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Abstract: An adaptive optics scanning laser ophthalmoscope (AOSLO) has the characteristics of a
high resolution and a small field of view (FOV), which are greatly affected by eye motion. Continual
eye motion will cause distortions both within the frame (intra-frame) and between frames (inter-
frame). Overcoming eye motion and achieving image stabilization is the first step and is of great
importance in image analysis. Although cross-correlation-based methods enable image registration
to be achieved, the manual identification and distinguishing of images with saccades is required;
manual registration has a high accuracy, but it is time-consuming and complicated. Some imaging
systems are able to compensate for eye motion during the imaging process, but special hardware
devices need to be integrated into the system. In this paper, we proposed a deep-learning-based
algorithm for automatic image stabilization. The algorithm used the VGG-16 network to extract
convolution features and a correlation filter to detect the position of reference in the next frame, and
finally, it compensated for displacement to achieve registration. According to the results, the mean
difference in the vertical and horizontal displacement between the algorithm and manual registration
was 0.07 pixels and 0.16 pixels, respectively, with a 95% confidence interval of (−3.26 px, 3.40 px) and
(−4.99 px, 5.30 px). The Pearson correlation coefficients for the vertical and horizontal displacements
between these two methods were 0.99 and 0.99, respectively. Compared with cross-correlation-based
methods, the algorithm had a higher accuracy, automatically removed images with blinks, and
corrected images with saccades. Compared with manual registration, the algorithm enabled manual
registration accuracy to be achieved without manual intervention.

Keywords: adaptive optics scanning laser ophthalmoscope; deep learning; VGG-16; image stabilization;
eye motion

1. Introduction

Observing retinal structures in high-resolution images is a crucial step in the further
investigation of retinal physiology and pathology. A number of imaging modalities are cur-
rently employed in the research and diagnostics of ophthalmic conditions, including fundus
cameras [1,2], optical coherence tomography (OCT) [3–7], scanning laser ophthalmoscopes
(SLOs) [8–12], and adaptive optics scanning laser ophthalmoscopes (AOSLOs) [13–16].

An AOSLO provides the possibility of observing the structure and activity of the
retina at the cellular level. The AOSLO technique has been used increasingly over the past
21 years to study aspects of the retina, such as understanding neonatal neural circuits in
the retina [17], monitoring blood flow [18], and analyzing the flux and velocity of retinal
capillary erythrocytes [19].
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An AOSLO’s high-resolution imaging, however, has the characteristics of a high
resolution and a small field of view (FOV), which are greatly affected by involuntary eye
motion. Human eyes are constantly moving with a bandwidth of ~100 Hz. If the image
acquisition speed is not sufficient or if real-time tracking mechanisms are not implemented
in the imaging system, continual retinal motion will cause distortions both within the
frame (intra-frame) and between frames (inter-frame) [20], reducing the visibility of retinal
structures in the images and resulting in difficulties in the image analysis. Consequently,
before performing an image analysis, the sequence of the AOSLO images needs to be
stabilized to a common reference to reduce the effects of eye motion.

At present, the common method of stabilizing images is cross-correlation (or Fourier
transform)-based methods [20–22], which involve time-consuming manual registration.
Although cross-correlation methods can successfully identify and differentiate the segments
of images with slow drifts, the images with saccades must be identified and differentiated
manually. In addition, in order to ensure complete imaging, the imaging system constantly
changes the imaging position during the imaging process. In order to adapt to the changes
in the imaging position, the cross-correlation methods need to manually change the refer-
ence. In addition to postprocessing methods, some imaging systems [23–29] are capable of
compensating for movement during the imaging process, but special hardware equipment
with corresponding optics needs to be integrated into the imaging system.

Deep learning has been widely used in computer vision and medical image process-
ing [30,31]. Deep convolutional features have large perceptual fields and rich semantic
information, which are suitable for target detection and localization. Therefore, to solve the
problems we described above, this paper proposed an automatic algorithm based on the
VGG-16 network [32] and a correlation filter [33]. The VGG-16 network was used to extract
features, and the correlation filter was used to detect the position of the reference in the
next frame and obtain the displacement.

The contributions of this article are as follows: An automatic algorithm was proposed
to remove images with blinks and correct images with saccades. To overcome the reference
lost due to eye motion or changes in the imaging position, we proposed the method of
resetting the training set. This method resets the sample weights and enables the subsequent
sample weight to be correctly updated.

2. Materials and Methods
2.1. Data

We acquired 6 videos (2507 frames in total and a frame rate of 30 frames per sec-
ond (fps)) using a bimorph deformable mirror-based AOSLO (Jiangsu Key Laboratory
of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese
Academy of Sciences) from subjects with normal eye health; for details, see [34]. These
videos had 2507 frames in total, of which 201 were frames with blinks. The frame size was
512 × 449 pixels and the field of view (FOV) was 1.5◦ on the human retina. A transverse
region of 445 × 445 µm was scanned using an effective focal length of 17 mm for the eye.

2.2. Baseline Approach ECO: Efficient Convolution Operators for Tracking

For the readers’ convenience, the efficient convolution operators for tracking (ECO)
algorithm [35] is summarized here. The ECO core step diagram is shown in Figure 1. ECO
extracts the VGGNet features, a histogram of oriented gradient (HOG) features, and color
name (CN) features for training the correlation filters to achieve their target localization. A
correlation filter was used to describe the similarity between two images. The response
values were in the range of 0 to 1, and a higher response value indicated a higher similarity
between the target region and the region to be detected.
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Figure 1. Efficient convolution operators for tracking (ECO) core step diagram. Here is an example
of the first two frames of the sequence. The scale bar is 100 µm. The green and red boxes are the ECO
reference.

ECO trained the parameters of the correlation filter by extracting the features of
the samples. The sample was the whole image (as shown in Figure 1). ECO used an
interpolation algorithm for the feature x of the samples (see Equation (1)).
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is the d-channel feature interpolation function; and we

used J{x} to denote the entire interpolated feature map, where J{x} ∈ RD. Then, ECO
used principal component analysis (PCA) to simplify the filter and convolve with J{x} to
calculate the response value FP f {x} (see Equation (2)).

FP f {x}= P f ⊗ J{x}= f ⊗ PT J{x} (2)

Here, f is the filter; ⊗ is the convolution operator; and P is the projection matrix of D
rows and C columns. Based on the maximum correlation response value Fmax (abbreviated
as the response value), the predicted position of the reference in the next frame was obtained.
The displacement was the difference between the predicted position of the reference and
the position in the first frame. Finally, ECO took the L2 norm of the difference between
FP f {x} and the labeled detection scores y0, and added a penalty term to construct the loss
function (see Equation (3)).

E( f ) =
M

∑
m=1

πm‖ FP f {βm} − y0

∥∥∥2

L2

+
C

∑
c=1
‖ω f c‖

2

L2

(3)

Here, βm and πm are the mean and sample weights, respectively; m is the total number
of samples; and ω is the penalty term for f . The sample weights πm ≥ 0 controlled the
impact of each sample. In addition, we included a spatial regularization term determined
by the penalty term ω. By controlling the spatial extent of the filter f , the regularization
enabled the filter to be learned on arbitrarily large image regions. The spatial region
corresponding to the background features was assigned a large penalty in ω, while the
target region had a small penalty value.

2.3. Our Approach

In most of the cases, the reference was lost or partially lost in the AOSLO images due to
eye motion and imaging position changes. Although ECO is capable of extracting features
from the AOSLO retinal images, it is not capable of handling this particular situation.
Thus, we proposed an image stabilization algorithm for AOSLO images called the update
efficient convolution operators for imaging stabilization (UECO). Its core step diagram is
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shown in Figure 2. UECO is divided into two processes: feature extraction and localization,
which correspond to VGG-16 and the correlation filter, respectively. The VGG-16 network,
from [36], was pre-trained on ImageNet [37]. The pre-trained VGG-16 network was used to
extract convolutional features, and the correlation filter was used to detect the position of
the reference in the next frame and obtain the displacement.
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Figure 2. Update efficient convolution operators for imaging stabilization (UECO) flowchart. UECO
trains the initial correlation filter with the initial image sequence. When the reference is lost, UECO re-
sets the training set and starts a new process, taking the current frame as the first frame of the sequence.
Finally, by image sequence linking, UECO links image sequences with the same reference together.

We did not need to train the VGG-16 again. Firstly, VGG-16 has a 16-layer network
structure, and the last three layers are used for classification. We only needed to extract
image features without classification. Secondly, the pre-trained VGG-16 has good general-
ization. VGG-16 has a deep network structure and can extract the features of any image.
VGG-16 is able to extract shallow features (conv3-64) and deep features (conv3-512). The
channels and dimensions of the feature vector are merged by the cascade, and then the fused
features are obtained by nonlinear mapping through the convolution layer (see Figure 3).
In addition, ECO performs well in target tracking using these two convolution features
and has demonstrated outstanding results on four tracking benchmarks: VOT2016 [38],
UAV123 [39], OTB-2015 [40], and Temple-Color [41].

Due to eye motion, the reference had a wide range of displacement, so the central
region of the first frame in the sequence was set as the reference, and the relative displace-
ment of the reference was assumed to be 0. The reference size was 200 × 200 pixels. Once
the reference was lost, the UECO reset the training set (the details are described in the
section on resetting the training set) and selected the central region of the current frame
as the new reference, ensuring that the new process was not affected by the correlation
filter parameters trained with the samples from the previous process. Finally, through
image sequence linking (the details are described in the section on image sequence linking),
UECO linked the image sequences with the same reference together.
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Figure 3. VGG-16 network structure diagram and UECO core step diagram; (a) is the 5 convolution
groups of VGG-16, and the convolution groups are connected by a pooling layer. (b) is the UECO
core diagram. The kernel size of the convolution layer in the convolution group was 3 × 3, and the
number of channels in each convolution group was 64, 128, 256, and 512, respectively. The window
size of the pooling layer was 2 × 2, reducing the feature map to 1/2 of its original size. The features
of the first convolution group (conv3-64) and the features of the fifth convolution group (conv3-512)
were fused by a cascade to train the correlation filter. The scale bar is 100 µm. The green and red
boxes in (b) are the UECO reference.

UECO may determine whether a reference is lost based on the Fmax and make modifi-
cations accordingly. In general, the closer the predicted reference is to the correct reference,
the greater the positioning accuracy and the greater the response value. We tested 6 videos
with a total of 2507 frames, of which 201 were frames with blinks. The results showed that
when the selected reference was accurately predicted, the average Fmax was about 0.5. A
threshold of 0.25 (half of the average response value) can be used effectively to determine
whether the reference has been lost.

As shown in Figure 4, when the selected reference was accurately predicted, Fmax
was generally around 0.5. In the green boxes, the reference was lost due to intra-frame
distortion, and the response values of these frames were all less than the threshold value.
After the reference was reselected, Fmax rose.

2.3.1. Preprocessing

Preprocessing is used to remove images with blinks. During the imaging process,
blinking by the subjects will block the imaging light, and after binarization, the whole
image turns black. The Otsu algorithm [42] is an efficient algorithm for binarizing images,
which is not affected by image brightness and contrast. In the preprocessing, Otsu is used
to binarizes the images, set the threshold to 0, and remove the images with blinks (the
all-black images). Partial-blink images can still be mapped to the reference image. Whether
the partial-blink image is useful is left for the user to judge.



Information 2022, 13, 531 6 of 16

Information 2022, 13, x FOR PEER REVIEW 6 of 17 
 

 

were fused by a cascade to train the correlation filter. The scale bar is 100 µm. The green and red 
boxes in (b) are the UECO reference. 

As shown in Figure 4, when the selected reference was accurately predicted, m axF  
was generally around 0.5. In the green boxes, the reference was lost due to intra-frame 
distortion, and the response values of these frames were all less than the threshold value. 
After the reference was reselected, m axF  rose. 

 
Figure 4. The response value maxF ; (a,c) are the references of the two sequences (the red and blue 
boxes represent that the reference is not lost, maxF 0.25) and (b) indicates the reference lost (the 
green box represents that the reference is lost, maxF 0.25). The scale bar is 100 µm. The green boxes 
in (a) and (c) are the UECO reference. 

2.3.1. Preprocessing 
Preprocessing is used to remove images with blinks. During the imaging process, 

blinking by the subjects will block the imaging light, and after binarization, the whole 
image turns black. The Otsu algorithm [42] is an efficient algorithm for binarizing images, 
which is not affected by image brightness and contrast. In the preprocessing, Otsu is used 
to binarizes the images, set the threshold to 0, and remove the images with blinks (the all-
black images). Partial-blink images can still be mapped to the reference image. Whether 
the partial-blink image is useful is left for the user to judge. 

2.3.2. Reset Training Set 
ECO is used in the field of object tracking in computer vision. It is set to track a fixed 

reference, so the reference does not change. However, the reference of the AOSLO retinal 
images is often lost due to changes in the imaging position or eye motion. When the 
reference is lost (current frame response value is lower than 0.25), it needs to be replaced 
with a new reference, and the samples in the training set are called old samples. As long 
as the training set is not reset, the training set will always contain old samples, and the 
correlation filter parameters will always be affected by the old samples and will not be 
updated correctly, reducing the accuracy of reference localization. 

We proposed a solution to this problem by resetting the training set after the 
reference was lost, selecting the center region of the current frame as the new reference, 
and retraining the correlation filter parameters with the new samples. UECO reset the 

Figure 4. The response value Fmax; (a,c) are the references of the two sequences (the red and blue
boxes represent that the reference is not lost, Fmax ≥ 0.25) and (b) indicates the reference lost (the
green box represents that the reference is lost, Fmax < 0.25). The scale bar is 100 µm. The green boxes
in (a,c) are the UECO reference.

2.3.2. Reset Training Set

ECO is used in the field of object tracking in computer vision. It is set to track a
fixed reference, so the reference does not change. However, the reference of the AOSLO
retinal images is often lost due to changes in the imaging position or eye motion. When the
reference is lost (current frame response value is lower than 0.25), it needs to be replaced
with a new reference, and the samples in the training set are called old samples. As long
as the training set is not reset, the training set will always contain old samples, and the
correlation filter parameters will always be affected by the old samples and will not be
updated correctly, reducing the accuracy of reference localization.

We proposed a solution to this problem by resetting the training set after the reference
was lost, selecting the center region of the current frame as the new reference, and retraining
the correlation filter parameters with the new samples. UECO reset the training set sample
weights; initialized the sample weights πm = (1, 0, . . . , 0), and as the algorithm ran, the
sample weights πm= πm × (1− λ), where the learning rate is λ =0.009 (the learning rate
inherited from ECO); and normalized the weights ∑ πm = 1.

2.3.3. Image Sequence Linking

The image may return to its original position following a brief blink or eye motion.
Therefore, it is necessary to link image sequences with the same reference together. UECO
saves the parameters of the correlation filter when using each image sequence to train, and
uses the correlation filter to detect each image in sequence. A response value of Fmax ≥ 0.25
indicates that the two sequences have the same reference and should be linked, otherwise
they are independent.

3. Results

The test video had 1163 frames in total, and 1017 frames after preprocessing. Manual
registration was performed by two trained medical students and resulted in the removal of
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159 distorted images, which was verified by a clinical ophthalmologist with more than five
years of experience.

3.1. Experimental Environment

The operating system used in this experiment was Windows 10, the CPU was a
2.9 GHz 8-core AMD Ryzen 7 4800H, the GPU was NVIDIA GeForce RTX 2060, and the
memory was 16 GB.

3.2. Comparison with Manual Registration

Figures 5 and 6 show the comparison of the displacement obtained by UECO and
manual registration. The mean difference in the vertical and horizontal displacement
between UECO and manual registration was 0.07 pixels and 0.16 pixels, respectively, with
a 95% confidence interval of (−3.26 px, 3.40 px) and (−4.99 px, 5.30 px). The Pearson
correlation coefficients were 0.99 and 0.99, respectively.
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Figure 5. Vertical displacement comparison chart; (a) shows the comparison of the vertical displace-
ments obtained by UECO and manual registration; (b) is the difference between the two methods;
and (c) is the Bland−Altman plot. The black line is the mean difference of the two methods. Red lines
indicate the 95% confidence interval (mean ± 1.96 × standard deviation). The Pearson correlation
coefficient curve is shown in (d). The frames with the largest differences have been marked with red
boxes. The frame number in the x-axis corresponds to the frame number in the original video.

The scatter points of the vertical and horizontal displacements in the Bland-Altman
plots almost all lie within the 95% confidence interval with a very narrow confidence
interval, indicating a good level of agreement between the data measured by the two
methods. Meanwhile, the Pearson coefficient was very close to 1, indicating that the
data measured by the two methods were positively correlated and had a strong linear
relationship.

As shown in Figures 5a and 6a, the maximum vertical displacement of eye motion
was 192 pixels, about 167 µm, and the minimum was 1 pixel, about 0.87 µm; the maximum
vertical displacement between adjacent frames (1/15 s) was 244 pixels, about 212 µm; the
maximum horizontal displacement of eye motion was 197 pixels, about 171 µm, and the
minimum was 1 pixel, about 0.87 µm; and the maximum horizontal displacement between
adjacent frames (1/15 s) was 227 pixels, about 197 µm.

Notably, the difference between the vertical and horizontal displacements was within
10 pixels for most frames, but as shown in Figures 5c and 6c, the difference reached 20 pixels
or more for a few frames (the frame with the largest difference has been marked). This
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was caused by intra-frame distortion. Figures 7 and 8 give the images with the largest
vertical/horizontal displacement differences.
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Figure 6. Horizontal displacement comparison chart; (a) shows the comparison of the horizontal
displacements obtained by UECO and manual registration; (b) is the difference between the two
methods; and (c) is the Bland−Altman plot. The black line is the mean difference of the two methods.
Red lines indicate the 95% confidence interval (mean ± 1.96 × standard deviation). The Pearson
correlation coefficient curve is shown in (d). The frames with the largest differences have been
marked with red boxes. The frame number in the x-axis corresponds to the frame number in the
original video.
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The red box in Figure 7 differs from that in Figure 8 because part of the reference 
moved out of the image. The manual registration reference differs from UECO’s reference, 
and the reference for manual registration was determined by the tester. There was 
significant intra-frame distortion in the current frame, which caused different regions of 
the frame to have different displacements relative to the reference. The manually 
registered displacement was x = 134 px, y = 88 px. The algorithm-registered displacement 
was x = 94 px, y = 63 px. In spite of this, both registration methods were able to stabilize 
the images. 

3.3. Displacement Analysis under Fast Saccadic Eye Motion and Slow Drifts 

Figure 7. The frame with the largest vertical displacement difference; (a) is the first frame of the
sequence; (b) shows the frame with the largest difference between UECO and manual registration;
(c) is the result of UECO; and (d) is the result of manual registration. The green and red boxes
are the references for the UECO and manual registration, respectively. For display purposes, the
transparency in (c,d) was set to 50%. The scale bar is 100 µm.

The red box in Figure 7 differs from that in Figure 8 because part of the reference moved
out of the image. The manual registration reference differs from UECO’s reference, and the
reference for manual registration was determined by the tester. There was significant intra-
frame distortion in the current frame, which caused different regions of the frame to have
different displacements relative to the reference. The manually registered displacement
was x = 134 px, y = 88 px. The algorithm-registered displacement was x = 94 px, y = 63 px.
In spite of this, both registration methods were able to stabilize the images.
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The red box in Figure 7 differs from that in Figure 8 because part of the reference 
moved out of the image. The manual registration reference differs from UECO’s reference, 
and the reference for manual registration was determined by the tester. There was 
significant intra-frame distortion in the current frame, which caused different regions of 
the frame to have different displacements relative to the reference. The manually 
registered displacement was x = 134 px, y = 88 px. The algorithm-registered displacement 
was x = 94 px, y = 63 px. In spite of this, both registration methods were able to stabilize 
the images. 

3.3. Displacement Analysis under Fast Saccadic Eye Motion and Slow Drifts 

Figure 8. The frame with the largest horizontal displacement difference; (a) is the first frame of the
sequence; (b) shows the frame with the largest difference between UECO and manual registration;
(c) is the result of UECO; and (d) is the result of manual registration. The green and red boxes
are the references for the UECO and manual registration, respectively. For display purposes, the
transparency in (c,d) was set to 50%. The scale bar is 100 µm.

3.3. Displacement Analysis under Fast Saccadic Eye Motion and Slow Drifts

Figures 9 and 10 respectively illustrate the comparison between the displacement
obtained using manual registration and UECO under fast saccadic eye motion and slow
drifts. When the eyes make a saccadic movement, the imaging position will change
dramatically, and if the scanning rate of the AOSLO is not fast enough to keep up with the
eye movement, there is a possibility of intra-frame distortion. Even in the presence of fast
eye motion and intra-frame aberrations, the difference in the displacement between the
algorithm and manual registration was within 3 pixels.
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Figure 9. Comparison of displacement under saccadic eye motion; (a,c) respectively show the
comparison of vertical and horizontal displacement obtained by manual registration and UECO
under saccadic eye motion; (b,d) are the differences in the vertical and horizontal displacement
between UECO and manual registration; and (e) is 10 frames in an image sequence of saccadic eye
motion. The green box is the UECO reference and the yellow text in the graph represents the current
frame number. The frame number corresponds to the frame number in the original video. The scale
bar is 100 µm.
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quite different from that of manual registration. After removing the displacement that 
failed to calculate, the 95% confidence interval of NCC was still greater than that of UECO. 

Figure 10. Comparison of displacement under slow drifts; (a,c) respectively show the comparison of
vertical and horizontal displacement obtained by manual registration and UECO under slow drifts;
(b,d) are the differences in the vertical and horizontal displacement between UECO and manual
registration; and (e) is 10 frames in an image sequence of slow drifts. The green box is the UECO
reference and the yellow text in the graph represents the current frame number. The frame number
corresponds to the frame number in the original video. The scale bar is 100 µm.

3.4. Comparison with Cross-Correlation-Based Method

We compared the displacements calculated by UECO and a cross-correlation-based
method (normalized cross-correlation, NCC) [43] with those of manual registration.

We not only compared all the displacements calculated by the cross-correlation-based
method (including the wrong data due to saccadic eye motion), but also compared again
with the displacement without a calculation failure (displacement within the accuracy
range). Figures 11 and 12 show the comparison of the displacement obtained by cross-
correlation-based methods and manual registration. The mean difference in the vertical
and horizontal displacement between the cross-correlation-based method and manual
registration was 11.39 pixels and 0.75 pixels, respectively, with a 95% confidence interval
of (−95.1 px, 117.88 px) and (−97.79 px, 99.2 px). The Pearson correlation coefficients
were 0.61 and 0.5, respectively. After removing the data that failed to calculate, the mean
difference in the vertical and horizontal displacement between the cross-correlation-based
method and manual registration was −0.81 pixels and 0.35 pixels, respectively, with a 95%
confidence interval of (−6.29 px, 4.61 px) and (−6.25 px, 6.94 px). The Pearson correlation
coefficients were 0.99 and 0.99, respectively.

It can be seen from Figures 11 and 12 that the displacement calculated by NCC was
quite different from that of manual registration. After removing the displacement that
failed to calculate, the 95% confidence interval of NCC was still greater than that of UECO.
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displacement obtained by cross-correlation-based methods and manual registration; (b) is the 
difference between the two methods; and (c) is the Bland–Altman plot. The black line is the mean 
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3.5. Comparison of the Accuracy of Cross-Correlation-Based Method and UECO 

Figure 11. Vertical displacement comparison chart; (a) shows the comparison of vertical displacement
obtained by cross-correlation-based methods and manual registration; (b) is the difference between
the two methods; and (c) is the Bland–Altman plot. The black line is the mean difference of the two
methods. Red lines indicate the 95% confidence interval (mean ± 1.96 × standard deviation). The
Pearson correlation coefficient curve is shown in (d), and (e–h) show the results after removal of
the wrong displacement. The frame number in the x-axis corresponds to the frame number in the
original video.
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3.5. Comparison of the Accuracy of Cross-Correlation-Based Method and UECO 

Figure 12. Horizontal displacement comparison chart; (a) shows the comparison of vertical displace-
ment obtained by cross-correlation-based methods and manual registration; (b) is the difference
between the two methods; and (c) is the Bland–Altman plot. The black line is the mean difference of
the two methods. Red lines indicate the 95% confidence interval (mean ± 1.96 × standard deviation).
The Pearson correlation coefficient curve is shown in (d), and (e–h) show the results after removal of
the wrong displacement. The frame number in the x-axis corresponds to the frame number in the
original video.
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3.5. Comparison of the Accuracy of Cross-Correlation-Based Method and UECO

As shown in Tables 1 and 2, we present the accuracy (mean ± standard deviation) of
UECO and NCC. The second and third columns represent the accuracy for saccadic eye
motion and slow drifts; the fourth column represents the total accuracy.

Table 1. The accuracy of vertical displacement.

Methods Saccade Drift Total

UECO (−1.52, 0.72) (−1.01, 0.53) (−1.47, 1.41)
NCC N/A (−1.03, 3.01) (−42.94, 65.72)

NCC (wrong data removed) N/A (−1.03, 3.01) (−3.61, 1.99)
The unit in Table 1 is pixels.

Table 2. The accuracy of horizontal displacement.

Methods Saccade Drift Total

UECO (−0.87, 1.94) (−0.80, 0.51) (−1.85, 1.68)
NCC N/A (−2.48, −0.64) (−49.52, 51.03)

NCC (wrong data removed) N/A (−2.48, −0.64) (−3.02, 3.71)
The unit in Table 2 is pixels.

NCC could not identify and distinguish images with saccades, and it needed to
manually identify and distinguish images with saccades, which led to a low total accuracy
for NCC. After the removal of the displacement that failed to calculate, the accuracy was
still not as good as that of UECO. In addition, NCC was also less accurate than UECO
under slow drifts.

3.6. AOSLO Image Stabilization Results

Figures 13–16 show the results of the UECO for image stabilization. For display
purposes, the image areas that moved outside the canvas were trimmed off. The original
videos and the videos after stabilization are presented in the Supplementary Materials.
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4. Discussion

An AOSLO is greatly affected by eye motion, and continual eye motion will cause
distortions both within the frame (intra-frame) and between frames (inter-frame). To
overcome eye motion, we proposed an automatic image stabilization algorithm. UECO
is based on a deep-learning network; this algorithm enabled the removal of images with
blinks and the correction of images with saccades. When the reference was lost due to
intra-frame distortion or a change in the imaging position, UECO reset the training set and
reselected the reference. Strip-based cross-correlation methods [44] enabled the removal of
the intra-distortion very well, but here we only discussed the impact of inter frame motion,
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so we did not use strip-based cross-correlation methods to remove the intra-distortion. If it
is necessary to remove intra-frame distortion, the strip-based cross-correlation method can
be used.

4.1. Difference in Experiments

The manual registration reference differed from UECO’s reference, and there was a
difference between the displacement calculated for UECO and manual registration due to
intra-frame distortion in some images. The UECO was robust and calculated displacements
correctly, even if there were significant distortions within the frame. If manual registration
and UECO selected the same reference, the difference between manual registration and
UECO would be even further reduced.

4.2. Limitation

Compared with traditional methods, UECO is time-consuming due to the high compu-
tational load associated with deep-learning algorithms. In the experiment in Section 3 (the
test video had 1163 frames in total), the cross-correlation-based method took 113 s (0.1 fps),
while UECO took 1717 s (1.47 fps). Therefore, UECO cannot be used for real-time image
stabilization in the imaging process. In the future, we intend to optimize the deep-learning
network and make it more lightweight in order to decrease its computation load and
improve its speed.

At present, since we were not able to obtain patient data without permission from
the hospital, our data came only from healthy subjects. Next, we will cooperate with the
hospital to obtain data from patients and experiment with this data.

5. Conclusions

We developed a deep-learning network (VGG-16)-based algorithm for automatic
image stabilization. During image stabilization, images with blinks were removed and
images with saccades were corrected. To overcome the loss of the reference due to eye
motion or a change in the imaging position, we proposed the method of resetting the
training set. The experimental results showed that UECO was more accurate than the
cross-correlation-based methods and enabled manual registration accuracy to be achieved
without manual intervention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info13110531/s1, Video S1: The original video; Video S2: The
video after stabilization; Video S3: The original video (fovea); Video S4: The video (fovea) after
stabilization.
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