoming and outgoing connections from the corresponding hidden units 
faded away. The five significant attributes were maxPressValue, integralPressureToMin, 
timeToMaxPressure, timeToMinPressure, and cycleTime. 

To validate the significance of extracted attributes, we then used those attributes to 
construct a rule for quality prediction. There are various methodologies for extracting 
rules over the resulting skeletal network by the SLF algorithm, ranging from the complex–
systematic method to the simplest one, depending on the attributes involved and its val-
ues variation. For a complex problem (e.g., problems with a large number of attributes 
and each attribute having many possible categorical values) utilizing the Karnaugh map 
and representing every network’s units as a Boolean function is a suitable methodology 
for extracting the rules. Another rule, such as successive regularization, is suitable if we 
have only a few attributes but we must classify the problem into more than two classes. 
In this study, we used a rule extraction algorithm proposed by Setiono and Liu [44]. That 
rule extraction algorithm is operated over reduced/pruned ANN and designed for binary 
classification. Therefore, it is suitable for the ANN model built in this study using SLF for 
the training process. 

At glance, the initial process of the rule extraction algorithm by Setiono and Liu [44] 
needs to consider the weighted path (the connection weight between the input neuron 
hidden neuron, and the connection weight between the hidden neuron and output 

Figure 7. The confusion matrix evaluation of the ANN model is trained with (a) backpropagation
and (b) structural learning with forgetting.

For further investigation, we then calculated the evaluation metrics based on
TP/FP/TN/FN values on the confusion matrix on both models as presented in Table 6.
To evaluate the models, the 10-fold validation mechanism was run and obtained the per-
formance measures depicted in Table 6. From the evaluation comparison outlined in
Table 6, even the backpropagation ANN model outperformed the SLF ANN model in all
measurements, similar to the confusion matrix calculation, the value differences of each
measurement of both models are not significant. Thus, by connection reduction in the
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ANN model, we have a simpler model with only significant attributes involved and good
prediction performance.

Table 6. Performance comparison of ANN model trained with backpropagation and SLF.

Metrics
Backpropagation SLF

Mean Std. Deviation Mean Std. Deviation

Precision 0.91 0.05 0.88 0.06
Recall 1 0.04 0.94 0.04

F-Score 0.95 0.05 0.91 0.05
Specificity 0.95 0.06 0.93 0.07
Accuracy 0.97 0.03 0.93 0.03

3.2. Parameter Analysis with Rule Extraction

Investigation of the connection weights enables the extraction of significant attributes.
Comparing the results from Figure 5a with Figure 5b indicates that when trained using
the SLF method, five significant attributes were selected, in which one attribute has an
extremely high influence on the final results. All other attributes vanished in the sense that
all the incoming and outgoing connections from the corresponding hidden units faded away.
The five significant attributes were maxPressValue, integralPressureToMin, timeToMaxPressure,
timeToMinPressure, and cycleTime.

To validate the significance of extracted attributes, we then used those attributes to
construct a rule for quality prediction. There are various methodologies for extracting
rules over the resulting skeletal network by the SLF algorithm, ranging from the complex–
systematic method to the simplest one, depending on the attributes involved and its values
variation. For a complex problem (e.g., problems with a large number of attributes and
each attribute having many possible categorical values) utilizing the Karnaugh map and
representing every network’s units as a Boolean function is a suitable methodology for
extracting the rules. Another rule, such as successive regularization, is suitable if we have
only a few attributes but we must classify the problem into more than two classes. In
this study, we used a rule extraction algorithm proposed by Setiono and Liu [44]. That
rule extraction algorithm is operated over reduced/pruned ANN and designed for binary
classification. Therefore, it is suitable for the ANN model built in this study using SLF for
the training process.

At glance, the initial process of the rule extraction algorithm by Setiono and Liu [44]
needs to consider the weighted path (the connection weight between the input neuron
hidden neuron, and the connection weight between the hidden neuron and output neuron).
If both connections are a positive connection or negative connection, then the multiplier on
each attribute will be the positive value of its weight on the hidden layer (+|w|), otherwise,
if the connection weight between the input to the hidden layer and between the hidden
layer to the output layer is both different (one positive and one negative or vice versa)
the multiplier will be the negative value of its absolute weight onto hidden layer (−|w|).
Then, we simply make a summation of each remaining attribute on each neuron with the
following Equation (13).

∑n
i=0(wi ∗ xi) > y (13)

In the above formulation, wi is the connection weight from i-th input neuron to the
corresponding hidden neuron, xi is the i-th-remaining attributes, and y is the summation
result. For the two-class classification, we will get two y values from two classes. We pick
one which has the best accuracy and then simply flip the inequality operator for classifying
the other class. Then, as a result of the rule extraction algorithm over the resulting skeletal
network trained with SLF, the conditional rules are obtained as outlined in Table 7.
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Table 7. Two rules were constructed from the selected injection molding parameters.

No Rule

1 if (Maximum Pressure Value < 88.5) then: short-shot
otherwise: non-short-shot

2
if (7.41 * Integral Pressure to Minimum) + (34.12 * Time to Maximum Pressure)
+ (28.14 * Time to Minimum Pressure) − (20.17 * Cycle Time)) > −2259) then: short-shot
otherwise: non-short-shot.

Notes: A multiplication is denoted by the sign (*).

We then evaluate the performance of the generated rules with an approach for measur-
ing previous ANN models. The confusion matrix of the performance of the rules evaluation
results is depicted in Figure 8 followed by the more detailed measurement results using the
five evaluation metrics as outlined in Table 8.
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Table 8. Performance evaluation of Rule 1 and Rule 2.

Metrics Rule 1 Rule 2

Precision 0.82 0.88
Recall 0.84 0.91

F-Score 0.83 0.89
Specificity 0.9 0.93
Accuracy 0.88 0.92

The performance evaluation results of rule 1 and rule 2 in Table 8 shows that both
rules remain with a fairly good score compared with the ANN models in Table 6. Figure 9
summarizes the performance comparison of the ANN models and the constructed rules.
The graph depicted in Figure 9 shows that there are only small differences in the perfor-
mance of the ANN models and the rules constructed from the selected injection molding
parameters, which are considered highly influential.
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To give additional insight, we provide the relative importance of each extracted
parameter by SLF to the final prediction output in Figure 10. Figure 10 depicts how
much the dismissal of each parameter from the initial ANN would decrease the model
performance on each evaluation metric. For instance, the dismissal of the parameter
“maxPressureValue” would decrease the model performance by around 0.22% or 22% from
the “Recall” measurement.
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3.3. Comparison with Earlier Work

We further investigated the performance of our models with earlier work that utilized
the same injection molding dataset used in this study.

Syafrudin et al. [45] developed a big data framework and utilized the injection molding
dataset to create the prediction models. They applied 10-fold cross-validation to the dataset
and evaluated several machine learning models such as naive Bayesian (NB), multi-layer
perceptron (MLP), logistic regression (LR), and random forest (RF). Their results showed
that the highest accuracy score was achieved by RF (0.95), while the second, third, and
fourth ranks belong to LR (0.92), MLP (0.89), and NB (0.67), respectively. In addition, they
also revealed some significant features used in their study such as maxPressValue, inte-
gralPressureToMin, and TotalIntegral. Two-out-of-three features from their most important
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attributes are in line with our findings of significant features (i.e., maxPressValue, integralPres-
sureToMin, timeToMaxPressure, timeToMinPressure, cycleTime) which also revealed that those
attributes are most significant and contribute to the performance of the prediction models.

While Lee et al. [46] proposed an ontology-based quality prediction for injection
molding, their study revealed that their proposed model can achieve an accuracy of up to
0.94. In the case of a feature, they also found that the maxPressValue attribute is also the
most significant feature among others.

In general comparison, we discovered that our model achieved the highest accuracy of
0.97 for ANN-BPN (see Table 9). However, it is important to note that as the reported results
were obtained using different methods, parameter settings, and validation techniques,
comparing their direct performance does not provide accurate information. As a result,
the results shown in Table 9 may not only be used to support the effectiveness of the
categorization models but also to compare our study to earlier research in general.

Table 9. Comparison with earlier work that utilized the same injection molding dataset.

Metrics
Our Study Syafrudin et al. [45] Lee et al. [46]

ANN-BPN ANN-SLF RULE 1 RULE 2 NB LR MLP RF Ontology-Based

Precision 0.91 0.88 0.84 0.91 0.72 0.91 0.89 0.95 -
Recall 1 0.94 0.83 0.89 0.67 0.91 0.89 0.95 -

F-Score 0.95 0.91 0.9 0.93 0.65 0.91 0.89 0.95 -
Accuracy 0.97 0.93 0.88 0.92 0.67 0.91 0.89 0.95 0.94

4. Conclusions

In this study, an artificial neural network (ANN) model was trained using structural
learning with forgetting (SLF). The SLF approach enabled us to reveal the most influential
injection molding parameters by removing weak connections between the neurons during
the training process. This mechanism leaves the strong connections and their corresponding
input neurons within the ANN model at the end of the training process. Compared with
the ANN model trained with a typical backpropagation training process, the ANN model
trained using SLF has a simpler structure with less parameters as input with no major
decline in terms of prediction performance. Thus, from the results, we can conclude the
effectiveness of the proposed approach of using SLF to reveal the influential attributes.

Each of the input neurons represents a particular parameter of the injection molding
process. Therefore, a process parameter represented by the remaining input neurons on
the final ANN-SLF model is considered influential. There are five influential attributes
extracted from this study, namely, Maximum Pressure Value, Integral Pressure to Minimum,
Time to Maximum Pressure, Time to Minimum Pressure, and Cycle Time. Afterward, for
further analysis, a set of rules for quality prediction was constructed to show the linear
correlation between those process parameters. The evaluation method of those prediction
rules shows that there are only small differences compared with the ANN models either
trained using SLF or backpropagation. Hence, this experiment showed that by using SLF
for training an ANN model and extracting rules over that model, the influential parameter
of the injection molding process was successfully extracted without any major decline
in terms of prediction performance. However, even though the distinction of the ANN-
SLF model’s performance at all evaluation metrics is less than 7% comparing the best
performer (ANN-BP and RF), this issue remained a drawback of our experiments and
requires improvement in future works.

In the future, with the development of sensor technology, more parameters of the
injection molding process can be monitored. Therefore, future work can involve more
complex ANN architecture. Well-known deep ANN models such as convolutional neural
networks, recurrent neural networks, etc., can be used for constructing prediction models
using more process attributes and larger data. Hence, there is certainly a necessity to
customize the training algorithm for model complexity reduction. Another effort for future
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work is to elaborate and explore the most significant attributes by using nature-inspired
algorithms such as genetic algorithms and other parameter optimizations to gain the
highest performance in predicting the quality of injection molding.
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MLP Multi-layer perceptron
RF Random forest
NB Naïve Bayes

References
1. Kosior, E.; Mitchell, J. Chapter 6—Current Industry Position on Plastic Production and Recycling. In Plastic Waste and Recycling;

Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–162; ISBN 978-0-12-817880-5.
2. Tosello, G.; Charalambis, A.; Kerbache, L.; Mischkot, M.; Pedersen, D.B.; Calaon, M.; Hansen, H.N. Value Chain and Production

Cost Optimization by Integrating Additive Manufacturing in Injection Molding Process Chain. Int. J. Adv. Manuf. Technol. 2019,
100, 783–795. [CrossRef]

3. Chen, Z.; Turng, L.-S. A Review of Current Developments in Process and Quality Control for Injection Molding. Adv. Polym.
Technol. 2005, 24, 165–182. [CrossRef]

4. Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review.
Adv. Polym. Technol. 2018, 37, 429–449. [CrossRef]

5. Moayyedian, M. Intelligent Optimization of Mold Design and Process Parameters in Injection Molding, 1st ed.; Springer Theses,
Recognizing Outstanding Ph.D. Research; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-03356-9.

6. Zhou, H. Computer Modeling for Injection Molding: Simulation, Optimization, and Control; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-
1-118-44488-7.

7. Moayyedian, M.; Abhary, K.; Marian, R. The Analysis Of Defects Prediction In Injection Molding. Int. J. Mech. Mechatron. Eng.
2016, 10, 1883–1886. [CrossRef]

8. Moayyedian, M.; Abhary, K.; Marian, R. The Analysis of Short Shot Possibility in Injection Molding Process. Int. J. Adv. Manuf.
Technol. 2017, 91, 3977–3989. [CrossRef]

9. Kurt, M.; Kaynak, Y.; Kamber, O.S.; Mutlu, B.; Bakir, B.; Koklu, U. Influence of Molding Conditions on the Shrinkage and
Roundness of Injection Molded Parts. Int. J. Adv. Manuf. Technol. 2010, 46, 571–578. [CrossRef]

http://doi.org/10.1007/s00170-018-2762-7
http://doi.org/10.1002/adv.20046
http://doi.org/10.1002/adv.21683
http://doi.org/10.5281/ZENODO.1127617
http://doi.org/10.1007/s00170-017-0055-1
http://doi.org/10.1007/s00170-009-2149-x


Information 2022, 13, 488 18 of 19

10. Wibowo, E.A.; Syahriar, A.; Kaswadi, A. Analysis and Simulation of Short Shot Defects in Plastic Injection Molding at Multi
Cavities. In Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry,
Tangerang, Indonesia, 28–29 September 2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

11. Li, D.; Zhou, H.; Zhao, P.; Li, Y. A Real-Time Process Optimization System for Injection Molding. Polym. Eng. Sci. 2009, 49,
2031–2040. [CrossRef]

12. Hentati, F.; Hadriche, I.; Masmoudi, N.; Bradai, C. Optimization of the Injection Molding Process for the PC/ABS Parts by
Integrating Taguchi Approach and CAE Simulation. Int. J. Adv. Manuf. Technol. 2019, 104, 4353–4363. [CrossRef]

13. Primo Benitez-Rangel, J.; Domínguez-González, A.; Herrera-Ruiz, G.; Delgado-Rosas, M. Filling Process in Injection Mold: A
Review. Null 2007, 46, 721–727. [CrossRef]

14. Matin, I.; Hadzistevic, M.; Hodolic, J.; Vukelic, D.; Lukic, D. A CAD/CAE-Integrated Injection Mold Design System for Plastic
Products. Int. J. Adv. Manuf. Technol. 2012, 63, 595–607. [CrossRef]

15. Dang, X.-P. General Frameworks for Optimization of Plastic Injection Molding Process Parameters. Simul. Model. Pract. Theory
2014, 41, 15–27. [CrossRef]

16. Michaeli, W.; Schreiber, A. Online Control of the Injection Molding Process Based on Process Variables. Adv. Polym. Technol. 2009,
28, 65–76. [CrossRef]

17. Rousopoulou, V.; Nizamis, A.; Vafeiadis, T.; Ioannidis, D.; Tzovaras, D. Predictive Maintenance for Injection Molding Machines
Enabled by Cognitive Analytics for Industry 4.0. Front. Artif. Intell. 2020, 3, 578152. [CrossRef]

18. Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for Industrial Applications: A Comprehensive Literature
Review. Expert Syst. Appl. 2021, 175, 114820. [CrossRef]

19. Ageyeva, T.; Horváth, S.; Kovács, J.G. In-Mold Sensors for Injection Molding: On the Way to Industry 4.0. Sensors 2019, 19, 3551.
[CrossRef]

20. Zhang, Y.; Shan, S.; Frumosu, F.D.; Calaon, M.; Yang, W.; Liu, Y.; Hansen, H.N. Automated Vision-Based Inspection of Mould and
Part Quality in Soft Tooling Injection Moulding Using Imaging and Deep Learning. CIRP Ann. 2022, 71, 429–432. [CrossRef]

21. Ke, K.-C.; Huang, M.-S. Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network. Polymers
2020, 12, 1812. [CrossRef]

22. Huang, Y. Advances in Artificial Neural Networks—Methodological Development and Application. Algorithms 2009, 2, 973.
[CrossRef]

23. Chen, J.C.; Guo, G.; Wang, W.-N. Artificial Neural Network-Based Online Defect Detection System with in-Mold Temperature
and Pressure Sensors for High Precision Injection Molding. Int. J. Adv. Manuf. Technol. 2020, 110, 2023–2033. [CrossRef]

24. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network
Applications: A Survey. Heliyon 2018, 4, e00938. [CrossRef]

25. Du, M.; Liu, N.; Hu, X. Techniques for Interpretable Machine Learning. Commun. ACM 2019, 63, 68–77. [CrossRef]
26. Molnar, C.; Casalicchio, G.; Bischl, B. Interpretable Machine Learning—A Brief History, State-of-the-Art and Challenges. In

Proceedings of the ECML PKDD 2020 Workshops, Ghent, Belgium, 14–18 September 2020; Koprinska, I., Kamp, M., Appice, A.,
Loglisci, C., Antonie, L., Zimmermann, A., Guidotti, R., Özgöbek, Ö., Ribeiro, R.P., Gavaldà, R., et al., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 417–431. [CrossRef]

27. Zhou, X.; Zhang, Y.; Mao, T.; Ruan, Y.; Gao, H.; Zhou, H. Feature Extraction and Physical Interpretation of Melt Pressure during
Injection Molding Process. J. Mater. Process. Technol. 2018, 261, 50–60. [CrossRef]

28. Román, A.J.; Qin, S.; Zavala, V.M.; Osswald, T.A. Neural Network Feature and Architecture Optimization for Injection Molding
Surface Defect Prediction of Model Polypropylene. Polym. Eng. Sci. 2021, 61, 2376–2387. [CrossRef]

29. Gim, J.; Rhee, B. Novel Analysis Methodology of Cavity Pressure Profiles in Injection-Molding Processes Using Interpretation of
Machine Learning Model. Polymers 2021, 13, 3297. [CrossRef] [PubMed]

30. Lockner, Y.; Hopmann, C.; Zhao, W. Transfer Learning with Artificial Neural Networks between Injection Molding Processes and
Different Polymer Materials. J. Manuf. Process. 2022, 73, 395–408. [CrossRef]

31. Li, Y.; Yang, L.; Yang, B.; Wang, N.; Wu, T. Application of Interpretable Machine Learning Models for the Intelligent Decision.
Neurocomputing 2019, 333, 273–283. [CrossRef]

32. Rønsch, G.Ø.; Kulahci, M.; Dybdahl, M. An Investigation of the Utilisation of Different Data Sources in Manufacturing with
Application in Injection Moulding. Int. J. Prod. Res. 2021, 59, 4851–4868. [CrossRef]

33. Finkeldey, F.; Volke, J.; Zarges, J.-C.; Heim, H.-P.; Wiederkehr, P. Learning Quality Characteristics for Plastic Injection Molding
Processes Using a Combination of Simulated and Measured Data. J. Manuf. Process. 2020, 60, 134–143. [CrossRef]

34. Chen, J.-Y.; Yang, K.-J.; Huang, M.-S. Online Quality Monitoring of Molten Resin in Injection Molding. Int. J. Heat Mass Transf.
2018, 122, 681–693. [CrossRef]

35. Baptista, D.; Morgado-Dias, F. A Survey of Artificial Neural Network Training Tools. Neural Comput. Appl. 2013, 23, 609–615.
[CrossRef]

36. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U.
Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846.
[CrossRef]

37. Samatin Njikam, A.N.; Zhao, H. A Novel Activation Function for Multilayer Feed-Forward Neural Networks. Appl. Intell. 2016,
45, 75–82. [CrossRef]

http://doi.org/10.1145/3429789.3429837
http://doi.org/10.1002/pen.21444
http://doi.org/10.1007/s00170-019-04283-z
http://doi.org/10.1080/15583720701271641
http://doi.org/10.1007/s00170-012-3926-5
http://doi.org/10.1016/j.simpat.2013.11.003
http://doi.org/10.1002/adv.20153
http://doi.org/10.3389/frai.2020.578152
http://doi.org/10.1016/j.eswa.2021.114820
http://doi.org/10.3390/s19163551
http://doi.org/10.1016/j.cirp.2022.04.022
http://doi.org/10.3390/polym12081812
http://doi.org/10.3390/algor2030973
http://doi.org/10.1007/s00170-020-06011-4
http://doi.org/10.1016/j.heliyon.2018.e00938
http://doi.org/10.1145/3359786
http://doi.org/10.1007/978-3-030-65965-3_28
http://doi.org/10.1016/j.jmatprotec.2018.05.026
http://doi.org/10.1002/pen.25765
http://doi.org/10.3390/polym13193297
http://www.ncbi.nlm.nih.gov/pubmed/34641113
http://doi.org/10.1016/j.jmapro.2021.11.014
http://doi.org/10.1016/j.neucom.2018.12.012
http://doi.org/10.1080/00207543.2021.1893853
http://doi.org/10.1016/j.jmapro.2020.10.028
http://doi.org/10.1016/j.ijheatmasstransfer.2018.02.019
http://doi.org/10.1007/s00521-013-1408-9
http://doi.org/10.1109/ACCESS.2019.2945545
http://doi.org/10.1007/s10489-015-0744-0


Information 2022, 13, 488 19 of 19

38. Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A Survey on Modern Trainable Activation Functions. Neural Netw. 2021, 138,
14–32. [CrossRef] [PubMed]

39. Zajmi, L.; Ahmed, F.Y.H.; Jaharadak, A.A. Concepts, Methods, and Performances of Particle Swarm Optimization, Backpropaga-
tion, and Neural Networks. Appl. Comput. Intell. Soft Comput. 2018, 2018, 9547212. [CrossRef]

40. Ishikawa, M. Structural Learning with Forgetting. Neural Netw. 1996, 9, 509–521. [CrossRef]
41. Pan, L.; Yang, S.X.; Tian, F.; Otten, L.; Hacker, R. Analysing Contributions of Components and Factors to Pork Odour Using

Structural Learning with Forgetting Method. In Proceedings of the Advances in Neural Networks—ISNN 2004, Dalian, China,
19–21 August 2004; Yin, F.-L., Wang, J., Guo, C., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2004; pp. 383–388.
[CrossRef]

42. Susmaga, R. Confusion Matrix Visualization. In Proceedings of the Intelligent Information Processing and Web Mining, Zakopane,
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