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Abstract: In multi-lingual, multi-speaker environments (e.g., international conference scenarios),
speech, language, and background sounds can overlap. In real-world scenarios, source separation
techniques are needed to separate target sounds. Downstream tasks, such as ASR, speaker recogni-
tion, speech recognition, VAD, etc., can be combined with speech separation tasks to gain a better
understanding. Since most of the evaluation methods for monophonic separation are either single or
subjective, this paper used the downstream recognition task as an overall evaluation criterion. Thus,
the performance could be directly evaluated by the metrics of the downstream task. In this paper, we
investigated a two-stage training scheme that combined speech separation and language identifica-
tion tasks. To analyze and optimize the separation performance of single-channel overlapping speech,
the separated speech was fed to a language identification engine to evaluate its accuracy. The speech
separation model was a single-channel speech separation network trained with WSJ0-2mix. For the
language identification system, we used an Oriental Language Dataset and a dataset synthesized
by directly mixing different proportions of speech groups. The combined effect of these two models
was evaluated for various overlapping speech scenarios. When the language identification network
model was based on single-person single-speech frequency spectrum features, Chinese, Japanese,
Korean, Indonesian, and Vietnamese had significantly improved recognition results over the mixed
audio spectrum.

Keywords: speech separation; Conv-TasNet; language identification; overlap rate; spectrogram

1. Introduction

Language identification, as a front-end system for natural language processing tech-
nologies such as machine translation and multi-lingual information services, is a hot topic
of research, and language recognition in realistic noisy environments has received more
attention in recent years. In noisy and multi-speaker environments, the human ear may
not be able to separate and identify the language types accurately, and language features
may easily be disturbed or masked, preventing a clear representation of language informa-
tion. Therefore, it is increasingly important to study voices in real-world scenarios with
multiple speakers and in multi-lingual environments. In today’s globally integrated world,
languages and dialects are mixed unprecedentedly. Neural network models brought the
possibility of separating and understanding overlapped voices and boosted multi-lingual
processing research, bringing significant progress for applying low-resource languages
and dialects [1]. In scenarios with multiple speakers and background noise, obtaining
monolingual information for each speaker is difficult. It has been a novel topic in speech
separation and language identification in recent years. Therefore, it is necessary to carry
out a speech separation process before recognizing monolingual speech and understanding
the content. As the first step in speech research, speech separation techniques are vital in
determining the effectiveness of the speech back-end. The term speech separation initially
originated from “Cherry’s Cocktail Party Problem” [2] in 1953, where a listener could
effortlessly hear a person’s speech surrounded by other people’s speech and ambient noise
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even in a cocktail party-like sound environment. The speech separation problem is often
called the “cocktail party problem.” The goal of speech separation is to extract one or
more source signals from a mixed speech signal containing two or more sources, with each
speaker corresponding to one of the source signals [3]. The two main speech separation
methods currently under study are the single-channel speech separation method and the
multi-channel speech separation method based on microphone arrays. This paper focuses
on a single-channel two-speaker overlapped speech separation technique [4]. Although
humans can focus on one of the overlapping speech sounds, research methods still face diffi-
culties in achieving this. Speech separation methods have enabled many speech processing
algorithms, such as automatic speech recognition (ASR), to achieve better performance
under multi-peak conditions.

Language identification technology is the process of determining the type of language
to which speech content belongs using automated methods [1]. In addition, in noisy and
multi-speaker environments, the human ear may not be able to identify language types
accurately, and language features may be easily disturbed or masked, preventing a clear
representation of language information. Therefore, it is increasingly important to study
language identification in real-world scenarios with multiple speakers and a multi-lingual
environment. The key to language identification is feature extraction and the construction
of language models. Currently, standard language features are mainly based on acoustic
and phonetic features. The mainstream acoustic layer features include Mel frequency
cepstral coefficients, Gamma pass frequency cepstral coefficients, and so on [5]. The above
features are prone to noise, resulting in poor identification results. The phoneme layer-
based language identification method divides the speech into a sequence of phonemes
and then recognizes the language according to the phoneme pairing between different
languages [6]. The phoneme layer-based features are less affected by noise, but phoneme
segmentation is difficult to extract, resulting in a degraded identification performance.
Recent research has begun to apply deep learning methods to language identification tasks
and to use this method to train neural networks as phonological models. The method treats
the language identification problem as a classification problem and thus trains the CNN to
use the relevant linguistically labeled speech spectrograms.

However, most deep learning-based studies of single-channel speech separation rely
on a single metric to evaluate the system, and the evaluation metric is relatively homo-
geneous. In our experiments, we indirectly analyzed the performance of the front-end
network by looking at the evaluation metrics or the good or bad performance of the
downstream tasks. Therefore, this paper focuses on the Single-Channel Speech Separation
(SCSS) problem and applies the SCSS problem to complex multi-speaker multi-lingual
scenarios. The experimental results obtained from the language identification network
can be used as an intermediate reference index for the final SCSS network to optimize our
separation network.

The rest of the paper is organized as follows. The current state of relevant research
is presented in Section 2, the algorithmic model structure is described in Section 3, the
experimental setup is described in Section 4, and the experimental results and analysis are
presented in Section 5.

2. Related Work

Deep neural networks have been used for speech separation tasks with the develop-
ment of deep learning techniques. One of the most common frameworks is the estimation
of time-frequency masking of speech signals using neural networks. The basic theory is that
after the short-time Fourier transform of speech, the energy at each time-frequency point is
the sum of the powers of all target speech at that time-frequency point. There are differences
in the distribution characteristics between different speakers’ speech in the time frequency
domain, and speech separation can be performed by estimating the correct time-frequency
masking matrix. In a similar speech enhancement task where the interference is a noisy
signal, researchers have used different loss functions. Qi, J. et al. [7] proposed to improve
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vector-to-vector regression for feature-based speech enhancement using a new distribution
loss. The approach essentially takes into account the estimation uncertainty, and it avoids
the burden of deploying additional speech enhancement models to obtain a final clean
speech. In the same year, Qi, ]. [8] also proposed to use the properties of mean absolute
error as a loss function for vector-to-vector regression based on deep neural networks for
speech enhancement experiments and verified that DNN-based regression optimized using
the MAE loss function can obtain lower loss values than the MSE counterpart. Siniscalchi,
S.M. [9] proposed an upper bound for the vector-to-vector regression MAE based on DNN,
which is valid with or without the “over-parameterization” technique. Single-channel
speech separation is the process of recovering multiple speaker speech signals from a one-
dimensional mixture of speech. Moreover, the training goal of our speech separation system
was to maximize the scale-invariant signal-to-noise ratio (5I-SNR). Signal-to-noise ratio
improvement (SDRi) was used as the main objective metric to assess separation accuracy.
The specific calculation formula is presented in Part 4 of the text. In 2014, Wang De Liang
etal. presented a supervised training method for the speech separation task [10], comparing
and analyzing the effects of different time-frequency features and different time-frequency
masking matrices on the speech separation task, including Ideal Binary Mask (IBM) and
Ideal Ratio Mask (IRM), and compared with the NMF-based method for speech. In 2016,
Deep Clustering (DPCL) [11] was proposed by mapping each time-frequency point to a
high-dimensional space, and taking the mean square error between the affinity matrix of
the corresponding high-dimensional vector and the affinity matrix of the label composition
vector as the training target. It has an SDRi value of 10.8. This is a clever solution to the
label substitution problem and allows effective speech separation even when the number
of speakers in the testing phase of the network is different from that in the training phase
by setting a different number of clustering centers. In 2017, Yu D et al. [12] proposed a
permutation invariant training (PIT) algorithm, which first calculates all combinations
of network outputs and labels, and also selects the smallest of these results as the value
of the loss function, solving the label replacement problem in this way. It has an SDRi
value of 10.9. In 2017, Y. Luo et al. presented the Deep Attractor Network (DANet) [13],
which uses IRM to weight the embedding vector corresponding to each time-frequency
point in the training phase to find prime cluster points and generate time-frequency masks
based on the distance between different prime points and each time-frequency point. In
2019, the literature [14] presented a computerized auditory scene analysis system based on
deep learning (CASA), which combines the respective advantages of PIT and DPCL for
speech separation through two stages of training, with the first stage using PIT to separate
speech at the time-frame level and the second stage referring to DPCL for clustering and
combining separated speech from different time-frames.

In terms of time domain speech separation, Y. Luo et al. presented a time domain
speech separation network (Tas-Net) [15], which directly uses speech time domain informa-
tion as input to the network, encodes and decodes the speech using a convolutional layer
with thresholding, and then separates the speech by estimating a mask matrix of encoded
features using a separator consisting of an LSTM network. It has an SDRi value of 10.8.
In 2019, Y. Luo improved on the Tas-Net network model by replacing the LSTM with a
Temporal Convolutional Network (TCN) to propose a fully-convolutional time-domain
speech separation network (Conv-TasNet) [16], which replaces the separator LSTM of
the Tas-Net network with a TCN, which can obtain a large perceptual field with a small
number of parameters, thus better capturing long-distance contextual information. It can
reach an SDRi value of 15.3. In 2020, Y. Luo proposed the Dual-Path Recurrent Neural
Network (DPRNN) [17], which performs speech separation by partitioning long sequences
into smaller blocks and applying intra- and inter-block RNNSs. In 2021, the literature [18]
presented the SepFormer network, which performs speech separation by replacing the
original RNN network with a Transformer network. In the same year, a self-attentive
network with an hourglass shape (Sandglasset) [19] was proposed, which enhances speech
separation network performance with a smaller model size and computational cost by
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focusing on multi-granularity features and capturing richer contextual information. More-
over, it has been relatively effective, with an SDRi value of 21.0. In 2022, the Seplt [20]
speech separation network was proposed, which improves the performance of speech
separation networks by iteratively improving the estimation of different speakers. This is
the latest method that came out with a relatively high SDRi value of 22.4.

The process of language identification is a process of classification and judgment, and
the key is the acquisition of valuable features and the construction of language models. For
a general language identification system, the most important thing is the recognition rate,
the accuracy of the recognition results must be guaranteed, and this is the starting point of
all evaluation metrics. The following will introduce the more commonly used performance
evaluation metrics, which are Accuracy, Precision, Recall, and F1 value. Moreover, the
specific formulas for calculating these indicators are described in Part 4 of our text. The
traditional methods of language identification are mainly based on the Gaussian mixed
model and identity vector (i-vector) based components. The Gaussian hybrid-universal
background model (GMM-UBM) approach was proposed in the literature [21], requir-
ing enormous data to estimate the covariance matrix. In the literature [22], a Gaussian
mixed model-support vector machine (GMM-SVM) mean super vector classification algo-
rithm was proposed, which has improved the recognition performance compared to the
GMM-UBM method. The literature [23,24] used i-vector features extracted from audio for
language identification, which effectively enhanced the recognition results and became one
of the primary language identification methods.

As deep learning is widely used in various tasks, researchers have also started to apply
deep neural networks to language identification research. The literature from 2014 [25]
proposed the first large-scale application of DNN models to short-time speech segment
language tasks for language identification at the speech frame-level feature level. In
addition, Convolutional Neural networks (CNN), Recurrent Neural networks (RNN),
and Long Short-Term Memory (LSTM) have also been applied to language identification,
resulting in a breakthrough improvement in language identification performance [26-29].
Subsequently, Geng W, Raffel C, Mounika K V, et al. [30-32] proposed an end-to-end
language identification framework based on the attention mechanism, which improves
the effectiveness of language identification by obtaining more valuable information on
speech features for language discrimination through the attention mechanism. In 2018,
Snyder D [33] proposed an x-vector language identification method, which outperformed
the i-vector. In 2019, Cai W et al. [34] proposed an attention-based CNN-BLSTM model
that performs language recognition at the discourse level and can obtain discourse-level
decisions directly from the output of the neural network. In 2020, Aitor Arronte Alvarez
et al. [35] proposed an end-to-end network Res-BLSTM language identification method
combining Residual Block and BLSTM network. However, most deep learning-based
studies of single-channel speech separation rely on a single metric to evaluate the system,
and the evaluation metric is relatively homogeneous. In our experiments, we indirectly
analyzed the performance of the front-end network by looking at the evaluation metrics or
the good or bad performance of the downstream tasks.

In this paper, based on the above research on single-channel speech separation and
language identification, the speech separation task was applied to a complex multi-speaker
multi-lingual scenario to obtain the corresponding monolingual information of each speaker
to facilitate subsequent speech recognition or other operations. The experimental results
obtained from the language identification network can also be used as an intermediate
reference index for the final single-channel speech separation network to optimize our
separation network.

3. Model Architecture
3.1. Single Channel Speech Separation

This paper used Conv-TasNet, a fully convolutional audio time-domain separation
network proposed in [16] for the single-channel speech separation task. The input and
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output of the model are time-domain waveforms, which avoids the problem of poor
separation due to the difficulty of estimating the phase spectrum in frequency domain
speech separation. The network uses 1D convolution and 1D transpose convolution as
the coding and decoding layers. Between the coding and decoding layers, the Temporal
Convolutional Network [36] is used for long-term time series modeling of features, which
has the advantage of solving the possible gradient disappearance problem of RNN in
modeling long-term time-series data. The advantage of TCN is that it can solve the gradient
disappearance problem that may occur when modeling long-term time series data in RNN
and obtain a sizeable perceptual field with few parameters.

Conv-TasNet consists of three processing stages, Encoder, Separator, and Decoder, as
shown in Figure 1. First, the encoder module converts short segments of the mixed signal
into short-time features in the intermediate feature space. Then, a separator combines the
speaker-specific feature vectors to estimate the speaker-specific waveform mask. Finally,
the short-time features from the encoder and the waveform mask from the separator are
dot-multiplied, and the decoder module reconstructs the speaker-specific waveform by
converting the masked encoder features. Moreover, the network applies utterance-level
permutation invariant training (uPIT) during training to solve the label alignment problem.

@®  Encoder: The encoder part uses a time-domain hybrid waveform as input, and the extrac-
tion of time-domain short-time features is performed by one-dimensional convolution:

h = RELU(convld(x)). 1)

Encoder Decoder

Separator

Figure 1. Network architecture of Conv-TasNet.

The convolution kernel, with step sizes set to 160 and 80, respectively.

@  Separator: The separator uses TCN in which each layer of the network is connected by
a one-dimensional null convolutional network and a RELU activation function. Null
convolution allows arbitrarily large sensory fields to capture multi-scale contextual
information without additional parameters. Furthermore, the expansion coefficients
of each layer are 1, 2, 4, 8, 16, 32, 64 from the first layer onwards, and residual blocks
connect the layers. Because each layer is an inflated convolution, the final output node
of the network can contain the time-frequency feature information of all previous
input nodes, and each layer has a larger perceptual field compared to a convolutional
neural network.

my = TCN(h,e). (2)
® Decoder: A one-dimensional transposed convolution is used in the decoder, with the
same convolution kernel and step size as in the encoder. The input is the result of

a dot product of the short-time features at the output of the decoder and the target
speaker waveform mask at the outcome of the separator.

£ = convld(mx-h). ©)]
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where convld is the one-dimensional transposed convolution, convolution kernel and
step size are the same as the one-dimensional convolution in the encoder.

3.2. Language Identification

In language identification research, extracting valuable speech features is the most
critical step, followed by constructing a suitable classification model. Deep learning has
better advantages in feature extraction and model building, as it can automatically extract
features and build optimal models and save them during the training process to provide
a basis for subsequent classification judgments. In the language identification task, the
CNN-CBAM-BLSTM neural network structure is used to classify and recognize multiple
languages. Spectral images are typically processed through numerous convolutional and
pooling layers, as well as one or two fully connected layers. The CNN model is fed with a
speech spectral map, and then feature extraction is performed by convolutional operations.
As the model deepens, the local features extracted from the shallow layers are continuously
processed and integrated to obtain the deeper, higher-dimensional parts. However, for
tasks related to time series, the performance of CNN can be relatively inferior. To solve
such problems, RNN networks are introduced, which can handle time-series tasks well.
LSTM networks are representative of RNNs. BLSTM consists of forwarding and backward
LSTMs and is a bi-directional network structure. In this case, the forward LSTM learns
information before the current moment, and the backward LSTM learns information after
the present moment so that this network can learn the temporal contextual information
contained in the speech sequences, thus compensating for the shortcomings of the CNN
network. Therefore, the CNN-BLSTM network based on the strengths of both networks can
be combined and used to extract local features and temporally relevant features. Then the
CBAM attention module can be used to focus on global information to obtain the features
that contribute more to the linguistic information. Our language identification system
recognizes the five languages simultaneously based on the randomly mixed input speech
spectra or the single language speech spectra separated by the separation network, and
scores them to calculate the final accuracy, recall, and other evaluation index information.
The structure of this network is shown in Figure 2.

Output
layer
Attention
el ORFO
\
(\
BILSTM | (

CNN c C (0} C C C Cc C C (©
layer

Figure 2. Overall network structure for language identification.

3.2.1. Convolutional Neural Network (CNN)

In this paper, the CNN-CBAM-BLSTM network was used to implement language
identification, where the structure of the CNN neural network is shown in Figure 3. The
pooling layer performs pooling operations on the output feature map to reduce the size
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of the feature map to reduce the number of parameters in the network. Finally, the
classification layer is used to classify the language.

Input  Convolution Pooling  Convolution  Pooling Fully-connected

layer layer layer layer layer layer  Output
‘ layer

[
| |

___l/

Figure 3. General structure of CNN.

3.2.2. Bidirectional Long- and Short-Term Memory Network (BLSTM)

The BLSTM consists of a forward and a backward LSTM, a bi-directional network struc-
ture. The forward LSTM learns messages before the current moment, and the backward
LSTM learns messages after the current moment, so the network can learn the temporal
background information contained in the speech sequence, thus making up for the short-
comings of CNN networks. The BLSTM network [37] consists of four parts: the input layer,
the forward LSTM, the backward LSTM, and the output layer, and its network structure is
shown in Figure 4.

Output

Backward
LSTM

Forward
LSTM

Input
Figure 4. BLSTM network structure.

In the BLSTM network structure in Figure 4, input;_q, input;, input,. denote the
inputs at moments t — 1, t, t + 1, respectively, and output,_1, output;, output;; denote the
outputs corresponding to moments t — 1, t, t + 1, respectively. The forward LSTM refers
to the calculation of the output corresponding to the forward moments along the forward
order of the moments. Backward LSTM means calculating the output corresponding to
the reverse moment along the reverse order of moments, and finally the output of both
together as the final output at the corresponding moment.

3.2.3. Convolutional Block Attention Module (CBAM)

The features extracted by CNN and BLSTM from the language spectral map do not all
contribute equally to the representation of language information, but rather some features
contribute minimally, and some contribute more. Therefore, following CNN and BLSTM,
an attention layer is used to selectively focus on language-related features and produce
a differentiated feature representation for language identification. The advantage is that
using an attention mechanism to reflect the importance of a series of high-level features
to the final language differentiation, rather than simply completing the stack of features
over time.
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Input Feature

Wi

The attention layer is located after the bidirectional LSTM. The output of the bidirec-
tional LSTM is first passed through a softmax function to calculate the normalized weight
«;, calculated as shown in (4). The normalized weight a; is then weighted and summed
over h; to obtain the language representation c, as shown in (5).

_ exp(W-hy)
T S exp W) ¥
T
c = Z zxtht. (5)
t=1

where W denotes the weight value, /; is the state at the current moment and the language
representation ¢ will be derived by computing Equations (4) and (5) and passed to the
all-connected layer to obtain a more profound representation of the language, and a softmax
classifier that maps the language representation to N different spaces for classification,
where N denotes the number of classes of the language.

The general network architecture of the convolutional chunk attention module is
shown in Figure 5.

Channel _ Refined Feature
Attention| Spati _aI S
module Attention

/ E module

Figure 5. Convolutional Block Attention Module.

Given a feature map, the CBAM module can serially generate attentional feature map
information in both the channel and spatial dimensions, and then the information from the
two feature maps is multiplied with the previous original input feature map for adaptive
feature correction to produce the final feature map.

As shown in the figure above, there is an input, a channel attention module, a spatial
attention module, and an output. The input features F € R“*H*W  followed by the channel
attention module M, € RE*1*1, multiply the result of the convolution by the original image,
and the output of the channel attention module is used as input for the two-dimensional
convolution of the spatial attention module M; € R'**W and then the output is multiplied
by the original image.

F'=M(F)®F. (6)

F// — MS(F/) ®F/ (7)

Equation (6) focuses on the features on the channel, by keeping the channel dimension
constant and compressing the spatial dimension, focusing on the meaningful information in
the input image. Moreover, Equation (7) focuses on features on space by keeping the spatial
dimension constant, compressing the channel dimension, and focusing on the location
information of the target.

4. Experimental Settings
4.1. Dataset

Speech Separation: This paper used the WSJ0-2mix dataset to compare the perfor-
mance of two-speaker speech separation. It contained 30 h of training, 10 h of validation,
and 5 h of test data. Mixed speech in WSJ0-2mix was generated by randomly selecting
different speakers and sentences in the Wall Street Journal (WSJ0) training set si_tr_s and
combining them with a random signal-to-noise ratio (SNR) between —5 dB and 5dB. Cor-
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rections in the test set were derived from 16 speakers in the WSJO dataset si_dt_05 and
si_et_05 that were not used in training. All speech in WSJ0-2mix was resampled to 8000 Hz.

Language identification: The language identification model was trained and tested on
the AP20_OLR [38] Oriental Language Dataset provided by Speech Ocean (China). This
dataset was provided by the AP20_OLR competition. In this paper, five datasets, including
Mandarin Chinese (zh-cn), Vietnamese (vi-vn), Indonesian (id-id), Japanese (ja-jp), and
Korean (ko-kr) were used. One thousand eight hundred speech data were extracted from
each language and divided according to the ratio of 7:2:1 (training set: validation set: test
set) to construct a dataset. Moreover, we assigned numeric labels to each language in the
language recognition task, for example, “0”: “id-id”, “1”: “ja-jp”, “2”: “ko-kr”, “3”: “vi-vn”,
“4”: “zh-cn”. The structure of this dataset is presented in Table 1.

Table 1. Oriental Language Dataset Structure.

Language Train Validation Test Total
zh-cn 1260 360 180 1800
id-id 1260 360 180 1800
ja-ip 1260 360 180 1800
ko-kr 1260 360 180 1800
vi-vn 1260 360 180 1800

4.2. Evaluation Metrics
4.2.1. Speech Separation

In this experiment, the scale invariant signal-to-noise ratio (SI-SNR) and SDR were
used to evaluate the separation results, with larger values being better. The SI-SNR equation

is defined as:
(8,5)s

Starget = HSHZ
€noise = 5 — Starget , (8)
SI—SNR = 10log,, Llstorgr |

HenoisfHZ '

where § € R*T and s € RTs r§ represent the estimated and original clean sources,
respectively, <,> represents the inner product of these two signals, and ||s||* =< s,5 >
indicates signal power. Scale invariance can be ensured by normalizing and to zero mean
prior to calculation.

Scale-invariant signal-to-noise ratio improvement (SI-SNRi) and signal-to-noise ratio
improvement (SDRi) were used as objective metrics to assess separation accuracy. Theorem-
type environments (including propositions, lemmas, corollaries, etc.) can be formatted
as follows:

2

Isl?
I s|I*

among them § is the estimated speech, s is the clean component of the estimated speech,
and § — s is the noise component.

SDR = 10log,, 9)

4.2.2. Language Identification

For a general language identification system, the most important thing is the identifi-
cation rate, and the accuracy of the results must be guaranteed; this is the starting point for
all evaluation metrics. Some of the more commonly used performance evaluation metrics
are Acc, Precision, Recall, Specificity, and F1. Before we classify a language, there are P target
languages and N non-target languages in the test set. After the language identification
system classifies the test set, T samples are identified as target languages, and F samples
are identified as non-target languages. Based on the actual number of target languages in
the test set and the classification of the language identification system, we can obtain the
confusion matrix for the target and non-target languages, as shown in Table 2.
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Table