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Abstract: In embedded electronic system applications being developed today, complex datasets are
required to be obtained, processed, and communicated. These can be from various sources such
as environmental sensors, still image cameras, and video cameras. Once obtained and stored in
electronic memory, the data is accessed and processed using suitable mathematical algorithms. How
the data are stored, accessed, processed, and communicated will impact on the cost to process the
data. Such algorithms are traditionally implemented in software programs that run on a suitable
processor. However, different approaches can be considered to create the digital system architecture
that would consist of the memory, processing, and communications operations. When considering
the mathematics at the centre of the design making processes, this leads to system architectures
that can be optimized for the required algorithm or algorithms to realize. Mathematics of Arrays
(MoA) is a class of operations that supports n-dimensional array computations using array shapes
and indexing of values held within the array. In this article, the concept of MoA is considered for
realization in software and hardware using Field Programmable Gate Array (FPGA) and Application
Specific Integrated Circuit (ASIC) technologies. The realization of MoA algorithms will be developed
along with the design choices that would be required to map a MoA algorithm to hardware, software
or hardware-software co-designs.

Keywords: embedded systems; MoA; FPGA; ASIC; tensor products

1. Introduction

Embedded electronic system applications commonly realized today are required to
process large amounts of data in order to undertake value-added operations such as
embedded Machine Learning (ML) [1] and Deep Learning (DL) [2] that allow the system
and hence the user to make sense of the available provided data. Complex datasets are
required to be obtained, processed, and communicated. These can be from various sources
such as environmental sensors, still image cameras, and video cameras. The suitably
formatted data are available in memory and conceptually arranged into multi-dimensional
arrays. Once obtained and stored in electronic memory, the data are accessed and processed
using suitable mathematical algorithms. How the data are stored, accessed, processed,
and communicated will impact on the cost to process the data. Such algorithms are
traditionally implemented in software programs that run on a suitable processor. Standard
electronic system architectures utilize off-the-shelf processors such as the Central Processing
Unit (CPU) [3] and Graphics Processing Unit (GPU) [4]. Recently, the processor selection
option has been augmented by the Tensor Processing Unit (TPU) [5]. The processor
architecture, access to suitable memory, and the available communications will impact the
design efficiency. This design efficiency will lead to a cost associated with the different
parts of the software and hardware such as required processing time and the electronic
system power consumption, considering both static and dynamic power.
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Extending the standard architecture approaches where off-the-shelf devices are ob-
tained and the different Integrated Circuits (ICs) that will be connected together to im-
plement specific system requirements leads to custom designs utilizing the Field Pro-
grammable Gate Array (FPGA) [6] and the Application Specific Integrated Circuit (ASIC) [7].
Such approaches allow for custom digital system architectures to be designed, developed,
and deployed to best suit the requirements of a particular application. This allows for
the algorithms to be implemented in software, hardware, or as hardware-software co-
designs where the implementation approach would be selected for the application or range
of applications.

Different approaches can be considered to create the digital system architecture that
would consist of the memory, processing, and communications operations. Considering
the mathematics at the centre of the design making processes leads to system architectures
that can be optimized for the required algorithm or algorithms to realize. Mathematics of
Arrays (MoA) [8] is a class of operations that supports n-dimensional array computations
using array shapes and indexing of values held within the array. This, for example, includes
the ability to support tensor inner and outer products. With this, a tensor is considered an
n-dimensional array that can be processed using summation/subtraction and multiplica-
tion/division operations. When considering multiplication of arrays, different products
such as the tensor inner and outer products as well as vector and matrix multiplications are
possible, and a combination of these, and other, operations would be required.

In this article, the concept of MoA is considered for realization in software and hard-
ware using FPGA and ASIC technologies. The realization of MoA algorithms will be
presented along with design choices that would be required to map a MoA algorithm
to hardware, software or hardware-software co-designs. With reference to a developed
algorithm before and after MoA optimization, the implementation of the algorithm in
software (using Python [9] and C [10]) and hardware (using the Verilog Hardware De-
scription Language (HDL) [11]) will be presented. The hardware and C-language software
versions of the algorithm will then be presented for an implementation within a Xilinx
Artix-7 FPGA [12]. The overall concept to develop is shown in Figure 1. This concept will
be elaborated in the article and is used for development and evaluation purposes.

MoA is used for a number of very important theoretical and practical reasons relevant
to Portable, Performant, and Productive Parallel Programming, often referred to as the P3
problem, formulated by M. Wolfe [13]. MoA is proposed as a solution. First, all of Tensor
Algebra in libraries such as NumPy and Linpack can be formulated in MoA, and thus can
be reduced through Psi Reduction (composition of indexing operations based on MoA’s
Psi indexing function and shapes), to a semantic (Denotational), Normal Form (DNF)
that reveals the minimum amount of computation to be performed where all parallelism
is revealed. Thus, all AI applications utilizing languages and libraries, such as NumPy,
Julia, and MATLAB, can be further optimized, noting that MoA’s matrix multiplication
outperforms standard DGEMM libraries [14,15]. Next, as MoA views the data, and all
machine components as arrays with shapes, indexing of data can easily be mapped to
indices of architectural components: processors, memories, interconnects, where cost
functions can be calculated deterministically. Finally, the potential exists to remove all
decisions from the user, thus guaranteeing Productivity while insuring high Performance
and Portability.

The article is structured as follows. Section 2 will provide an overview of MoA, its prin-
ciples, and application in the context of the work presented. How an algorithm consisting of
array products can be optimized with a mapping to contiguous memory will be presented.
Section 3 will discuss the design of digital systems using FPGA and ASIC technologies. This
will identify the different approaches that can be taken to take a concept through to physical
realization with reference to MoA requirements. In this article, the FPGA will be utilized
as this type of electronic device that supports rapid prototyping and cost-effective design
modification. Section 4 will present the mapping of MoA algorithms to both software and
hardware realizations, as personal computer (PC) based software programs/scripts and as
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both hardware and software realizations within the FPGA. Design choices and implications
of such choices will be considered. Section 5 will present a case study algorithm develop-
ment and deployment within a Xilinx Artix-7 FPGA. The initial algorithm consisting of
array product and accumulation operations will be developed in Python and NumPy [16].
MoA optimization of this algorithm will be undertaken, breaking down the products into
nested for loops, and the optimized algorithm will be verified in both Python/NumPy
script and C program implementations. To demonstrate the principles, a small dataset
modelled as two 2× 2. matrices will be considered. In general, the datasets would be larger,
however for demonstrating the principles then the size of the dataset was deliberately
limited. With larger datasets, the algorithm would not change but the processing time
and data storage memory requirements would increase. The optimized algorithm will
then be mapped to a software implementation based on an embedded Xilinx MicroBlase
Reduced Instruction Set (RISC) microprocessor [17] and a hardware implementation based
on a synthesized Verilog HDL design description. The design process and implementation
results will be presented. Finally, Section 6 will conclude the article.

Figure 1. Concept to develop.

2. Mathematics of Arrays Principles and Application

A goal of MoA research is to algebraically specify a problem, in whatever semantically
equivalent syntax, and mechanically transform that specification to optimal computational
platforms by mapping indices of data to indices of architectural components, e.g., regis-
ters, processors, and memory [18,19]. MoA is a mathematical theory, not a programming
language. It is like Calculus where formulations are made and derived by hand with
automation learning from such designs. Numerous formulations of important algorithms
have been mechanically transformed by hand, for example QR, LU, FFT, KP, and KR,
through compositions of indexing operations, referred to as Psi Reduction. Automated
platforms are currently under development [20] to map indices of data to indices of archi-
tectural components while incorporating cost functions [21–24].

2.1. Why a New Theory of Arrays?

Any reader preferring an overview of this subject is encouraged to just read the ital-
icized sentences at the end of this sub-section. Linear, and Multilinear Algebra, Matrix
Operations, Decompositions, and Transforms dominate the IoT (Internet of Things), AI
(Artificial Intelligence), ML (Machine Learning), and Signal Processing applications. In par-
ticular, General Matrix Matrix Multiplication (GEMM) [14,15] and the Kronecker Product
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(KP) are the most common [25] products. The Khatri-Rao (KR), i.e., parallel KPs, was re-
ported to subsume 90% of all IoT computation at Siemens in Munich [26]. In AI, Recurrent
Neural Networks (RNNs) can be difficult to deploy on resource constrained devices. KPs
can compress RNN layers by 16 - 38 times with minimal accuracy loss [27]. Both, MM and
KP occur often and in multiples [28] within today’s software AI tools, e.g., Tensorflow
and Pytorch, written in Python and NumPy. Due to the use of interpretive languages that
are utilized to formulate these tools, even with NumPy, and other software accelerators to
speed up interpretation, special purpose hardware is being explored, e.g., GPUs and TPUs,
as an assist (co-processing). Even with all this, the necessary speeds and sizes of matrix
operations needed are not being realized.

In MoA, the theoretical foundations start with shapes and the Psi indexing function.
Together they can define arbitrary array operations that, when composed, yield a seman-
tic/Denotational Normal Form (DNF), or least amount of computation, and memory access,
needed for the algorithm while revealing all parallelism. From the DNF, loops bounds
are partitioned, "dimension-lifted", to map to the hardware. MoA views the hardware as
arrays: indices of data to indices of machine attributes (registers, memories, processors),
combined with costs [8,29–31]. MoA is Turing Complete, and has the Church-Rosser (CR)
property [32], and when combined with the Lambda Calculus [33], two array programs
can be proven equivalent.

Existing array theories and compiler optimizations on array loops, are proper subsets of
MoA. All of NumPy’s array and tensor operations can be formulated in MoA. In MoA one
algorithm, thus, one circuit, describes the Hadamard Product, Matrix Product, Kronecker
Product, and Reductions(Contractions) versus four. Consequently less circuitry, power,
and energy.

2.2. The Simplicity of MoA: Shapes and the Psi Function

Although MoA’s algebra was influenced by Iverson’s APL [34] and Abram’s shapes
and indexing tables [35], it is MoA’s Psi Function, ψ, with shapes that defines everything.
Any mathematical quality: group, ring, field, ..., could be added to MoA’s indexing calculus.
The idea of MoA and Psi Calculus, starts with a scalar, σ, and it’s shape ρσ, an empty vector,
denoted by <> or Θ. Since a vector is an array, it has a shape, (ρ <>) ≡< 0 >, the one
element vector containing the integer 0, denoting a scalar is a 0-dimensional array. Thus,
from the shape, we can determine dimensionality, (ρ(ρσ))[0] ≡< 0 > [0] ≡ 0 and the total
number of components, π(ρσ) ≡ π <>≡ 1, in the array. Algorithms on shapes describe
how to index arrays with Psi and are defined, such that, Psi takes a valid index vector, or an
array of valid index vectors, and an array as arguments. For example, in the scalar, σ, case,
<> ψ σ. Next, 2 scalars(0-d) and operations between them can be considered, with an
extension to operations with n-dimensional (n-d) arguments.

Scalar operations are at the heart of computation, σl f σr, and in general for n-d arrays,
ξl f ξr, where f is an arbitrary scalar function.

Thus, in general,

∀~i 3 0 ≤∗~i <∗ ρξl
~i is a valid index vector.

~iψ(ξl f ξr) ≡ (~iψξl) f (~iψξr)

That is, indexing distributes over scalar operations, or in compiler optimization terms,
loop fusion.

For a scalar there is only one valid index ,~i is <>, the empty vector.

<> ψ(σl f σr) ≡ (<> ψσl) f (<> ψσr)(DNF)
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Indexing distributes over scalar operations.

≡ (rav σl)[γrow(<>;<>)] f (rav σr)[γrow(<>;<>)]

Relating the DNF to the Operational Normal Form (ONF). rav flattens the array in
row major. γrow gets the offset using index and shape.

≡ (rav σl)[0] f (rav σr)[0] This is the ONF.

Applying the definition of γrow in order to get 0.

≡ (@σl + 0) f (@σr + 0) This is the generic form to build.

Bracket Notation relates to the ONF, or how to build the code, through γ and pseudo-
code, i.e., rav(~iψξ) ≡ (rav ξ)[γ(~i; ρξ)]. With a family of gamma, γ, functions, e.g., row
major, column major, a Cartesian index is related to an offset of the array in memory laid
out contiguously. rav flattens an array based on it’s layout. Subscripts relate to left or right
arguments and superscripts specify dimensionality. Refer to [8] for all MoA definitions.

With this, introduce the important identify that is true in general for n-d arrays,
denoted by ξ:

(ι(ρξ))ψξ) ≡ ξ

This means, with an array’s shape, ρξ, generate an array of indices, ι(ρξ). Then, using
that array as an argument to Psi, the original array ξ, is returned.

In the scalar case, where σ denotes a scalar,

((ι(ρσ))ψσ) ≡ σ

The shape of a scalar is the empty vector <> and, and the only valid index a scalar
has is the empty vector, <>.

(ι <>)ψσ ≡ σ

<> ψσ ≡ σ

Thus, as long as we can get shapes, e.g., ρξ, we can get all indices from shapes,
e.g., ι(ρξ)) that have the properties of the ψ function. This is true in general, no mater what
the dimensionality of the array [8], including scalars, a 0-dimensional array.

Building upon scalar operations, and extending to scalar vector operations, introduced
as scalar extension, later generalized as the outer product. The generalization is completed
by adding reductions/contractions and, the inner product (defined using reduction and outer
product). Mullin’s research connects these four ideas formulated mathematically in MoA;
scalar operations: Matrix Multiplication (MM), Hadamard Product (HP), and the Kro-
necker Product (KP) using one algorithm/circuit (ipophp) [36,37]. These designs were
extended to Blocked matrix matrix multiplication by first formulating in MoA, then derived,
built, and tested in C, proving it’s performance exceeds modern DGEMM libraries [14,15].
From these experiments, it became clear that a general purpose machine, e.g., cache mem-
ory design, languages, Operating Systems (OSes), compilers, ..., would not suffice for
optimal array computation. Memory management, resource management, and the ability
to control and optimize array computation was difficult if not impossible. Much infor-
mation about the machines was either inaccurate, or was not divulged. Consequently,
guided experiments with sophisticated scripts that overlay performance plots, helps to
obtain essential, unknown variables in a developing theoretical MoA model of computation.
This information guides the research herein. Research continues to validate that the more
shape aware the Operational Normal Form (ONF) is of data and hardware, the easier it
is to use special purpose hardware to obtain large amounts/blocks of data(strided DMAs
and RMAs, buffers, PIMs,...), that could easily use pre-scheduled information of sizes and
speeds, up and down the memory hierarchy, deterministically.
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MoA defines all operations using shapes and the Psi indexing function. Hence, when
operations are formulated in the MoA algebra, they can be reduced through Psi Reduction
to a semantic/denotational normal form (DNF), i.e., Cartesian indices of all operations are
composed. Then, one of the mapping functions, e.g., γrow. There are a whole family of γ,
layout functions, e.g., γrow, γcol , andγsparse, that transform an index to an offset in memory,
the ONF, or how to build it with knowledge of data layout that capitalizes on starts. stops.
and strides [38]. Next, formulating dimension lifting, i.e., partitioning shapes, leads to
mapping data to hardware [30]. Combined with Lambda Calculus, iteration, sequence,
and control [33], we have a Turing complete paradigm to reason about array computation in
general. These fundamentals allow one to define and optimize programs in any domain that
use the algebra and could be enhanced subsets of any language with arrays, e.g., Fortran,
Python, or Julia [21]. That is, when there is semantic equivalence across programming
languages, soft or hard, automatic linear and multi-linear transformations are easily applied,
proving correctness by construction. MoA is a Universal Algebra than can optimize all
domain specific languages that use arrays/tensors as their primary data structure.

2.3. Why MoA Inner and Outer Products?

Tensor contractions are 3-d extensions of the matrix multiplication [39]. Thus, optimiza-
tions for higher dimensional contractions using plus and times (addition and multiplication)
are also needed. In MoA, the formulation of the inner uses the outer product, noting the
degenerate form of the outer product, is scalar operations. When this is combined with re-
duction/contraction, i.e., reducing a dimension through addition, or other scalar operation,
we have higher dimensional HP, KP, and MMs in one algorithm/circuit (ipophp) or many
parallel 2-d versions. An example will help in understanding these concepts.

2.4. Examples: MM, KP and, HP

In order to explain why the MoA design and implementation outperforms classical
designs, and why MoA is a model of array computation, consider an example with two
3 by 3 matrices and look at the memory access patterns for the Kronecker and Matrix
Products, initially performed classically and then in MoA. This can then be extrapolated
to 3-d and above. Higher-dimensional SVDs and FFTs, use the KP. When investigating
MoA optimizations of these algorithms, or multiple uses of these algorithms, it is not
the arithmetic complexity that changes, it is the IO complexity and contiguous memory
access, combined with regular memory access patterns, governed by shapes, that yields
a higher performance. Once the ONF is obtained, dimension lifting is applied. That is,
shapes are partitioned, and when combined with memory access patterns, that are related
to the memory hierarchy, it becomes possible to calculate and provide apriori knowledge to
hardware, e.g., prefetchers, DMAs, RMAs, ..., memories, or any special purpose hardware
or memories amenable to regularly strided, memory access patterns.

Notice that in Figure 2, the classical KP of 2-d matrices yields a larger 2-d matrix and
necessitates multiple long strides to place each block in the new larger array. The amount
of space changes in the same way for both algorithms but in MoA 2, 2-d arrays using an
outer product would yield a 4-d array, with all array accesses contiguous. In the case of
Figure 2 the matrix becomes a 9 by 9, and in MoA, a 3 by 3 by 3 by 3, that gets transposed
and reshaped to 2-d. This concept is extremely important with multiple KPs [28] when
only one transpose is used after many multiple contiguous operations and is used with
reshape, to permute the indices into their final strided matrix locations. Additionally, notice
scalars from the left argument are used with all of the right argument, an outer product,
also called scalar-extension.

Now considering the MM as shown in Figure 3. It too has large strides to perform the
classical row/column operations and gets more complicated as the MMs become 3-d tensor
contractions. If done using MoA, only accumulating scalar vector operations are performed.
The only thing different form KP, is the accumulation. For n-d, everything remains the
same, and scalar vector operations are performed. In Figure 3, for MoA, the entire 0th row
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of the result is obtained by the summation of the following products (0,0)th component
of the left argument times the 0th row of the right argument, (0,1)th component of the left
argument times the 1st row of the right argument, (0,2)th component of the left argument
times the 2nd row of the right argument.

0 1 2
3 4 5
6 7 8

 KP

 9 10 11
12 13 14
15 16 17

 is



0×

 9 10 11
12 13 14
15 16 17

1×

 9 10 11
12 13 14
15 16 17

2×

 9 10 11
12 13 14
15 16 17


3×

 9 10 11
12 13 14
15 16 17

4×

 9 10 11
12 13 14
15 16 17

5×

 9 10 11
12 13 14
15 16 17


6×

 9 10 11
12 13 14
15 16 17

7×

 9 10 11
12 13 14
15 16 17

8×

 9 10 11
12 13 14
15 16 17




Figure 2. Kronecker Product.

0 1 2
3 4 5
6 7 8

 MM

 9 10 11
12 13 14
15 16 17

 is

((0× 9) + (1× 12) + (2× 15)) ((0× 10) + (1× 13) + (2× 16)) ((0× 11) + (1× 14) + (2× 17))
((3× 9) + (4× 12) + (5× 15)) ((3× 10) + (4× 13) + (5× 16)) ((3× 11) + (4× 14) + (5× 17))
((6× 9) + (7× 12) + (8× 15)) ((6× 10) + (7× 13) + (8× 16)) ((6× 11) + (7× 14) + (8× 17))


Figure 3. Matrix Multiplication.

So, for both MM and KP, all array access is contiguous. MM uses KP creating one
algorithm that subsumes scalar, vector and tensor operations on today’s GPUs and is the
basis for this case study to investigate building an MoA OS and Machine.

This case study will investigate how shapes affect design and size of memories relative
to computational units. MoA will be used to explore how relationships of algorithms
and memory access patterns help to optimize algorithms across many domains that use
tensors and arrays. These studies will yield information to move forward with an MoA
OS that manages and optimizes all memory and computational resources, starting with
memory management.

General Algorithms: Kronecker: FFT and Wavelets

When more relationships can be found between algorithms, optimizations can be
made in software and hardware, e.g., the KP is used to define the FFT, the Haar Wavelet is
a subset of the FFT’s memory access patterns, and PDE solvers are related to FFT’s access
patterns. Identifying relationships enable the designer to develop a single circuit thus
enabling less circuitry, less power, and less energy. Once patterns are found, starts, stops
and strides can be assigned dynamically within the hardware similar to the combined MM,
KP, HP circuit developed by the authors.

3. Digital Systems Design Using Field Programmable Gate Array and Application
Specific Integrated Circuit Technologies

Within electronic systems derived and utilized today, it is typical for the core functions
of the system to be implemented using digital logic circuits supported with various types of
memory for data and program storage. There are multiple approaches that can be adopted
to realize a working solution. Considering the implementation approaches, the typical
approaches considered are:

1. Software programmed processor. A standard processor architecture based on the CPU,
GPU or TPU would be used (or created as a custom architecture processor) with the
aim to run a suitable software program. This could target a PC application or an em-
bedded (system) application. The selection of the processor and overall system would
need to be based on the target application, whether it is aimed at general-purpose
or application-specific needs. The ability to initially program and then re-program
the system operation multiple times by changing the software program would be an



Information 2022, 13, 528 8 of 20

integral part of the system functionality. Typically, C and C++ programs are created.
Whilst predefined processor architectures may be suitable for many applications, it
may be necessary to consider modifying an available processor architecture to im-
prove performance. For example, in ref. [40], ten reasons for optimizing a processor
are presented.

2. Field Programmable Gate Array (FPGA). The FPGA is a programmable device that
consists of programmable hardware and programmable interconnect. This allows a
digital system design to be developed and programmed (configured) into memory
within the FPGA that controls the programmable parts of the device. Devices available
today allow for designs to be created as hardware only designs or hardware-software
co-designs where one or more processors can be embedded into the device. Typically,
Verilog HDL and VHDL (VHSIC (Very High Speed Integrated Circuit) HDL) are used
to describe the hardware (logic and memory), and C and C++ programs are created to
run on the embedded processor(s). This allows for low-cost entry into digital system
design and fast design prototyping as well as for creating the final system where
applicable.

3. Application Specific Integrated Circuit (ASIC). Here, the designer creates an IC design to
implement the required circuits functions. This allows for the most efficient design
to be created (circuitry used, performance and power consumption), but would be a
high cost approach where low volumes are produced. However, the ASIC approach
becomes cost effective when high volume production is considered. Typically, Verilog
HDL and VHDL are used to describe the digital hardware (logic and memory). Either
one HDL only or both HDLs may be utilized in a design project for describing both
the design modules and simulation testfixture modules.

These different approaches have developed over the years and there are a wide range
of possible solutions for a software based approach. Here, the developer will create the
software program that targets a standard, and in many cases fixed, hardware platform.
Hence, the main effort is in the development of the software. This has many advantages,
particularly for design time and software design efficiency. Increasingly, a hardware based
alternative to implementing functions considered in software is becoming attractive to
reduce the time to implement functions when compared to software. This can give a
higher data-throughput, particularly important to systems requiring complex and high-
speed computations in a real-time application. For example, AI, ML, and DL applications
require multiple addition/subtraction and multiplication/division operations on large
multi-dimensional arrays. FPGA and ASIC technologies provide the opportunity to im-
plement such hardware functions and also to develop custom architectures that are better
suited to computations on large multi-dimensional arrays. However, the design approaches
to be adopted in such cases require the designer to think in terms of hardware operation
rather than software behavior, and to have a greater understanding of design decisions on
the operation of the underlying hardware platform.

4. Mapping MoA Algorithms to Software and Hardware

Mapping of the MoA algorithm takes the abstract algorithm description into a suitable
description within a suitable software programming (or scripting) language or HDL. There-
fore, once the MoA algorithm has been defined, it can be implemented in software running
on a suitable processor, hardware using defined digital logic and memory circuits, or a
mixture of both software and hardware functions. Following a suitable design approach
would lead to the ability for identifiable and repeatable results to be obtained, particularly
important for design verification. Figure 1 shows the approach to follow from initial con-
cept to deployed implementation. This figure shows the key steps and verification steps to
be followed.

Considering the tasks to perform to be undertaken within a project, and with reference
to Figure 1, starting with a new project then the tensor products to optimize are defined
and MoA optimization performed (Algorithm development in mathematical/software language
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of choice) using a set of MoA rules. Here, optimization refers to the transformation of the
original tensor products into operations contained within nested for-loops accessing data
within multi-dimensional arrays that are realized as data stored in contiguous memory.
The Algorithm to deploy is identified and its behavior verified to ensure the pre- and post-
optimization behaviors are equivalent (in terms of the array data and data transformation).
With this algorithm in a suitable format, it is then targeted to an appropriate realization (Map
algorithm to target technology); an implementation in Software, Hardware or as a Hardware-
software co-design design. The choice as to the implementation would depend on a number
of factors such as the available technologies, designer experience, and specific design
requirements (Technology choices). Once defined and the necessary design descriptions
created, the system would initially be built as a Prototype. This prototype system would
need to be tested (Evaluate) against a set of requirements (Evaluation criterion). With the
need to refine the system operation, feedback loops to different stages in the design creation
process would be supported before the prototype could be completed and the final system
released (Deploy).

When considering the selection of software or hardware, this task requires careful
thought to achieve the desired results. Considering a different way to view Figure 1, MoA
optimization and technology mapping can be viewed as shown in Figure 4. This is the
approach adopted in this work to take the MoA optimized algorithm to a realized imple-
mentation.

Figure 4. MoA optimization and technology mapping.

Here, the specific subset of possible ways to describe a software or hardware imple-
mentation is shown. Specifically here, software descriptions are considered in C/C++,
Python, and MATLAB, whereas hardware implementations are considered as Verilog HDL
or VHDL design modules. The software would aim to run on a suitable processor, either
a PC application or an embedded application. The hardware would be targeting specific
digital circuits to be implemented within an ASIC or FPGA.

5. Case Study Design

In this section, an example algorithm developed using Python and NumPy is mapped
to C-code, MATLAB, and Verilog HDL. Two C-code versions have been developed: the first
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for compiling to an executable file to run on a PC whilst the second targets an embedded
application using an implementation of the Xilinx MicroBlaze microprocessor within the
Xilinx Artix-7 FPGA. However, given that the code here is standard C, the same code
describing the algorithm can be placed within a function and used in both versions (PC
application and embedded MicroBlaze). The Verilog HDL version was initially developed
for behavioral modelling and simulation using the for-loop implementation, and then
remodelled for synthesis and implementation by using hardware counter and state machine
circuits supporting the same functionality as the for-loop version.

Consider the following Python code, where the output array z is created by a com-
bination of tensor products using NumPy functions on input arrays a and b, as shown in
Figure 5:

• Matrix multiplication (np.matmul).
• Element-by-element multiplication, the Hadamard Product (np.multiply).
• Tensor Outer Product (np.outer).
• Kronecker Product (np.kron).

5.1. Python with NumPy

This algorithm, along with example input array values, defined in NumPy (Figure 5)
demonstrates a set of the typical tensor products used in ML and AI applications:

# -----------------------------------------------------

import numpy as np

# ------------------------------------

a = np.array([[0, 1], [2, 3]])
b = np.array([[4, 5], [6, 7]])

# ------------------------------------

z = np.matmul(
np.multiply(np.outer(a, b), np.kron(a, b)),
np.outer(b, a)

)

# -----------------------------------------------------

Figure 5. Case study example algorithm in Python and NumPy.

5.2. MoA Definitions

Once NumPy definitions are defined in MoA, they can be Psi Reduced to a DNF and
ONF followed by a generic program. The 2 by 2 arrays, a and b above are used in the
following definitions:

• NumPy’s definition of Hadamard Product, np.multiply, is simply MoA’s definition of
scalar operations on n-d arrays, e.g., product. In MoA:

ρ(a NPmultiply b) ≡< 2 2 >

∀i j 3 0 ≤ i < 2; 0 ≤ j < 2

< i j > ψc ≡ (< i j > ψa)× (< i j > ψb) (1)
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• NumPy’s definition of outer product, np.outer is defined in MoA as follows and is
simply a reshaping of MoA’s shape to NumPy’s, in this case 2 2 2 2 to < 4 4 >:

ρ(a NPouter b) ≡< 4 4 >

∀i j ≤ i < 4; 0 ≤ j < 4

< i j > ψ(a NPouter b) ≡< i j > ψ(< 2× 2 2× 2 > ρ̂ (a MoAouter b) (2)

• NumPy’s definition of the Kronecker Product, np.kron, is the same as MoA. However,
like the matrix multiplication, accesses all arrays contiguously, then at the end per-
mutes them to their reshaped locations. This is particularly important with multiple
Kronecker Products [28].

5.3. Small Example of Psi Reduction to DNF, ONF, and Generic Program

The derivation of the Python program is too long to present within this article. Thus,
a small example will be presented to demonstrate the process. If the reader desires a
derivation that combines both the Psi and Lambda Calculus, the Conjugate Gradient is an
good example, and a reference to this can be found at https://arxiv.org/pdf/1904.02612.pdf.
Although the example that follows is very elementary it illustrates the process of Psi
Reduction to DNF, ONF and Generic Program. Using the arrays a, b, and definition for the
Hadamard Product above, np.multiply.

Reduce:
(a NPmultiply b) NPmultiply b

1. Psi Reduce to DNF:

(a) Get the Shape:

ρ(a NPmultiply b) NPmultiply b ≡< 2 2 >

By definition, shapes must be conformable. So the shape of (a NPmultiply b)
must be equivalent to the shape of b and the shapes of a and b must be the
same.

(b) Get the Components: Here the Psi function is used because layout of the
arrays does not matter. Psi Reduction is applied based on the definitions to
compose the indices to it’s DNF, or semantic normal form, the least amount of
computation AND memory needed to perform the operations. With the shape
we have the bounds of indices i and j:

∀ i 3 0 ≤ i < 2 and 0 ≤ j < 2

Now use the Psi function to Psi Reduce to the DNF:

< i j > ψ(a NPmultiply b)NPmultiply b ≡ (< i j > ψ(a NPmultiply b))× (< i j > ψb)

≡ ((< i j > ψa)× (< i j > ψb))× (< i j > ψb) (3)

≡ (< i j > ψa)× (< i j > ψb)× (< i j > ψb)

This is the DNF

In order to turn the DNF to ONF, layout of the arrays in memory is needed.
Assume a and b are layout in row major order. A family of gamma functions,
i.e., layout functions that map indices to their offset in memory exist. For this
example γrow is used. Gamma takes an index and a shape.

2. Get the ONF:
rav is a function that flattens an array based on layout. Bracket notation is now used
to illustrate the building phase of design:

https://arxiv.org/pdf/1904.02612.pdf
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(< i j > ψa)× (< i j > ψb)× (< i j > ψb)

≡ (rav a)[γ(< i; j >;< 2 2 >)]× (rav b)[γ(< i; j >;< 2 2 >)]× (rav b)[γ(< i; j >;< 2 2 >)]

≡ (rav a)[j + (2× i)]× (rav b)[(j + (2× i)]× (rav b)[j + (2× i)]

This is the ONF.

(@a + j + (2× i))× (@b + j + (2× i))× (@b + j + (2× i))

3. Generic Program:
Finally, using standard notation for the generic program letting C to denote the result,
and A and B to denote a and b.

C[j + (2× i)] := A[j + (2× i)]× B[j + (2× i)]× B[j + (2× i)]

This is the Generic Program and illustrates the process of going from a high level
mathematical specification in NumPy formulated in MoA, Psi Reduced to the DNF,
ONF and finally to a generic program.

5.4. Returning to the Python Example

The algorithm identifies the products to implement and the order of implementation,
but as is common in high-level programming, the hardware implementation is hidden from
the programmer and so the programmer does not immediately know the computation time
and memory requirements in order to solve the problem. This however can be visualized
as shown in Figure 6. Here, the algorithm and data flow are depicted using a block
diagram, but this simple view does not identify data characteristics such as array shapes,
array dimensions, data numeric range, and data types. The block diagram supports an
understanding of the data flow and data transformations, but hides details that would be
required for a correct implementation in software or hardware.

Figure 6. Visualization of the algorithm in Python and NumPy.

Optimizing this algorithm (Figure 5) using MoA allows the same functionality to be
achieved using for-loops and data stored and accessed in contiguous memory that can then
be mapped to different software programming and hardware description languages. In the
example, matrices (two-dimensional arrays) are considered and these are modelled as
one-dimensional arrays stored in memory. Mapping the optimized algorithm to C-code
then gives five for-loops and a two-dimensional output array as shown in Figure 7. However,
the ability for HDL synthesis tools to synthesize multi-dimensional arrays and to map to
appropriate hardware resources requires careful consideration.
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for (i=0;i<side;i++)
{

for (j=0;j<side;j++)
{

for (k=0;k<side;k++)
{

for (l=0;l<side;l++)
{

ip = j + (side * i);
jp = l + (side * k);
ipp = k + (side * i);
jpp = l + (side * j);

for (m=0;m<(2*side);m++)
{

z[ip][m] = z[ip][m] +
(((a[ip] * b[jp]) * (a[ipp] * b[jpp])) *
(b[jp] * a[m]));

}

}
}

}
}

Figure 7. Algorithm in C.

In MATLAB, see Figure 8, the code is similar to the C-code version, but now consid-
ering the indexing approach where the first element of an array in C is index 0 whereas
in MATLAB it is index 1. Hence, a small modification to the for-loops and algorithm was
required for correct array indexing each time through each loop. This code was devel-
oped to provide an additional way in which to implement the algorithm, but pre- and
post-optimization. However, the efficiency of this code execution was not a concern in this
particular implementation as it was used only for PC-based verification purposes:

for i = (1:1:side)
for j = (1:1:side)

for k = (1:1:side)
for l = (1:1:side)

ip = (j-1) + side * (i-1);
jp = (l-1) + side * (k-1);
ipp = (k-1) + side * (i-1);
jpp = (l-1) + side * (j-1);

for m = (1:1:(2*side))
z((ip+1), m) = ...

z((ip+1), m) + ...
(((a(ip+1) * b(jp+1)) * (a(ipp+1) * b(jpp+1))) ...
* (b(jp+1) * a(m)));

end

end
end

end
end

Figure 8. Algorithm in MATLAB.
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The C-code version was then be mapped to Verilog HDL using behavioral, RTL and
structural level design descriptions using different programming styles that would target
different requirements from early-stage prototyping and debugging to physical hardare
implementation in an ASIC or FPGA. For example, Figure 9 shows the for-loops in Verilog
HDL for behavioral modelling and simulation. This description would not be suitable for
synthesis into logic, but would be used for algorithm verification purposes to ensure the
different design descriptions have the same functionality. In the behavioral model shown
here, a time delay (#5 time units) was included for simulation purposes to enable the data
changes to be visualized in simulation. It also allows timing considerations for a design
description to be synthesized into logic to be included:

for (i=0;i<side;i=i+1) begin
for (j=0;j<side;j=j+1) begin

for (k=0;k<side;k=k+1) begin
for (l=0;l<side;l=l+1) begin

ip = j + (side * i);
jp = l + (side * k);
ipp = k + (side * i);
jpp = l + (side * j);

for (m=0;m<4;m=m+1) begin
z[ip][m] = z[ip][m] + (((a[ip] * b[jp]) *

(a[ipp] * b[jpp])) * (b[jp] * a[m]));
#5 count = count + 1;

end

end
end

end
end

Figure 9. Algorithm in Verilog HDL using for-loops.

Example

For example, considering input array values as (Figure 10):

a =

[
0 1
2 3

]

b =

[
4 5
6 7

]
Figure 10. Input arrays a and b.

The results array (z) is (Figure 11):

z =


0 0 0 0
0 559 1118 1677
0 3090 6180 9270
0 6657 13314 19971


Figure 11. Results array z.

With these arrays, Figure 12 shows a set of simulation results for the for-loop model.
This shows the loop counter variable values as well as the input and output array values.
Analysis of the values as they change on each iteration of the nested for-loops enables an
understanding of how the data changes and this information could be used to optimize the
hardware required in an implementation.



Information 2022, 13, 528 15 of 20

Figure 12. Verilog HDL for-loop behavioral model simulation results (top to bottom order of the
waveform plots shows the start to end of simulation run).

With this model, the input array values have been preset and for an initial behavioural
simulation, the hardware design description does not have any physical inputs or outputs,
the same way the C-code version operates. For a realistic hardware implementation,
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the design would allow for the input array values to be set from an external source as well
as supporting access to the output (results) array using physical wires.

For implementation in physical hardware, either in a FPGA or ASIC, design details
need to be included as the designer would require a detailed specification in order to create
the required hardware realization of the algorithm. For example, would fixed-point or
floating-point arithmetic be used, what would be the word length of the data, what timing
requirements are to be met, circuit size, power consumption, and cost?

With this case study design, the behavioral model was redesigned at RTL and struc-
tural levels to support synthesis and implementation. To achieve this, the for-loops were
replaced with a counter and state machine arrangement that represented the functional-
ity of the for-loops and to support design synthesis into logic. The Xilinx Artix-7 FPGA
incorporating a MicroBlaze processor was used as a prototyping platform for the algorithm
development and verification. Both the C-code version (software) and the Verilog HDL ver-
sion (hardware) were incorporated in the FPGA for evaluation purposes. The synthesized
Verilog HDL model was packaged as an IP (intellectual property) block and connected to
the MicroBlaze processor bus. Software functions running on the microprocessor were
developed to access the IP block.

The top level block diagram for the FPGA based design (with annotations) is shown
in Figure 13. A Python script running on the PC connected to the FPGA via a USB (Uni-
versal Serial Bus) connected allowed access to the microprocessor via a UART (Universal
Asynchronous Receiver Transmitter) physical interface.

The Processor core is supported with peripheral circuits (peripheral to the processor
but still internal to the FPGA design). Clock and reset inputs provide the external control
and a 32-kByte Local memory provides the processor RAM. The hardware UART provides
9600 Baud rate communications and a Timer/counter circuit allows for accurate timing of
operations (if required) through the use of Timer/counter interrupts and Interrupt Service
Routines (ISRs).

A simplified view of the MoA hardware design architecture is shown in Figure 14.
Here, a counter/state machine circuit creates the array address and control signals along with
control signals for the Computation block. The arrays are modelled as single port RAM cells
in Verilog HDL. In this figure, data are shown only to be read from the memories holding
array a and array b data, but are read and written to for the memory holding array z data.

However, for a full implementation, all arrays can be read from and written to, al-
though this functionality is not shown in the figure. In addition, communication functions
are not shown. The counter/state machine circuit has three basic external control signals: reset
to provide a local circuit reset for initialization, clock to provide a local clock signal for the
synchronous components (D-type flip-flops in this case), and run to start a computation run.

Verification of the different design implementations was undertaken in both simu-
lation and physical circuit functional operation by comparing the array values before,
during, and on completion of the computations. The values returned from the processor
were viewed on a PC and compared to the software (C, Python, and MATLAB) results.
With the different representations of the MoA optimized algorithm, the array values were
verified to be the same on completion of the algorithm computation cycle. This identified
the functionality of the different implementations, but the timing considerations (how
long it took to complete the overall computation with different software and hardware
implementations) and power considerations were not considered in this specific activity.
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Figure 13. MicroBlaze processor system top level block diagram.
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Figure 14. Simplified view of the MoA hardware design (Verilog HDL).

6. Conclusions

In this article, the implementation of MoA optimized algorithms on custom architecture
hardware-software co-design were discussed, and options to their realizations presented.

Where a complex set of operations on tensors are to be performed, these can be
optimized to nested for-loop structures that will access data in contiguous memory. How
these for-loop arrangements are arranged to access data and the tensor shape information in
hardware, software or as hardware-software co-designs, is a design decision based on a
complex set of requirements such as the available technology and designer experience.

Within the article, requirements and choices were identified and discussed. With reference
to an example tensor product, the MoA optimized algorithm is implemented in different
software languages and in hardware as a synthesized HDL design description using Verilog
HDL. With this, different approaches to realizing such algorithms can be investigated.
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ASIC Application Specific Integrated Circuit
CPU Central Processing Unit
CR Church-Rosser
DGEMM Double-precision, GEneral Matrix-matrix Multiplication
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DL Deep Learning
DMA Direct Memory Access
DNF Denotational Normal Form
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
GEMM GEneral Matrix-matrix Multiplication
GPU Graphics Processing Unit
HDL Hardware Description Language
HP Hadamard Product
IP Intellectual Property
ISR(s) Interrupt Service Routine(s)
KP Kronecker Product
KR Khatri-Rao
LU LU Decomposition
ML Machine Learning
MM Matrix Multiplication
MoA Mathematics of Arrays
ONF Operational Normal Form
OS(es) Operating System(s)
PC Personal Computer
PIM Processing in Memory
QR QR Decomposition
RISC Reduced Instruction Set Computer
RMA Remote Memory Access
RNN(s) Recurrent Neural Network(s)
RTOS Real-Time Operating System
TPU Tensor Processing Unit
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VHDL VHSIC (Very High Speed Integrated Circuit) HDL
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