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Abstract: Nowadays, people’s lives are filled with a huge amount of picture information, and image
retrieval tasks are widely needed. Deep hashing methods are extensively used to manage such
demands due to their retrieval rate and memory consumption. The problem with conventional
deep hashing image retrieval techniques, however, is that high dimensional semantic content in the
image cannot be effectively articulated due to insufficient and unbalanced feature extraction. This
paper offers the deep cross-dimensional attention hashing (DCDAH) method considering the flaws
in feature extraction, and the important points of this paper are as follows. This paper proposes
a cross-dimensional attention (CDA) module embedded in ResNet18; the module can capture the
cross-dimension interaction of feature maps to calculate the attention weight effectively because of its
special branch. For a feature map acquired by a convolutional neural network (CNN), each branch
takes different rotation measurements and residual transformations to process it. To prevent the
DCDAH model from becoming too complex, the CDA module is designed to have the characteristics
of low computational overhead. This paper introduces a scheme to reduce the dimension of tensors,
which can reduce computation and retain abundant representation. For a dimension of a feature
map, the Maxpool and Avgpool are performed, respectively, and the two results are connected. The
DCDAH method significantly enhances image retrieval performance, according to studies on the
CIFAR10 and NUS-WIDE data sets.

Keywords: image retrieval; deep hashing; zpool; attention

1. Introduction

An abundance of picture-data-processing tasks have emerged in recent years as a result
of the Internet and artificial intelligence’s rapid development [1–6]. According to Alibaba’s
data on the number of times that artificial intelligence is used, the processing frequencies
of image data are as high as 1 billion times a day. Image retrieval, as a way of extracting
similar images from large data sets, is active in a variety of applications [7–10], such as the
function of searching for objects by pictures in online shopping, etc. As an important branch
of image retrieval algorithms, deep hashing methods are popular because they not only
ensure lower storage requirements but also guarantee higher retrieval efficiency [11–15].
Deep hashing methods use deep a convolutional neural network (CNN) to learn the
high-dimensional semantic information from an image and convert high-dimensional
semantic information into low-dimensional binary code using hash functions [16–20]. Such
algorithms can effectively retain the similarity of images, compress the storage cost greatly,
and have high-speed retrieval efficiency. Data-independent hashing and data-dependent
hashing are two types of hashing algorithms, and they are introduced separately in the
following article [20–23].

In order to generate the final hash code, the data-independent hashing methods
translate the image to the feature descriptors using the random projection algorithm [9–15].
One of the downsides of such algorithms is instability, in that different hash functions
may compute completely different hash codes. At the same time, the performance of such
algorithms is poor, and the recall rate is relatively low. In order to ensure accuracy, the
length of the hash code needs to be increased [16]. The data-dependent hashing methods
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use training data to learn the hash function [17]. That is, compared to data-independent
hashing, data-dependent hashing can generate more accurate hash code.

For the deep hashing methods, they usually use a CNN to learn the higher-dimensional
semantic features of images; then, the hash function is used to map these feature maps
to the hash code [18–25]. However, a CNN has the problem that the feature extraction
is insufficient and imbalanced. The accuracy of the hash code is decreased as a result of
the inevitable quantization error that occurs during the binary mapping process while
utilizing the hash function. In order to compensate for the defects in feature extraction,
many scholars introduce attention mechanisms [2,22,26,27].

The attention mechanism can focus on key information in an image to help deep hash-
ing methods achieve a more accurate high-level semantic representation of the image. At
present, for this research, most scholars adopt the algorithm of integrating channel attention
mechanism or spatial attention mechanism in the CNN. These attention mechanisms assign
weight to the feature map by calculating channel or spatial attention. However, apart from
the complex structure of these attention mechanisms, the addition of learnable parameters
makes the training model too complex, thus causing the problem of over-fitting. Addi-
tionally, such attention mechanisms have the problem of imperfect and inaccurate weight
learning. Inspired by CBAM [28], this paper finds that the CNN which combines channel
and spatial attention mechanisms has significantly improved performance in expressing
image semantics. However, CBAM does not consider the importance of cross-dimensional
interaction. Therefore, this paper focuses on using a new attention module that can empha-
size the importance of the cross-dimensional interaction of image features to achieve better
performance with negligible computational overhead [2].

This paper devotes using a cross-dimensional attention mechanism to ensuring low
computational overhead and high efficiency. As shown in Figure 1, a cross-dimensional
attention module (CDA) is designed which consists of three branches. For input tensors,
different branches of the model adopt different rotation schemes. Finally, residual trans-
formations are used to capture the interdependence between different dimensions of the
tensor. This module can encode the cross-dimensional information of the channel and
spatial with negligible computational cost, and more critical feature representations can be
captured by emphasizing the importance of cross-dimensional interaction.

The following information contains a list of this paper’s primary contributions:

1. First, this paper designs an end-to-end learning framework: DCDAH, which obtains
paired images as inputs and finally generates discrete binary code.

2. Second, this paper proposes the CDA module which is embedded in the ResNet18. The
model emphasizes the importance of cross-dimensional dependence while calculating
the weights of channel and spatial attention, and improves the accuracy of image
feature representation with almost no additional parameters.

3. Third, this paper introduces a new scheme named Zpool to reduce the dimension
of the tensor, which can reduce computation and retain abundant representation. A
detailed introduction is in the following content. In order to obtain more discernible
hash code, the pairwise loss and balanced loss are referenced to minimize quantization
error and preserve pairwise similarity.

The rest of the article is framed as follows. Related work is elaborated in Section 2.
DCDAH’s specifics are described in Section 3. The analysis and results of the experiment
are in Section 4. Section 5 serves as the conclusion.
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Figure 1. The overall framework of DCDAH is shown below: The framework accepts pair images as
the input, and features of images are extracted via ResNet18. For feature maps that are captured after
Layer4, DCDAH inputs them to the CDA module, the attention weight is distributed by CDA, and
the feature maps are multiplied by weight. Finally, the weighted feature maps generate hash code
through the hash layer, and parameters are optimized by two loss functions.

2. Related Work

Deep hashing image retrieval algorithms are one of the deep learning image retrieval
methods; these algorithms can compress images into discrete binary codes [18,19,21].
Deep hashing methods have the advantage of low storage and faster image retrieval rate.
Therefore, deep hashing methods are widely used in many practical scenes. However,
some of the existing deep hashing methods still cannot express semantic features accurately.
How to improve the accuracy of image representation is a current research focus. Existing
hashing methods include unsupervised hashing and supervised hashing methods; this
section introduces several of them.

2.1. Unsupervised Hashing

Without employing picture label information, unsupervised hashing approaches
directly use image data to learn hash codes. In the traditional unsupervised hashing,
Gong et al. [24] propose iterative quantization (ITQ); the algorithm combines the idea of a
multiclass spectral algorithm. This technique significantly lowers the quantization error
while quantizing the hash code. However, the traditional algorithms have a limitation
in improving the retrieval performance due to the insufficient description of the image’s
underlying features. The deep unsupervised hashing algorithms use a CNN to capture
more abundant semantic features and improve the retrieval property. In the study of deep
unsupervised hashing methods, Lin et al. [16] presented the DeepBit algorithm which
combines the advantages of deep learning and adds minimization quantization error
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loss into the optimization function. DeepBit can make binary descriptors obey uniform
distribution so that the original image information is retained better. Shen et al. [29]
designed the similarity adaptive deep hashing (SADH) algorithm, which optimized the
hash code using the alternating direction of the multiplier method, thereby effectively
maintaining the similarity of the data. Zhang et al. [30] proposed deep unsupervised self-
evolutionary hashing (DUSH), which generates pseudo-pairs as supervised information
by employing a variable threshold. Thus, DUSH can effectively reduce the computational
complexity of pseudo-labels. Because of not taking advantage of the data distribution,
unsupervised hashing leads to information redundancy in the hash code.

2.2. Supervised Hashing

The supervised hashing approach thoroughly utilizes the label information to improve
the similarity matrix calculation and produce more precise retrieval results. Liu et al. [31]
proposed supervised hashing with kernels (KSH), where the kernel function is used to deal
with linear indivisibility problems. In this class of traditional supervised hashing methods,
the learning of the hash function and feature extraction process is usually divided into two
steps. These methods obviously ignore the importance of the feedback between the two.
Meanwhile, the workload of manual labeling is huge.

The performance of the deep supervised hashing approaches is superior to that of con-
ventional supervised hashing since they train the model using the picture label information.
Xia et al. [32] designed supervised hashing based on a CNN (CNNH), which is the first
hashing method combined with a neural network. CNNH can consider capturing more
delicate features of images and learning hash functions. Liu et al. [33] proposed the deep
supervised hashing (DSH) method; DSH designs a loss function to facilitate the output of
the image to approximate discrete values. Cao et al. [34] presented a pairwise cross-entropy
loss based on Cauchy distribution. When the Hamming distance between a pair of im-
ages is greater than the given Hamming radius threshold, this loss function can heavily
penalize the similarity of the images. Zheng et al. [35] proposed deep balanced discrete
hashing (DBDH); the highlight of this algorithm is that it introduces a straight-through
estimator for discrete gradient propagation. It enables the CNN to avoid quantization
errors caused by continuous relaxation when learning hash codes. Li et al. [36] designed
a deep attention-based hashing (DAH) retrieval method, where the attention is used to
construct more recognizable hash code. Jin et al. [37] put forward deep ordinal hashing
(DOH), which uses effective spatial attention to emphasize relevant information in local
space. Long et al. [26] combined an attention mechanism with a deep hashing retrieval
algorithm; the spatial and channel attention models are embedded in the CNN to improve
the ability of image feature expression. Yang et al. [38] presented a deep hashing algorithm
with parameter-free attention to improve extraction ability of image semantic, where an
energy function is used to assign attention weight for feature maps.

Most of these methods achieve performance improvement by integrating an attention
mechanism such as the channel or spatial attention algorithm which can carry out the
allocation of attention weight. However, most of these methods not only increase the model
complexity but also ignore the interaction between different dimensions of the feature map.
Inspired by [28], this paper integrates a lightweight attention mechanism CDA into the
ResNet18. ResNet18 is used to generate an image’s feature map, and the idea of CDA is
designing a branch structure to highlight the significance of cross-dimension interaction
about the feature map. After completing the weight assignment task, the hash layer is
applied to generate discrete binary code. Finally, the pairwise loss and balanced loss are
referenced to learn more precise hash codes.

3. Deep Cross-Dimensional Attention Hashing

This section of the paper provides a thorough explanation of DCDAH, including the
definition of the formula, the structure of the overall network model, and the attention
mechanism part.
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3.1. Problem Statement

A given set of data containing N images is denoted as X = {x i}N
i=1; xi is the ith image.

The corresponding image label information data set is denoted as Y = {y i}M
i=1, where yi

represents the label information of image xi. Let M represent all the image categories in
the collection. The definition of the similarity matrix is S = {s ij}. When image xi and xj
belong to the same category, sij= 1, otherwise sij= 0.

sij =

{
1, xi and xj belong to the same category
0, others

(1)

The hash method requires learning a process of mapping a set of images X to a set
of hash codes B, where B is

{
bn ∈ (+1,−1)L×N}. The letter L denotes that the hash code

is L bits long. Hence, the real-valued variable ui is generated through the CNN for each
image xi. The sign function bi= Sign(u i) is used to calculate the hash code in the end.
bi= Sign(u i), Sign(u i) = 1 when the ui> 0; otherwise, Sign(u i) = 0.

3.2. Network Architecture

The three main components of the network framework for DCDAH that is suggested
in this paper are shown in Figure 1. The backbone network of DCDAH is ResNet18, which
can fully acquire image features and avoid the problem of too much parameter calculation.
Parameter information of ResNet18 is shown in Table 1. L stands for the length of hash
codes, k for convolution kernel size, s for stride, and p for padding.

Table 1. Backbone network settings for ResNet18.

Layer Configuration

Convolution layer {64 × 112 × 112, k = 7 × 7, s = 2 × 2, p = 3 × 3, ReLU}
Maxpool {64 × 54 × 54, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU}
Layer1 {64 × 56 × 56, k = 3 × 3, s = 1 × 1, p = 1 × 1, ReLU} × 4
Layer2 {128 × 28 × 28, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4
Layer3 {256 × 14 × 14, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4
Layer4 {512 × 7 x 7, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4

Avgpool 512 × 1 × 1
Hash layer L

As depicted in Figure 1, this work adds a lightweight attention module CDA based on
ResNet18. CDA can effectively capture the cross-dimensional interaction information of
images. The attention weight is distributed by CDA which emphasizes the most relevant
features more accurately, and the interference of irrelevant information is avoided. The last
layer is the hash layer, which uses discrete gradient propagation to learn hash code.

This paper compares the feature distribution results extracted by ResNet18 and DC-
DAH. Figure 2 shows the visualization of feature activation of the two networks. Taking
the picture of the third tag as a bird as an example, it is not difficult to see that the CDA
module can better ignore the feature information irrelevant to the tag, and the activation of
features is more concentrated near the tag-related information. This verification depends
on the effectiveness of the CDA module.

3.3. CDA Model

Recent studies begin to improve the precise expression ability of image semantics by
using attention mechanisms. In this paper, a CDA attention model is designed which has
three branches. The first branch is like CBAM; spatial attention is built by this. The final
two branches are used to collect information about cross-dimension interactions between
the spatial dimensions W or H and the channel dimension C.
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Figure 2. Visualization of feature activation.

To further reduce the computation, CDA introduces Zpool. Zpool is used to connect
max-pooled and average-pooled features of a dimension to achieve reduction. Thus, the
rich representation of the tensor is well-preserved and the depth of the tensor is compressed.
Zpool can be written as:

Zpool(x) = [maxpool(x), avgpool(x)] (2)

For example, in channel dimension C, the tensor is reduced from the shape of
(C × H ×W) to (2 × H ×W). Therefore, Zpool can retain the abundant representation
of the tensor while keeping computation lightweight.

For a given input tensor χ ∈ RC×H×W , in this paper, it is input into the three branches
of the CDA. In the first branch, the channel number of the tensor χ is reduced to 2 by
Zpool. At this point, the tensor χ is transformed into a simplified tensor with the shape of
(2 × H ×W). This tensor is further reduced by a convolutional layer with kernel size K and
a batch normalization layer follows it. These two layers are denoted as Φ1(x). Through the
above steps, the shape of the tensor is compressed to (1 × H ×W). The Sigmoid activation
layer S(x) is followed and attention weight is generated when passing the tensor through
S(x). Finally, the attention weight is directly applied to the input tensor χ. This branch’s
output can be expressed as follows:

y1= χS(Φ 1(Zpool(χ))) (3)

In the second branch, in this paper, a structure is built to capture interactions between
the channel and spatial dimension. First, for the input tensor χ, it is counterclockwise-
rotated 90

◦
along the H-axis. Here, χ̆2 is used to represent this rotated vector, whose

shape is (W × H × C). Then, the tensor passes through the ZPool layer, and the tensor
is further transformed into a simplified tensor with the shape of (2 × H × C), which is
denoted as χ̆Z

2 , χ̆Z
2 = ZPool(χ̆2

)
. The batch-normalizing layer is applied after the typical

convolution layer with kernel size K on the χ̆Z
2 . This process is denoted as Φ2(x), which
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means: Φ2(ZPool( χ̆2)). The shape of the output is (1 × H × C). The Sigmoid activation
layer S(x) is followed and attention weight is generated when passing the tensor through
S(x); the output after this is S(Φ 2(ZPool( χ̆2))). The attention weight is applied to χ̆2 and
the result is recorded as χ̆2−A, χ̆2−A = χ̆2S(Φ 2(ZPool( χ̆2))). Finally, to preserve the same
shape as the initial input tensor χ, χ̆2−A is rotated 90

◦
counterclockwise along the H axis.

This step is denoted as

(

(χ̆2−A). The output of this branch can be written as:

y2 = χ̆2S(Φ 2(

(

ZPool(χ̆2))) (4)

The last branch is like the second except that the input tensor is counterclockwise-
rotated 90

◦
along the W-axis, which is denoted as χ̆3 with the shape of (H × C ×W), Then,

the tensor χ̆3 passes through the Zpool and its shape is reduced to (2 × C ×W). The output
of this layer is denoted as χ̆Z

3 , χ̆Z
3 = ZPool(χ̆3

)
. χ̆Z

3 goes via the batch normalization layer
after being passed through the ordinary convolution layer with kernel size K. This process
is denoted as Φ3(x), which means: Φ3(ZPool( χ̆3)). The shape of the output is (1 × C ×W).
Through the Sigmoid activation layer S(x), the output after this is S(Φ 3(ZPool( χ̆3))). In
the following calculation, the input tensor χ̆3 is then given the attention weight, χ̆3−A is
recorded for the outcomes, and χ̆3−A = χ̆3S(Φ 3(ZPool( χ̆3))). In order to keep the same
shape as χ, χ̆3−A is turns 90

◦
degrees in the direction of rotation W; this step is denoted as(

(χ̆3−A). The output of this branch can be written as:

y3 = χ̆3S(Φ 3(

(
ZPool(χ̆3))) (5)

In summary, for the input tensor χ ∈ RC × H × W , the output tensor y which is allocated
attention weight by the CDA can be expressed as:

y =
1
3
(y 1+y2+y3) (6)

3.4. Measure

The Hamming distance between the two images is written as:

dist(b i, bj) =
1
2
(L − < b i, bj >) (7)

L denotes the hash code’s length; < bi, bj > represents the inner product of bi and bj.
It is denoted as:

I(b i, bj) =< bi, bj>= bT
i bj (8)

It can be deduced that when given the hash codes bi and bj corresponding to images
xi and xj, the conditional probability of the corresponding similarity label sij is:

p(sij|bi, bj) =

{
S(I(b i, bj

)
), sij= 1

1− S(I(b i, bj
)
), others

(9)

where S(x) is the Sigmoid function.
Finally, in the case of given tag information, the expression of the maximum posterior

estimate is:

log p(B|S) ∝ log p(S|B)p(B) =
n

∑
i,j=1

log p(s ij|b i, bj)p(b i)p(b j) (10)

In this paper, a negative logarithmic likelihood loss function is used to learn hash code.
Between similar images, this loss function can, as closely as feasibly possible, reduce the
Hamming distance. That is, the hash codes of the same semantic images need to be similar.
Additionally, for the dissimilar images, this loss function can encourage the increase in
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the Hamming distance between them. The learned hash code maximizes the similarity
between images. The negative logarithmic likelihood loss function is expressed as L1:

L1= − ∑
sij∈S

(s ij I(b i, bj) − log(1 + e I(bi ,bj))) (11)

Meanwhile, for the given hash code bi, the nth element of hash code bi is denoted
as b(n)i , which obeys the discrete probability distribution {+1, −1}. In order to balance
hash codes, this paper expects either +1 or −1 to occur with equal probability. Therefore,
mean(x) is introduced to realize the calculation of the average value of elements in the

vector [17,29]. Through the formula ∑K
n=1

∣∣∣mean(b (n)
i

)∣∣∣2, the learned hash code has the
same number of +1 and −1 as possible. Additionally, hash codes become more discernible.
The balanced loss function is denoted as:

L2 =
K

∑
n=1

∣∣∣mean(b (n)
i

)∣∣∣2 (12)

Thus, the overall loss function can be obtained:

min L
b(n)i , b(n)j

= L1+αL2 (13)

where the importance of loss L2 is measured by the hyperparameter α. It is verified by
experiments that α = 0.1 has the best effect.

3.5. Learning

After determining the loss function, by computing the gradient of the loss function,
backpropagation is carried out, and the network parameters are optimized. Algorithm 1
illustrates the DCDAH model’s training procedure. The parameters of each layer of the
network are denoted as ξ. The output of the network is expressed as ψ(x i ; ξ), WT ∈ R512×L

is a representation of the weight matrix transposed, and τ ∈ RL×1 symbolizes the deviation
vector. Finally, the mapping from feature representation to the hash code is accomplished
using the fully connected layer. Let U ={ui}n

i=1 be the real-value feature variable learned
by the CNN; ui can be expressed as:

ui= WTψ(x i ; ξ) + τ (14)

For the DCDAH model, parameters that can be optimized include ξ, τ, W and bi.
For parameter bi:

bi= sign(u i) (15)

where sign(x) is represented by:

sign(u i) =

{
1 when ui > 0
−1 others

(16)

In the process of backpropagation optimization of bi, this paper selects the Htanh(x)
function instead of sign(x) for backpropagation:

Htanh(u i) =


1, ui > 1
ui, −1 < ui< 1
−1, ui < −1

(17)
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The backpropagation by the Htanh(x) can effectively avoid the problem that the
sign(x) function cannot be backpropagated. For parameter ξ:

∂L
∂ψ(x i ; ξ)

= W
∂L
∂ui

(18)

where:
∂L
∂ui

=
1
2 ∑

j:sij∈S
(a ij−sij)uj +

1
2 ∑

j:sji∈S
(a ji−sji)uj+η

∂L2

∂ui
(19)

and:

∂L2

∂ui
=

∂ ∑K
n=1

∣∣∣mean(Htanh(u i
(n)))

∣∣∣2
∂ui

=

 2
K
∑

n=1

∣∣∣mean(Htanh(u i
(n)))

∣∣∣, −1 < ui< 1

0, others
(20)

For parameter W:
∂L
∂W

= ψ(x i ; ξ)(
∂L
∂ui

)T
(21)

For parameter τ:
∂L
∂τ

=
∂L
∂ui

(22)

Algorithm 1. DCDAH.

Input:
Data set X = {x i}N

i=1 and corresponding image label information data set Y = {y i}M
i=1.

Output:
The updated parameters ξ, τ, W and bi.
Initialization:
The parameters of the ResNet18 model are initialized using gaussian distribution.
Repeat:
Randomly extract small batches of image data from the input images;
Carry out forward propagation and calculate ψ(x i ; ξ);
Calculate ui= WTψ(x i ; ξ) + τ and bi= sign(u i);
Calculate the partial derivatives according to (18), (21) and (22);
Carry on the back propagation and update the parameters iteratively.
Until:
Complete a certain number of iterations.

4. Experiments

The real performance of the DCDAH model in two public data sets is demonstrated in
this portion.

4.1. Data Sets

1. CIFAR-10 data set: This data set contains 60,000 RGB images. This data set is a
single-label data set and it contains 10 categories with 6000 images per category. In the
experiment of this paper, 500 images were randomly selected from each category to form
the training set, and 100 images from each category were selected to form the test set.

2. NUS-WIDE data set: This data set contains 269,648 images and is a multilabel
data set. In this paper, 195,834 images in 21 categories were selected. Then, 500 images
were randomly selected from each category to build the training set, and 100 images were
randomly selected for each category to build the test set.

4.2. Evaluation Index

In this paper, four evaluation indicators were used to assess the effectiveness of the
DCDAH model. They are the following: the mean average precision (mAP), the precision
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curve within the Hamming distance 2 (P@H = 2), the precision–recall curve (PR), and
the curve of the top 1000 search results (P@N). The experiments used mAP@ALL for
the CIFAR10 data set and mAP@5000 for the NUS-WIDE data set in order to accurately
compare the different approaches.

In this paper, a comparative experiment was conducted under the premise of a
ResNet18 and Pytorch framework. Comparative studies demonstrate the superior re-
trieval performance of DCDAH. In this paper, algorithms such as DFH [39], DCH [34],
DBDH [35], DSDH [40], DSH [33], DTSH [41], HashNet [42] and IDHN [43] were selected
for performance comparison.

In Table 2, the experimental setup for this paper is displayed. In this paper, the
identical training set and test set were used by all methods. Additionally, the learning rate
was set to 5 × 10−5, the mini batch size of pictures was set to 128, and the weight decay
parameter was set to 1 × 10−5. The network model was optimized by the root mean square
prop (RMSProp).

Table 2. Experimental environment.

Item Configuration

OS Ubuntu 16.04(×4)
GPU Tesla V100

As shown in Table 3, in this paper, A2 Attention [44], BAM [45] and CBAM [28] were
selected from the experimental comparison algorithms to compare the computational cost
with our module. It can be seen from the experimental results that compared with the
mainstream network framework, DCDAH had low flops. At the same time, our method
introduced the least number of parameters, which verifies the lightweight nature of the
CDA attention mechanism.

Table 3. Comparison of the complexity of DCDAH with other mainstream models in terms of network
parameters and floating-point operations per second (FLOPs).

Model Parameters FLOPs

ResNet18 22.36 M 7.29 G
ResNet18 + A2 Attention 22.62 M 7.31 G

ResNet18 + BAM 22.44 M 7.30 G
ResNet18 + CBAM 22.40 M 7.30 G

ours 22.36 M 7.29 G

4.3. Hyperparameter Analysis

In Equation (13), the importance of loss L2 is measured by the hyperparameter α. In
this section, the CIFAR10 and NUS-WIDE data sets were used in the parameter modifica-
tion experiment.

Figure 3 shows the effect of adjusting the parameter α on mAP in different data sets.
For the experimental results on the CIFAR10 data set, it is obvious that when the value of
α is greater than 0.1 and keeps increasing, the mAP of DCDAH decreases with different
length hash codes. The same happens when the value of α is less than 0.1. For the NUS-
WIDE data set, changes in α have less effect on the mAP of DCDAH. However, in the
experimental data from Table 4 with hash code lengths of 32 bits and 64 bits, respectively,
when α = 0.1, the mAP is in a peak state. To sum up, the value of parameter α is selected
as 0.1.
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Table 4. mAP of different α.

α
CIFAR10 (mAP@ALL) NUS-WIDE (mAP@5000)

16 bit 32 bit 48 bit 64 bit 16 bit 32 bit 48 bit 64 bit

0.01 0.810 0.833 0.806 0.827 0.826 0.842 0.851 0.853
0.05 0.810 0.814 0.844 0.821 0.821 0.841 0.847 0.853
0.1 0.827 0.845 0.844 0.838 0.822 0.845 0.851 0.857
0.2 0.811 0.824 0.824 0.838 0.820 0.840 0.850 0.851
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0.4 0.805 0.840 0.829 0.821 0.824 0.840 0.847 0.854
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4.4. Ablation Experiments

In this paper, we extended ResNet18 with the CDA attention module to enhance the
image representation capability. To verify the validity of the CDA module, we conducted
a comparative test on DCDAH and its related variants. DBDH was selected to be the
baseline. DCDAH-1: DCDAH chooses ResNet18 as a backbone. DCDAH-2: DCDAH with
ResNet18 which adds DCA. In this paper, we carried out a comparative experiment on the
CIFAR10 data set and analyzed experimental data about a hash code length of 32 bits. The
experimental results are shown in Table 5:

Table 5. Comparative experiment.

Framework DBDH DCDAH-1 DCDAH-2

AlexNet
√

ResNet18
√ √

DCA Module
√

mAP(32 bit) 0.773 0.814 0.845

As shown in Figure 4, this paper shows the PR curve and P@N curve of several
variants. The mAP value was increased by 3.1% when the CDA module was added to
DCDAH-1. From the PR curves in Figure 4, the PR curve of DCDAH-2 completely wrapped
the PR curve of the other two variants. Additionally, it can be proved by the P@N curves
that the curve was significantly higher than others after using the CDA model, which
further proves the effectiveness of CDA.
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4.5. Analysis of Experimental Results

Table 6 displays the experimental findings from the mAP comparison on the CIFAR10
and NUS-WIDE data sets:

Table 6. Results of comparative experiments.

Method
CIFAR-10 (mAP@ALL) NUS-WIDE (mAP@5000)

16 bit 32 bit 48 bit 64 bit 16 bit 32 bit 48 bit 64 bit

DCDAH 0.827 0.845 0.844 0.838 0.822 0.845 0.851 0.857
DBDH 0.798 0.814 0.815 0.820 0.811 0.834 0.839 0.849
DCH 0.756 0.805 0.821 0.800 0.785 0.799 0.807 0.798
DFH 0.584 0.680 0.795 0.822 0.784 0.815 0.806 0.817
DSH 0.555 0.479 0.562 0.499 0.676 0.759 0.785 0.783

DSDH 0.765 0.806 0.812 0.802 0.768 0.782 0.773 0.765
DTSH 0.695 0.784 0.804 0.805 0.815 0.834 0.837 0.832

HashNet 0.543 0.646 0.746 0.764 0.718 0.802 0.809 0.742
IDHN 0.777 0.777 0.728 0.736 0.786 0.766 0.727 0.566

For the CIFAR10 data set, among the hash code of different lengths, compared with
DBDH, the mAP of DCDAH could achieve boosts of 2.9%, 3.1%, 2.9% and 1.8%. For the
NUS-WIDE data set, compared with DBDH, the mAP of DCDAH in different lengths of
hash code could improve by 1.1%, 1.1%, 1.2% and 0.8%. Therefore, compared with the best
mAP, DCDAH achieved an increase of 2.7% and 1% in the average mAP for different bits
on two data sets. Compared with the DSDH, which is a classic method, for the CIFAR10
data set, DCDAH achieved 6.2%, 3.9%, 3.2% and 3.3% improvement. On the NUS-WIDE
data set, the promotion rates of the mAP in the different bits were 5.4%, 6.3%, 7.8% and
9.2%. The experimental findings demonstrate that DCDAH is more robust.

The PR curve takes recall as the abscissa and precision as the ordinate. One can tell
which strategy performs better by observing whether the PR curves of the two methods
completely encircle one another. Therefore, we chose PR curve to compare the performance
of algorithms.

The PR curves are shown in Figures 5 and 6; for the data set CIFAR10, it is evident
that the curve of the DCDAH method wraps the other methods in the results of differ-
ent hash code lengths. Therefore, among all the contrasting methods, DCDAH had the
best performance. For the data set NUS-WIDE, due to the complexity of the data set,
the improvement achieved by DCDAH was not as obvious as the improvement in the
CIFAR10 data set. However, the performance of DCDAH was still the best among these
comparison algorithms.
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Figure 5. PR curves of all algorithms on CIFAR10 when the hash code takes 4 different lengths.

To achieve the goal of only O(1) searches for the Hamming rank, P@H = 2 evaluation
index is very important for the retrieval of binary space. Figure 7 illustrates that DCDAH
achieves the maximum accuracy on the two data sets when comparing the results of
P@H = 2 for all methods. In this paper, we selected hash code lengths of 16 bits, 32 bits,
48 bits and 64 bits for comparison experiments, and drew the curves of all comparison
algorithms. The results validate that DCDAH can concentrate on more relevant points than
all compared methods.

The P@N curve is widely used as another important evaluation index. The experi-
mental choice returns the accuracy of the first 1000 images. Figures 8 and 9 show the P@N
curves of the CIFAR-10 and NUS-WIDE data sets, which proves that DCDAH achieves
better accuracy than other algorithms. Specifically, in Figure 8a, the P@N curve of DCDAH
is significantly higher than DBDH.
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As shown in Figure 10, this paper makes a visual comparison of the hash codes
generated by DCDAH and DBDH on the CIFAR10 data set.

Comparing the results of DBDH, it can be seen from Figure 10 that the hash codes
generated by DCDAH are more compact within the same class, and the hash code distance
between different classes is also enlarged. This result shows that the hash code generated
by the DCDAH is more discriminating and can more accurately represent the image.
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5. Conclusions

How to improve accuracy while ensuring high retrieval speed is a hot research topic
in the field of hashing image retrieval. The recently proposed hashing algorithms solve the
problem of insufficient feature extraction by integrating an attention module. However,
channel and spatial attention currently have limited performance improvement due to
imbalanced weight distribution. Additionally, many parameters will be introduced to
increase complexity of the model. Therefore, this paper proposes the DCDAH method to
improve retrieval performance by integrating CDA. The CDA module effectively captures
and emphasizes the interaction information between different dimensions of a feature
map through its ingenious branch structure, which can make the image representation
more accurate. Moreover, this paper introduces Zpool to reduce the dimension of tensors,
which allows the CDA module to accomplish the task of attention weight assignment
with negligible computational overhead. This paper proves the validity of the DCDAH
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framework through many experiments. Experiments on CIFAR10 and NUS-WIDE showed
that DCDAH is superior to the recently proposed hashing methods.
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