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Abstract: With the rapid development of internet technology, the amount of collected or generated
data has increased exponentially. The sheer volume, complexity, and unbalanced nature of this data
pose a challenge to the scientific community to extract meaningful information from this data within
a reasonable time. In this paper, we implemented a scalable design of an artificial bee colony for big
data classification using Apache Spark. In addition, a new fitness function is proposed to handle
unbalanced data. Two experiments were performed using the real unbalanced datasets to assess
the performance and scalability of our proposed algorithm. The performance results reveal that our
proposed fitness function can efficiently deal with unbalanced datasets and statistically outperforms
the existing fitness function in terms of G-mean and F1-Score. In additon, the scalability results
demonstrate that our proposed Spark-based design obtained outstanding speedup and scaleup
results that are very close to optimal. In addition, our Spark-based design scales efficiently with
increasing data size.

Keywords: big data analytic; artificial bee colony; data classification; Apache Spark; optimization
algorithm; swarm intelligence

1. Introduction

Data classification is a supervised learning technique that aims to classify future data
by analyzing past data. In the classification task, a model is built and trained using historical
data (training data) using a sophisticated algorithm. Then, the model is used to classify
each sample in testing data [1]. In recent decades, data classification has been effectively
applied to various areas such as bioinformatics, transportation engineering, and business.

Unbalanced data is one of the significant challenges that face the researchers in real-life
data , according to [2]. In this kind of data item, the distribution of samples is skewed among
the class labels. Thus, this skewed distribution poses a difficulty for machine learning
algorithms, as they bias toward the majority class labels and ignore the minority class labels
even if classifying the minority is more important. Consequently, this problem should be
tackled before or while building a model. The aim is to obtain a robust and efficient model
that could classify the minority and majority class labels with the same priority.

During the last decade, various big data frameworks have been introduced to cope
with the sheer volume of data. Apache Spark is one of the big data frameworks that pro-
cesses a massive amount of data across a cluster of worker nodes [3], which was introduced
in the AMPLab at the University of California-Berkeley [4]. Their main contribution aims
to handle the main drawback of the Hadoop MapReduce [5] which is the overhead of disk
operation (Input/Output) during running a Map and Reduce job. In addition, Apache
Spark addresses the inefficiency of Hadoop MapReduce when performing iterative and
interactive jobs. Apache Spark uses Resilient Distributed Dataset (RDD) to perform all
computations across the worker nodes’ memory in a fault-tolerant manner [4,6]. RDDs
are immutable objects, which means that once the RDD is created cannot be changed.
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Furthermore, RDDs are fault tolerant in the case of failure by keeping the “Lineage” for
RDDs. Two primary operations can be executed on the RDDs: transformation and action.
The transformation operations are lazily operations used to create a new RDD by transform-
ing the existing RDDs, such as map, intersection, and groupByKey. The action operations
are used to perform computation on the RDDs and return the results to the driver program,
such as foreach, collect, and reduce.

Compared to the Hadoop MapReduce, Apache Spark is 10 to 100 times faster than the
Hadoop MapReduce for processing massive data because all computations are carried out
on worker nodes’ memory. Recently, Apache spark has been efficiently used for processing
big data in various applications such as eBay and Netflix [7].

In the past two decades, various bio-inspired algorithms have been proposed to
solve real optimization problems in scientific domains such as engineering. The bio-
inspired algorithms imitate a biological model such as social behavior. Artificial Bee
Colony (ABC) algorithm is one of the bio-inspired algorithms belonging to the Swarm
Intelligence family, a population-based search algorithm introduced by Karaboga [8,9].
ABC mimics the intelligent behavior of the honeybees seeking a good food source (solution).
ABC algorithm presented itself as a robust and efficient search technique for solving real-
world optimization problems [8]. Recently, ABC has been used to solve classification and
clustering tasks [10–12].

In [10], Karaboga and Ozturk proposed an ABC-based data classification algorithm
(ABCC). Their proposed algorithm aims to find the optimal centroid of each class label in a
training dataset by minimizing the sum of the Euclidean distance between the data samples
and their class label’s center. The experimental results show that their proposed work can
efficiently perform the data classification task in small balanced datasets. In addition, their
proposed work outperforms the particle swarm optimization-based data classification in
terms of misclassification rate. However, this algorithm shows inefficient performance
when applied to a massive and unbalanced dataset.

In this paper, we address the previous shortcomings of the ABC-based data classifica-
tion algorithm to enhance its performance when applied to a massive unbalanced dataset.
The major contributions to this work are as follows:

• We propose a new minimum fitness function to handle unbalanced data by minimizing
the weight of the miss-classification rate.

• We design and implement a parallel version of the ABC-based data classification
algorithm using Apache Spark to carry out the classification task on a massive amount
of data while maintaining the quality level of the classification outcomes.

• We investigate the scalability and effectiveness of the parallel design of the ABC-based
data classification algorithm using real-world massive unbalanced datasets.

The rest of the paper is organized as follows: Section 2 presents the recent relevant
related to designing a scalable solution using a big data framework. The background
knowledge, including ABC and ABCC, is briefly presented in Section 3. Section 4 illustrates
spark-based design of ABCC for large data classification. The dataset and environment are
described in Section 5. Section 6 describes the evaluation measures. The experiments and
results are presented in Section 7. Finally, Section 8 concludes the paper.

2. Related Works

Recently, designing and implementing scalable solutions of nature-inspired algorithms
for solving big data mining tasks have received attention from researchers. The aim is
to enhance the performance of these algorithms when applied to a massive amount of
data. This section provides the recent works relevant to designing parallel nature-inspired
algorithms for big data mining tasks.

The authors in [11] proposed a parallel artificial bee colony for data clustering using
Hadoop MapReduce (MR-ABC). The aim is to improve the performance of the artificial
bee colony algorithm when performing a clustering task in big data. The idea of MR-ABC
is to find the optimal centroids of each cluster. MR-ABC uses the Hadoop MapReduce
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programming paradigm to evaluate the bees’ fitness through Map and Reduce phases.
Using real and synthetic datasets, the experimental results presented that MR-ABC is
effective and robust for performing a clustering task in big data compared to the serial
version of that algorithm.

In [12], a Spark-based artificial bee colony was introduced to carry out a big data
clustering by finding the optimal centroid of each cluster. In their proposed work, the bee’s
fitness is evaluated in a parallel fashion. The experiments were conducted using KDD CUP
99 dataset to evaluate the effectiveness of the proposed algorithm. The results demonstrate
that the proposed algorithm achieved approximately linear speedup and good cluster-
ing quality.

In [13], MapReduce-based enhanced grey wolf optimizer (MR-EGWO) was proposed
for performing big data clustering. In MR-EGWO, the dataset is split into partitions
distributed across a cluster of nodes. Then, the Map and Reduce phases are launched on
the Hadoop nodes to evaluate the grey wolf’s (individual) fitness. The experimental results
using seven UCI datasets showed that MR-EGWO obtained a good clustering quality
in terms of F-measure compared to five nature-inspired-based clustering algorithms. In
addition, MR-EGWO achieved a good speedup result using two synthetic datasets.

The authors in [14] proposed two variants of a Spark-based particle swarm optimiza-
tion (PSO) for big data classification. In their proposed work, the updating phases for
the position and the velocity of all particles are performed on the master node, while the
fitness evaluation of all particles is carried out on worker nodes using the broadcast and
accumulator variables. Their proposed work obtained very good speedup and scaleup
results while maintaining PSO’s efficiency for solving data classification.

In [15], the authors proposed a MapReduce-based differential evolution algorithm for
big data clustering. In their work, the operations of differential evolution (mutation and
crossover) and fitness evaluation are carried out using MapReduce jobs. The experimental
results revealed that their proposed algorithm obtained outstanding results compared to
MapReduce-based particle swarm optimization and K-means algorithms.

Wang et al. proposed a hybrid K-PSO method using Hadoop MapReduce to perform
a clustering task on a large dataset [16]. In another work found in [17], a MapReduce-based
ant-colony clustering algorithm is proposed. Their work aims to perform clustering on a big
dataset using the ant colony algorithm. The results showed that their proposed obtained
good accuracy with good efficiency.

In [18], the authors proposed MapReduce-based particle swarm optimization for
large data clustering (MR-CPSO). Using synthetic datasets, MR-CPSO achieved significant
speedup results while maintaining the clustering quality. Other works that related to
the scalable solutions of big data mining using meta-heuristics algorithms can be found
in [19–21].

3. The Background Knowledge
3.1. Artificial Bee Colony Algorithm (ABC)

ABC [8,9] is a meta-heuristic search algorithm that belongs to the swarm intelligence
family. In ABC, the bees that form a colony collaborate in finding the food source (solution)
with the highest nectar (fitness). The bees are categorized based on their work into three
groups: employed bees, onlookers’ bees, and scouts. Each employed bee binds to a food
source and updates the food source in its memory if a new candidate food source is better.
Onlookers’ bees wait in the dance area in the hive and cooperate with the employed bees to
update the food sources depending on their probability. The scout bees behave randomly
in a search space to discover a new food source.

ABC starts by randomly distributing a predefined number of food sources (SN) in
d-dimensional search space. Formally, the i-th food source is encoded as follows:

~ui = {u1, u2, . . . , ud}, i = {1, 2, . . . , SN} (1)
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After initialization, the nectar amount (fitness) of the food sources is evaluated using
an objective function (fitness function). Then, the food sources are updated by the bees
(employed, onlookers, and scouts) through repeated cycles.

Each employed bee starts generating a new candidate food source by modifying the
current food source using Equation (2). Then, the candidate food source is evaluated to
measure its nectar amount. After that, the employed bee replaces the old food source in its
memory with the candidate food source if the nectar amount of the candidate food source
is better than the old one. Otherwise, the employed bee keeps the old food source.

zij = uij + φij(uij − urj), i ε {1, 2, . . . , SN} and j ε {1, 2, . . . , d} (2)

zi is the candidate food source, φij is randomly chosen in rang [−1, 1], and r is randomly
chosen from {1, 2, . . . , SN} and different from i.

After the employed bees finish their work, the probability of each food source is
calculated as follows:

Pi =
Fi

∑SN
j=1 Fj

(3)

where Pi is the probability of i-th food source and Fi is the nectar amount of i-th food source.
Then, the employed bees return to their hive and share the information with the

onlooker bees. The onlooker bees choose a food source depending on the food source’s
probability and then generate a new candidate food source by modifying the chosen food
source using Equation (2). The onlooker bee updates the chosen food source with the new
candidate food source if the new candidate food source has a better nectar amount than the
chosen food source.

ABC carries out the global search using the scout bees to avoid local minima. In ABC,
any food source that has not improved after certain cycles is called the abandoned food
source. The scout bees replace the abandoned food source with a new random food source
calculated by Equation (4). The limit parameter in ABC determines the number of cycles
for abandonment

uij = umin
j − γ.(umax

j − umin
j ) (4)

where umin
j and umax

j are the lower and upper limit of i-th food source in dimension j,
respectively, and γ is a random number in the range [0, 1].

The previous processes will be repeated until the termination criterion is met. In ABC,
the maximum number of cycles (MCN) is used as a termination criterion.

3.2. Artificial Bee Colony Algorithm for Data Classification

In [10], the ABC-based data classification algorithm (ABCC) presented itself as efficient
and robust in carrying out data classification on small balanced datasets. The goal of ABCC
is to find the optimal center of each class label using the artificial bee colony algorithm.
Then, each sample in a testing dataset is classified by assigning it to the closest centroid
(class label) according to Euclidean distance. In their work, the fitness of each solution
is evaluated using Equation (5). This fitness function minimizes the sum of Euclidean
distance between a data sample (xj) and the centroid of the class label that xj belongs to.

Fd(Si) =
1

DT

DT

∑
j=1

distance(~xj,~p
CLknown(xj)) (5)

where DT is the number of training samples, xj is a sample vector in a training dataset. ~p is
a centroid vector of a class label that xj belongs to according to the training dataset.

ABCC starts by distributing a predefined number of solutions randomly in the search
space. The i-th solution is represented as follows:

~si = {~cl1 ,~cl2 , . . . ,~cln}, i = {1, 2, . . . , SN} (6)
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where SN is the number of solutions and ~cln is a center vector of class label ln in a d-
dimensional space.

Then, the solutions are repeatedly updated by the bees as mentioned in Section 3.1.

4. Spark-Based Artificial Bee Colony Algorithm for Large Data Classification

ABCC shows poor performance when applied to an unbalanced binary and massive
dataset (Section 3.1). In this paper, we introduce a new fitness function to enhance the
performance of ABCC when applied to an unbalanced dataset. In addition, a scalable
solution of the ABC-based data classification algorithm using Apache Spark (ABCCS) is
proposed to overcome the inefficient performance of ABCC when handling large datasets.

4.1. New Fitness Function

In our work, a new fitness function (Fw) is proposed to cope with an unbalanced binary
dataset. Fw aims to minimize the sum of misclassification weights. Fw computes the fitness
of a solution i as follows:

Step 1: Each sample in the training dataset is assigned to the closest centroid (class label)
according to the Euclidean distance.

Step 2: Sum the misclassification weight of all misclassified samples.

Formally, i-th solution fitness is computed as follows:

Fw(si) =
Dsize

∑
j=1

w( ~samplej) (7)

where Dsize is the number of samples in the training dataset, w( ~samplej) is the wight of
misclassified ~samplej if ~samplej is incorrectly classified, or 0 if ~samplej is correctly classified.

It should be mentioned here that a misclassification weight for each class label should
be determined before starting the training phase.

4.2. Adopting Spark-Based ABC for Big Data Classification

To carry out the classification task on massive data using the ABCC algorithm, two
operations of the ABCC, the updating solution and the evaluating fitness, should be
adapted. In ABCC, the computational time and required memory space depend on
the data size. For example, suppose the training dataset contains 10 million samples
with two class labels, and the number of solutions is 30. The ABCC needs to compute
10,000,000 × 2 × 30 = 6 million distance values to classify all samples. Thus, compared to
updating the solutions (30 solutions), evaluating the fitness of all solutions required much
more memory space and computational time. In our proposed design for ABCC using
Apache Spark (ABCCS), the update solution by the bees is performed in the master node
while the evaluating fitness of all solutions is performed on the worker nodes as shown in
Figure 1.

As we can see in Figure 1, ABCCS starts by distributing a predefined number of
solutions randomly in the search space. The i-th solution has an identifier (ID) and is
encoded as follows:

~si = {~cl1 ,~cl2 , . . . ,~cln} (8)

where~cln is a center vector of class label ln in a d-dimensional space.
After initialization, the employed bees modify the current solutions to create new

candidate solutions and calculate the fitness of those candidates. The employed bees share
the information with the onlooker bees. The onlookers choose the solutions based on their
probability. Then, the onlookers modify the chosen solutions, and the fitness of those
solutions is calculated. This process is repeated until the maximum number of cycles is
reached. The scout bees replace the solutions that have not improved after a predetermined
number of cycles. However, conducting the fitness evaluation task takes a lot of memory
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and computing time when working with massive datasets. Thus, the fitness evaluation of
the solutions is executed in a parallel manner using the Apache Spark framework.

Figure 1. Adopting Spark-based ABCC for big data classification.

In ABCCS, the driver program in the master node is launched and creates a directed
acyclic graph (DAG) for the RDD operations. Then, the tasks are sent to the worker nodes
along with the solutions(centroids) as a broadcast variable. Figure 2 shows the fitness eval-
uation process performed on the worker nodes. In this figure, each executor reads a part
of the data contained within an RDD. Then, the executor creates <key, value> pairs (RD-
Dpair) based on the RDDs using the MapToPair operation. After that, the FlatMapToPair
operation with the broadcast variable(solutions) is carried out on RDDpairs to generate a
new <key, value> pairs where the key is Solution_ID and the value is the misclassification
weight. Finally, the ReduceByKey operation is triggered to aggregate the values with the
same key. The result of the ReduceByKey is <key, value> pairs which are collected and
then sent to the master node to update the fitness of the solutions.

Figure 2. The fitness evaluation stage.

5. Dataset and Environment

The purpose of this section is to assess the performance of our proposed fitness
function compared to the existing fitness function. We used a real medical dataset called
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the SEER dataset in our experiments. The main reason for choosing this dataset is that
it is a real and highly unbalanced dataset. The SEER dataset was released in April 2018
and collected from various geographic regions by the Surveillance, Epidemiology, and End
Results (SEER) program of the National Cancer Institute (NCI) [22]. The SEER dataset
contains the cancer incidences for patients. Each sample represents the information of
one patient with 72 attributes [22]. This dataset was preprocessed to extract the cancer
incidences for only four types of cancers: Breast, Lung, Colon, and Stomach. In addition,
we chose only the attributes that were used in past research works [23–25]. Depending
on the rule of five-year survivability in [23], “Vital Status Recode”, “Cause Of Death”,
and “Survival Months” attributes are used to tag each patient (sample) as “Survived”
or “Not Survived”. All samples that have a missing value were excluded. In addition,
the remaining samples were normalized using Min-Max normalization. Table 1 shows the
characteristics of the extracted datasets.

To evaluate the scalability of ABCCS, we decided to duplicate the largest dataset
“Breast Cancer” 5, 15, and 30 times. The reason behind duplication is that the size of all
datasets in Table 1 is considered too small for analyzing and testing the scalability of ABCCS
over a large cluster of worker nodes. Table 2 shows the size of the datasets after duplication.

Table 1. Characteristics of the extracted datasets.

Dataset
Class Label

Number of Attributes Total
Survive Not Survive

Breast Cancer 280,592 (90.80%) 28,414 (9.20%) 15 309,006
Lung Cancer 24,513 (26.49%) 68,041 (73,51%) 17 92,554
Colon Cancer 56,263 (63.14%) 32,840 (36.86%) 17 89,103

Stomach Cancer 4177 (36.25%) 7345 (63.75%) 16 11,522

Table 2. Characteristics of the duplicated datasets.

Dataset Name Duplication Rate Size

5R Dataset 5 times 1,545,030
15R Dataset 15 times 4,635,090
30R Dataset 30 times 9,270,180

6. Evaluation Measures

In our experiments, we use Geometric Mean (G-mean) and F1-score measures to assess
the performance of ABCCS using our proposed fitness function (Fw) compared to the
existing fitness function. The reason for choosing these measures is that all datasets in
Table 1 are highly unbalanced datasets where the distribution of samples is skewed among
the class labels. Thus, other measures such as accuracy, recall, or error rate do not accurately
assess the classifier’s performance. Furthermore, G-mean and F1-score measures are highly
sensitive to the rate of correctly classified samples of the majority and minority class labels
together [26–28].

G-mean is an important measure to evaluate the performance of the classifier when
applied to an unbalanced dataset [26–28], which is calculated as follows:

G-mean =
√

sensitivity× speci f icity (9)

sensitivity =
TP

TP + FN
(10)

speci f icity =
TN

TN + FP
(11)
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F1-Score is another measure for evaluating the classifier’s performance when applied
to an unbalanced dataset [26]. It is calculated by taking the harmonic mean of precision
and recall as follows:

F1-Score = 2 · Precision · Recall
Precision + Recall

(12)

To measure the scalability and robustness of ABCCS, we use the speedup and scaleup
metrics. The speedup metric assesses the parallelization capability of the parallel algorithm
by keeping the dataset size constant and increasing the number of worker nodes, which is
calculated as follows:

Speedup =
T1

Tn
(13)

where T1 is the running time taken by a single node, and Tn is the running time taken by n nodes.
The Scaleup metric measures how the parallel algorithm uses the cluster of nodes.

In this metric, the dataset size and the number of worker nodes increase with the same
ratio. The scaleup is calculated as follows:

Scaleup =
T1s
Tns

(14)

where T1s is the running time using a single node with s as dataset size, and Tns is the
running time using n nodes with n× s as a dataset size.

7. Experiments and Results

This section demonstrates the experiments that assess the performance and scalability
of ABCCS. In the performance analysis section, we statistically compared the performance
of our proposed fitness function and the existing fitness function using the datasets in
Table 1 in terms of G-mean and F1-Score. The parameters of ABCCS are set as follows:

• Colony size = 150
• Maximum Cycles (MCN) = 200
• Limit = 20

For fitness function Fw, the misclassification weight for each class label should be
specified before using Fw. Table 3 shows the best misclassification weight for each class
label that was empirically found in each dataset.

Table 3. The misclassification weight.

Class Label

Survived Not Survived

Breast Cancer 1.0 10.0
Lung Cancer 2.7 1.0
Colon Cancer 1.0 1.8

Stomach Cancer 1.8 1.0

In the scalability analysis section, we evaluate the scalability of ABCCS over a large
cluster of nodes and explain the obtained results. It should be mentioned here that the
MCN parameter of ABCCS is set to 50 for the scalability experiments.

7.1. Performance Analysis of ABCCS

In this experiment, we evaluate the impact of our proposed fitness function (Fw)
on ABCCS’s performance and the classification quality compared to the existing fitness
function (Fd) in terms of G-mean and F1-Score. For each fitness function, we ran the ABCCS
30 times (independent runs) on all datasets in Table 1 and reported the G-mean and F1-Score
results. Tables 4 and 5 show the G-mean and F1-Score results, respectively, that achieved by
ABCCS using Fw and Fd.
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From the results in Table 4, the ABCCS using Fw achieved the best G-mean on all
datasets compared to the ABCCS using Fd, where the G-mean results were 77.99%, 81.23%,
77.58%, and 77.58% for Breast Cancer, Lung Cancer, Colon Cancer, and Stomach Cancer
datasets, respectively. In terms of F1-Score, the ABCCS using Fw also achieved the best
F1-Score on all datasets compared to the ABCCS using Fd as shown in Table 5, where the
F1-Score results were 78.28%, 82.2%, 78.57%, and 77.41% for Breast Cancer, Lung Cancer,
Colon Cancer, and Stomach Cancer datasets, respectively.

The obtained results by both fitness functions were statistically compared using the
Wilcoxon Signed-Rank test. In this test, the p-value was computed at the 5% significance
level. According to the p-value, the performance of ABCCS using Fw statistically outper-
forms the performance of ABCCS using Fd where the p-value obtained for all datasets
was 0.000012. Figures 3 and 4 show the distribution of the G-mean and F1-Score results
(30 independent runs) that were achieved by ABCCS using Fw and Fd.

Table 4. G-mean results obtained by Fd and Fw.

Fd Fw

Breast Average 68.99 % 77.99%
Standard Deviation [±0.0313] [±0.003]

Lung Average 79.04% 81.23%
Standard Deviation [±0.004] [±0.0025]

Colon Average 69.76% 77.58%
Standard Deviation [±0.0385] [±0.0042]

Stomach Average 68.90% 77.33%
Standard Deviation [±0.0272] [±0.0112]

Average 71.67% 78.53%

(a) Breast Cancer Dataset (b) Lung Cancer Dataset

(c) Colon Cancer Dataset (d) Stomach Cancer Dataset

Figure 3. Box plots of the G-mean results obtained by Fd and Fw for Breast, Lung, Colon, and Stomach
Cancer datasets. The red bar inside the box represents the median; the upper whisker represents the
maximum value; the lower whisker represents the minimum value.
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Table 5. F1-Score results obtained by Fd and Fw.

Fd Fw

Breast Average 75.11% 78.28%
Standard Deviation [±0.0178] [±0.0044]

Lung Average 80.15% 82.2%
Standard Deviation [±0.0065] [±0.0042 ]

Colon Average 74.6% 78.57%
Standard Deviation [±0.0437] [±0.0044]

Stomach Average 69.36% 77.41%
Standard Deviation [±0.0393] [±0.0127]

Average 74.81% 79.12%

(a) Breast Cancer Dataset (b) Lung Cancer Dataset

(c) Colon Cancer Dataset (d) Stomach Cancer Dataset

Figure 4. Box plots of the F1-Score results obtained by Fd and Fw for Breast, Lung, Colon, and Stomach
Cancer datasets. The red bar inside the box represents the median; the upper whisker represents the
maximum value; the lower whisker represents the minimum value.

7.2. Scalability Analysis of ABCCS

We ran this experiment on Amazon Elastic MapReduce (Amazon EMR). In this experi-
ment, we used a cluster of up to 20 nodes (m5.xlarge). Each node has a configuration of a
four-core CPU with 3.1 GHz and 16 GB memory.

To measure the speedup of ABCCS, we ran ABCCS using Fw on all datasets in Table 2
for up to 20 nodes. In this experiment, the dataset size is kept fixed while the number of
worker nodes is increased in each run by multiples of four. Figure 5 shows the running
time in seconds and the speedup of ABCCS for 5R, 15R, and 30R datasets. In Figure 5b,d,f,
the green dashed line is an optimal speedup (linear).
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(a) Execution Time—5R Dataset (b) Speed-Up—5R Dataset

(c) Execution Time—15R Dataset (d) Speed-Up—15R Dataset

(e) Execution Time—30R Dataset (f) Speed-Up—30R Dataset

Figure 5. The running time and Speedup results achieved by ABCCS for 5R, 10R, and 30R Datasets.

As can be seen in Figure 5a,c,e, ABCCS using one node takes 2962 s, 9158 s, and 18,984 s
for the 5R, 15R, and 30R datasets, respectively, whereas ABCCS using 20 nodes takes 189 s,
508 s, and 1006 s for the 5R, 15R, and 30R datasets, respectively. Thus, we can conclude
from these figures that the performance of ABCCS is improved with an increasing number
of worker nodes.

To evaluate the parallelization capability of ABCCS, the speedup is computed using
Equation (13). Figure 5b,d,f show the speedup results achieved by ABCCS for the 5R, 15R,
and 30R datasets. In Figure 5b, ABCCS achieved approximately the optimal speedup for 4
and 8 nodes using the 5R dataset. However, starting from 12 nodes, the speedup values
drift apart from the optimal speedup.

As shown in Figure 5d, the speedup results achieved by ABCCS are very close to
the optimal speedup for 4, 8, and 12 nodes using the 15R dataset. For 16 and 20 nodes,
the speedup results drift a little apart from the optimal speedup.
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In Figure 5f, the speedup results achieved by ABCCS are almost the optimal speedup
for 4, 8, 12, 16, and 20 nodes using the 30R dataset. Overall, ABCCS achieved significant
speedup results as the data size increased. In addition, the running time of ABCCS is
linearly decreasing as the number of worker nodes increases.

To measure the Scaleup of ABCCS, we ran ABCCS on the Amazon EMR cluster using
the Breast cancer dataset. In each run, the dataset size and number of nodes are doubled,
starting from 309,006 records for data size and two nodes. Figure 6 shows the scaleup
results obtained by ABCCS. As we can see from this figure, ABCCS achieved outstanding
scaleup results ranging between 0.91 and 0.98.

Figure 6. Scaleup of ABCCS; the dashed black line is an optimal scaleup.

8. Conclusions

In this paper, we address the limitations of the ABCC algorithm when performing
classification on massive unbalanced data. We introduced a new fitness function based
on the misclassification weight to improve the performance of the ABCC algorithm when
applied to highly unbalanced datasets. In addition, we design a scalable ABCCS algorithm
using Apache Spark to overcome the inefficient performance of the ABCC algorithm on
massive data.

Two experiments were conducted. In the first experiment, we assessed the impact of
our proposed fitness function (Fw) on the performance of ABCCS compared to the existing
fitness function (Fd) using unbalanced binary real datasets. The first experiment results
revealed that Fw statistically outperforms Fd in terms of G-mean and F1-Score. In addition,
Fw improves the ABCCS’s classification quality when applied to unbalanced datasets.

The second experiment was performed over a cluster of worker nodes to evaluate
the scalability of the ABCCS algorithm. The experimental results demonstrated that the
ABCCS achieved outstanding speedup results with increasing data size. In addition,
ABCCS obtained outstanding scaleup results close to the optimal (1.0). Overall, the ABCCS
can efficiently perform the classification task on big datasets over a cluster of worker nodes.
In addition, ABCCS scales efficiently with increasing the amount of data.

For future work, we will investigate and analyze the scalability of ABCCS when ap-
plied to big data sets (terabyte size), as well as perform extensive experiments. Furthermore,
we will look into other parallel designs of artificial Bee colony classification algorithms
while maintaining the quality level of the classification results.
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