
Citation: Zhang, Y.; Cai, W.; Fan, S.;

Song, R.; Jin, J. Object Detection

Based on YOLOv5 and GhostNet for

Orchard Pests. Information 2022, 13,

548. https://doi.org/10.3390/

info13110548

Academic Editor: Gianluca Valentino

Received: 20 July 2022

Accepted: 16 November 2022

Published: 20 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Object Detection Based on YOLOv5 and GhostNet for
Orchard Pests
Yitao Zhang 1,2, Weiming Cai 2,3,*, Shengli Fan 2,3, Ruiyin Song 3 and Jing Jin 2,3

1 School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Signal Intelligence Detection and Life Behavior Perception Institute, NingboTech University,

Ningbo 315100, China
3 Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment,

Ningbo 315100, China
* Correspondence: caiwm@nit.zju.edu.cn

Abstract: Real-time detection and identification of orchard pests is related to the economy of the
orchard industry. Using lab picture collections and pictures from web crawling, a dataset of common
pests in orchards has been created. It contains 24,748 color images and covers seven types of orchard
pests. Based on this dataset, this paper combines YOLOv5 and GhostNet and explains the benefits
of this method using feature maps, heatmaps and loss curve. The results show that the mAP of
the proposed method increases by 1.5% compared to the original YOLOv5, with 2× or 3× fewer
parameters, less GFLOPs and the same or less detection time. Considering the fewer parameters
of the Ghost convolution, our new method can reach a higher mAP with the same epochs. Smaller
neural networks are more feasible to deploy on FPGAs and other embedding devices which have
limited memory. This research provides a method to deploy the algorithm on embedding devices.

Keywords: orchard pests; GhostNet; YOLOv5; embedding devices

1. Introduction

During the growth of fruit trees, it causes huge economic losses if the pests cannot
be well prevented. Therefore, it is necessary to identify the orchard pests in a timely and
accurate manner, and take corresponding disinfecting measures according to different
types of pests [1]. Traditional recognition methods mainly rely on human experience
to perform repetitive mechanical human eye recognition. However, this method mainly
depends on human experience, which is too subjective, and the effect of recognition by
different people may be different [2]. Second, the planting area of orchards is quite wide.
Not only a lot of labor cost is required, but it is also inefficient if only human eyes are
used for recognition. In view of the problems of poor objectivity and low efficiency in
the above methods, a new orchard pest identification technology is urgently needed.
Computer vision based on deep learning is an important topic recently, it has a wide
range of applications and is used in face recognition and autonomous driving [3]. Ten
years ago, due to the limitation of GPU computing power, its development was stagnant.
However, in recent years, with the rapid increase of GPU computing power, this limitation
has been gradually broken. More and more scholars have begun to use computer vision
to solve problems such as image recognition and detection in the field of agriculture [4].
Cheng et al. used a deep convolutional neural network to accomplish the recognition and
classification of stored grain pest images and achieved an accuracy of 97.61% [5]. Ding and
Taylor used convolutional neural networks to detect and count pests on the pest images
from the sticky plate of sexual attractants [6]. In 2018, Shen et al. used the Faster-RCNN
algorithm to detect stored grain pests with a magazine background, and the mAp of the
method reached 88% [7]. In 2019, Li et al. integrated image enhancements of different
scales into the detection and recognition model, thereby solving the problem to which the

Information 2022, 13, 548. https://doi.org/10.3390/info13110548 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13110548
https://doi.org/10.3390/info13110548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-8271-0441
https://doi.org/10.3390/info13110548
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13110548?type=check_update&version=1

Information 2022, 13, 548 2 of 17

traditional single image scale algorithm is not applicable, i.e., the detection of small target
pests [8]. In 2020, some researchers used improved yolov3 and Faster RCNN to detect
rice planthoppers [9]. Wang et al. applied context information to convolutional neural
networks; using the context of pests as prior information, and fusing image visual features
and prior-context information to improve the accuracy of pest detection and identification
in complex environments [10]. Xie et al. proposed a Faster DR-IACNN model based
on the self-built grape leaf disease dataset and Faster R-CNN detection algorithm. The
Inception-v1 module, Inception-ResNet-v2 module and SE module were introduced and
worked well. The proposed model achieved an outstanding ability for feature extraction,
as the mAP was 81.1% [11]. In 2021, James and other researchers used SSD-MobileNet to
detect rice pests, and the trained model achieved 78.4% accuracy compared to the 74%
accuracy in previous research [12]. In 2022, Wang et al. designed a lightweight attention
module to focus on the informative features, and the proposed network outperformed
previous studies for pest localization [13]. In 2022, Pang et al. proposed a real-time object
detection model for orchard pests based on the improved YOLOv4 algorithm, and the
improved model achieved 88% mAP [14].

The YOLO detection network has been attracting attention since it was proposed [15–18],
mainly because the network is fast and accurate. It has now been iterated to the fifth version.
Our research is based on YOLOv5. In this paper, we propose a novel network that drastically
reduces GFLOPs and the weight of the network with almost no loss of accuracy, and explain the
feasibility of this approach from the perspective of feature map visualization. The experimental
results show that compared with the original YOLOv5, our method can converge faster and
maintain a higher mAP.

2. Materials and Methods
2.1. Dataset Construction

The success of computer vision depends on a large amount of data, especially when
the neural network parameters are large; it could cause underfitting if the dataset is too
small. The more sufficient the dataset is, the more effective features the model can extract,
and the better the model fitting effect. Most of the current agricultural pest datasets are
collected from laboratory specimens, and the number of pictures is small, which can’t meet
the conditions required for large-scale network training. Based on the above reasons, we
constructed the original orchard pest dataset by means of a web crawler and laboratory
specimen image collection. However, there are still many problems with the pictures from
the web crawling: 1©many pictures are dirty; 2© the size of the pictures are not uniform;
3© the pictures have a high degree of overlap. On the basis of the original dataset, we

have performed a series of data enhancements, mainly including noise, blurring, rotation,
cropping, and flipping. We have enhanced the images that are from the web scraping
section. The effects of various data enhancements are shown in Figure 1. Under the
conditions of laboratory collection, we simulated the real scene as much as possible to
ensure the quality of the picture [19].

Information 2022, 13, x FOR PEER REVIEW 2 of 17

scales into the detection and recognition model, thereby solving the problem to which the
traditional single image scale algorithm is not applicable, i.e., the detection of small target
pests [8]. In 2020, some researchers used improved yolov3 and Faster RCNN to detect rice
planthoppers [9]. Wang et al. applied context information to convolutional neural net-
works; using the context of pests as prior information, and fusing image visual features
and prior-context information to improve the accuracy of pest detection and identification
in complex environments [10]. Xie et al. proposed a Faster DR-IACNN model based on
the self-built grape leaf disease dataset and Faster R-CNN detection algorithm. The Incep-
tion-v1 module, Inception-ResNet-v2 module and SE module were introduced and
worked well. The proposed model achieved an outstanding ability for feature extraction,
as the mAP was 81.1% [11]. In 2021, James and other researchers used SSD-MobileNet to
detect rice pests, and the trained model achieved 78.4% accuracy compared to the 74%
accuracy in previous research [12]. In 2022, Wang et al. designed a lightweight attention
module to focus on the informative features, and the proposed network outperformed
previous studies for pest localization [13]. In 2022, Pang et al. proposed a real-time object
detection model for orchard pests based on the improved YOLOv4 algorithm, and the
improved model achieved 88% mAP [14].

The YOLO detection network has been attracting attention since it was proposed [15–
18], mainly because the network is fast and accurate. It has now been iterated to the fifth
version. Our research is based on YOLOv5. In this paper, we propose a novel network
that drastically reduces GFLOPs and the weight of the network with almost no loss of
accuracy, and explain the feasibility of this approach from the perspective of feature map
visualization. The experimental results show that compared with the original YOLOv5,
our method can converge faster and maintain a higher mAP.

2. Materials and Methods
2.1. Dataset Construction

The success of computer vision depends on a large amount of data, especially when
the neural network parameters are large; it could cause underfitting if the dataset is too
small. The more sufficient the dataset is, the more effective features the model can extract,
and the better the model fitting effect. Most of the current agricultural pest datasets are
collected from laboratory specimens, and the number of pictures is small, which can’t
meet the conditions required for large-scale network training. Based on the above reasons,
we constructed the original orchard pest dataset by means of a web crawler and labora-
tory specimen image collection. However, there are still many problems with the pictures
from the web crawling: ① many pictures are dirty; ② the size of the pictures are not
uniform; ③ the pictures have a high degree of overlap. On the basis of the original dataset,
we have performed a series of data enhancements, mainly including noise, blurring, rota-
tion, cropping, and flipping. We have enhanced the images that are from the web scraping
section. The effects of various data enhancements are shown in Figure 1. Under the con-
ditions of laboratory collection, we simulated the real scene as much as possible to ensure
the quality of the picture [19].

Figure 1. Image augmentation.

Information 2022, 13, 548 3 of 17

The image from web scraping before and after data augmentation are shown in Table 1,
the image from laboratory collection is shown in Table 2 and the final dataset is shown
in Table 3.

Table 1. Images from web crawler.

Type Before Data Augmentation After Data Augmentation

Cicadidae 433 3890
Gryllotalpa spps 403 3620

Scarabaeoidea 288 2592
Locusta migratoria manilensis 354 3186

Cerambycidae 343 3083
Buprestidae 410 3690

Hyphantria cunea 269 2420
sum 2500 22,481

Table 2. Images from laboratory specimen.

Type Number

Cicadidae 346
Gryllotalpa spps 308

Scarabaeoidea 342
Locusta migratoria manilensis 315

Cerambycidae 298
Buprestidae 306

Hyphantria cunea 352
sum 2267

Table 3. Final dataset.

Type Number

Cicadidae 4326
Gryllotalpa spps 3928

Scarabaeoidea 2934
Locusta migratoria manilensis 3501

Cerambycidae 3381
Buprestidae 3996

Hyphantria cunea 2772
sum 24,748

2.2. Detection Models

YOLOv5 is proposed by Ultralytics, which was improved based on YOLOv4. It is a
detection model which takes on the advantages of previous versions and other networks,
such as CSPNet and PANet [20,21], and gets a good tradeoff between accuracy and speed.
The model structure is smaller than previous versions but more efficient. Its main structure
diagram is shown in Figure 2. It introduces multi-scale prediction, and utilizes both FPN
and PANet. FPN transfers deep semantic features to shallow layers, enhancing semantic
expression on multiple scales. In contrast, PANet transmits the localization information of
the shallow layer to the deep layer, and enhances the localization ability on multiple scales.
YOLOv5 enhances multi-scale the semantic representation and localization capabilities
through the combination of the two networks. It is mainly composed of C3, Conv and SPPF
modules, as shown in Figure 2. YOLOv5 utilizes a depth multiple and width multiple to
control the width and depth of the network. YOLOv5n is the network with the smallest
depth and the smallest feature map width in this series. Other networks are continuously
deepening and widening on this basis. In general terms, YOLOv5 has made improvements
mainly by including the following four aspects: 1© input (mosaic data augmentation,

Information 2022, 13, 548 4 of 17

adaptive anchor box calculation and adaptive image scaling); 2© backbone (CSPNet and
Focus module); 3© neck (FPN and PANet); 4© loss (replace IoU with CIoU).

Information 2022, 13, x FOR PEER REVIEW 4 of 17

width multiple to control the width and depth of the network. YOLOv5n is the network
with the smallest depth and the smallest feature map width in this series. Other networks
are continuously deepening and widening on this basis. In general terms, YOLOv5 has
made improvements mainly by including the following four aspects: ① input (mosaic
data augmentation, adaptive anchor box calculation and adaptive image scaling); ② back-
bone (CSPNet and Focus module); ③ neck (FPN and PANet); ④ loss (replace IoU with
CIoU).

Figure 2. Main module of YOLOv5.

2.3. GhostNet Module
In order to fit the datasets better, neural networks often consist of a large number of

parameters, especially in early fully connected layers. With the development of convolu-
tional neural networks, we can use filters to reduce a lot of the parameters. Building a
network which needs to finish a detect task, it often requires a lot of feature maps, which
usually contain hundreds of channels; the model usually is big. Even the SOTA model has
lots of layers, which means the model bloats. For a given neural network, model compres-
sion means that we can get it to easily deploy on embedding devices with fewer parame-
ters. Researchers have designed some methods to compress the size of model. Se-
queezeNet [22] replaces a 3× 3 with a 1× 1 convolution kernel and reduces the channels
of input. It achieves AlexNet-level accuracy on ImageNet with 50× fewer parameters,
and the original model size of 240 Mb, is reduced to 4.8 Mb after model compression.
Xception [23] uses split convolution operations and a more efficient feature fusion for the
model parameters. Mobilenets [24] utilizes a series of depthwise separable convolutions
which achieves a better performance with fewer parameters. Shufflenet [25] utilizes chan-
nel shuffle operations to improve the information flow exchange between channel groups.

Figure 2. Main module of YOLOv5.

2.3. GhostNet Module

In order to fit the datasets better, neural networks often consist of a large number of pa-
rameters, especially in early fully connected layers. With the development of convolutional
neural networks, we can use filters to reduce a lot of the parameters. Building a network
which needs to finish a detect task, it often requires a lot of feature maps, which usually
contain hundreds of channels; the model usually is big. Even the SOTA model has lots of
layers, which means the model bloats. For a given neural network, model compression
means that we can get it to easily deploy on embedding devices with fewer parameters.
Researchers have designed some methods to compress the size of model. SequeezeNet [22]
replaces a 3×3 with a 1×1 convolution kernel and reduces the channels of input. It achieves
AlexNet-level accuracy on ImageNet with 50× fewer parameters, and the original model
size of 240 Mb, is reduced to 4.8 Mb after model compression. Xception [23] uses split
convolution operations and a more efficient feature fusion for the model parameters. Mo-
bilenets [24] utilizes a series of depthwise separable convolutions which achieves a better
performance with fewer parameters. Shufflenet [25] utilizes channel shuffle operations to
improve the information flow exchange between channel groups. The group convolution
can reduce parameters significantly, so it now gets widely used. Although these mod-
els achieve excellent performance with very few FLOPs, the correlation and redundancy
between feature maps have never been well exploited. The remaining 1×1 convolution
layers would still result in a lot of parameters. In order to avoid redundant parameters

Information 2022, 13, 548 5 of 17

which results in a large amount of consumption and makes deploying neural networks on
embedding devices more convenient, Han et al. proposed a new method named GhostNet,
which aimed to generate more feature maps with cheaper operations [26,27]. For the input
image, X ∈ Rc×h×w, where c, h,w are the number of input channels, the height of the input
image and the width of the input image, respectively. In general, the operations of an
arbitrary convolutional layer for producing n feature maps can be formulated as:

Y = X ∗ f + b (1)

where ∗ is the convolution operation, b the bias, Y ∈ Rh′×w′×n, the output feature map
with n channels and f ∈ Rc×k×k×n, the convolution filters in this layer. In addition, h′

and w′ are the height and width, respectively, of the output feature maps and k× k is the
kernel size of the convolution filters f . During this convolution procedure [26], the required
number of FLOPs can be calculated as n · h′ ·w′ · c · k · k, which is often as large as hundreds
of thousands since the number of filters n and the channel number c are generally very
larger(e.g., 256 or 512 or 1024).

By visualizing some feature maps, we can discover that some features are similar,
and we can get it by some cheap operations instead. Specifically, m intrinsic feature maps
Y′ ∈ Rh′×w′×m can be generated by Equation (2), where f ′ ∈ Rc×k×k×m is the convolution
filters, and it is similar with Equation (1). However, we only operate on partial convolu-
tions, and the remaining feature maps are generated with a linear operation, as shown in
Equation (3).

Y′ = X ∗ f ′ + b (2)

yi,j = Φi,j(yi
′), ∀i = 1, . . . , m, j = 1, . . . , s, (3)

where yi
′ is the i-th intrinsic feature maps in Y′, Φi,j the linear operation for yi

′generating
the j-th ghost feature map yi,j.

The kernel size for the linear operation can be choose as 3 or 5 or 7, there are no
significant difference to improve the precision, but both of them have a significant reduction
on weights and GFLOPs, as can be seen in Figure 3, which shows the GhostNet model.

Information 2022, 13, x FOR PEER REVIEW 5 of 17

The group convolution can reduce parameters significantly, so it now gets widely used.
Although these models achieve excellent performance with very few FLOPs, the correla-
tion and redundancy between feature maps have never been well exploited. The remain-
ing 1× 1 convolution layers would still result in a lot of parameters. In order to avoid
redundant parameters which results in a large amount of consumption and makes de-
ploying neural networks on embedding devices more convenient, Han et al. proposed a
new method named GhostNet, which aimed to generate more feature maps with cheaper
operations [26,27]. For the input image, c h wX × ×∈ , where c , h ,w are the number of
input channels, the height of the input image and the width of the input image, respec-
tively. In general, the operations of an arbitrary convolutional layer for producing n fea-
ture maps can be formulated as:

Y X * f b= + (1)

where ∗ is the convolution operation, b the bias, h w nY ′ ′× ×∈ , the output feature map
with n channels and c k k nf × × ×∈ , the convolution filters in this layer. In addition, h′
and w′ are the height and width, respectively, of the output feature maps and k k× is
the kernel size of the convolution filters f . During this convolution procedure [26], the
required number of FLOPs can be calculated as n h w c k k′ ′⋅ ⋅ ⋅ ⋅ ⋅ , which is often as large as
hundreds of thousands since the number of filters n and the channel number c are gen-
erally very larger(e.g., 256 or 512 or 1024).

By visualizing some feature maps, we can discover that some features are similar,
and we can get it by some cheap operations instead. Specifically, m intrinsic feature maps

h w mY ′ ′× ×′∈ can be generated by Equation (2), where c k k mf × × ×′∈ is the convolution fil-
ters, and it is similar with Equation (1). However, we only operate on partial convolutions,
and the remaining feature maps are generated with a linear operation, as shown in Equa-
tion (3).

Y X * f b′ ′= + (2)

1 1 i , j i , j iy (y), i ,...,m, j ,...,s,′= Φ ∀ = = (3)

where iy ′ is the i -th intrinsic feature maps in Y ′ , i , jΦ the linear operation for iy ′ gen-
erating the j -th ghost feature map i , jy .

The kernel size for the linear operation can be choose as 3 or 5 or 7, there are no
significant difference to improve the precision, but both of them have a significant reduc-
tion on weights and GFLOPs, as can be seen in Figure 3, which shows the GhostNet model.

(a)

Figure 3. Cont.

Information 2022, 13, 548 6 of 17
Information 2022, 13, x FOR PEER REVIEW 6 of 17

(b)

Figure 3. Ghost module, normal Conv is shown in (a) and Ghost Conv is shown in (b).

We have replaced the C3 module with C3Ghost and replaced the Conv module with
GhostConv, as is shown in Figure 4. The linear operation is a group convolution [28], as
is shown in Figure 5. In some cases, group convolution can indeed bring about better
model results than standard 2D convolution, because group convolution can increase the
diagonal correlation between adjacent layer filters and reduce the training parameters. It
is not easy to overfit, which is similar to the effect of regularization. In general speaking,
the parameters p utilizes standard 2D convolution as is shown in Equation (4), and the
parameters P′ is shown in Equation (5) with group convolution, where h1 , w1 , C1 , C2

, g are the filters height, the filters width, the input channels, the output channels and the
number of groups, respectively. We can get similar feature maps with the 1/g times num-
ber of parameters.

P h w C C= × × ×1 1 1 2 (4)

P h w C C
g

′ = × × × ×1 1 1 2
1 (5)

The number of channels of input and the output of the Conv and the GhostConv
module are the same. C1 is the number of input channels and C2 is the number of out-
put channels. There are two Conv module in GhostConv, the number of hidden channels
is half of the output. The details are shown in Figure 4.

Figure 4. Main structure of YOLOv5 with GhostNet.

Figure 3. Ghost module, normal Conv is shown in (a) and Ghost Conv is shown in (b).

We have replaced the C3 module with C3Ghost and replaced the Conv module with
GhostConv, as is shown in Figure 4. The linear operation is a group convolution [28], as
is shown in Figure 5. In some cases, group convolution can indeed bring about better
model results than standard 2D convolution, because group convolution can increase the
diagonal correlation between adjacent layer filters and reduce the training parameters. It
is not easy to overfit, which is similar to the effect of regularization. In general speaking,
the parameters p utilizes standard 2D convolution as is shown in Equation (4), and the
parameters P′ is shown in Equation (5) with group convolution, where h1, w1, C1, C2, g
are the filters height, the filters width, the input channels, the output channels and the
number of groups, respectively. We can get similar feature maps with the 1/g times number
of parameters.

P = h1 × w1 × C1 × C2 (4)

P′ = h1 × w1 × C1 × C2 ×
1
g

(5)

The number of channels of input and the output of the Conv and the GhostConv
module are the same. C1 is the number of input channels and C2 is the number of output
channels. There are two Conv module in GhostConv, the number of hidden channels is
half of the output. The details are shown in Figure 4.

Information 2022, 13, x FOR PEER REVIEW 6 of 17

(b)

Figure 3. Ghost module, normal Conv is shown in (a) and Ghost Conv is shown in (b).

We have replaced the C3 module with C3Ghost and replaced the Conv module with
GhostConv, as is shown in Figure 4. The linear operation is a group convolution [28], as
is shown in Figure 5. In some cases, group convolution can indeed bring about better
model results than standard 2D convolution, because group convolution can increase the
diagonal correlation between adjacent layer filters and reduce the training parameters. It
is not easy to overfit, which is similar to the effect of regularization. In general speaking,
the parameters p utilizes standard 2D convolution as is shown in Equation (4), and the
parameters P′ is shown in Equation (5) with group convolution, where h1 , w1 , C1 , C2

, g are the filters height, the filters width, the input channels, the output channels and the
number of groups, respectively. We can get similar feature maps with the 1/g times num-
ber of parameters.

P h w C C= × × ×1 1 1 2 (4)

P h w C C
g

′ = × × × ×1 1 1 2
1 (5)

The number of channels of input and the output of the Conv and the GhostConv
module are the same. C1 is the number of input channels and C2 is the number of out-
put channels. There are two Conv module in GhostConv, the number of hidden channels
is half of the output. The details are shown in Figure 4.

Figure 4. Main structure of YOLOv5 with GhostNet. Figure 4. Main structure of YOLOv5 with GhostNet.

Information 2022, 13, 548 7 of 17
Information 2022, 13, x FOR PEER REVIEW 7 of 17

(a)

(b)

Figure 5. Standard 2D convolution is shown in (a) and group convolution is shown in (b).

3. Results
3.1. Feature Maps Visualization

The visualization of feature maps is shown in Figure 6. By saving the convolution
output of a specific layer, we get different feature maps by adding GhostNet in different
places. We add GhostNet module in the head, in the backbone and add both respectively;
the corresponding model is named HEAD-GHOST, BACKBONE-GHOST and ALL-
GHOST. We find that the output images are similar to output images without GhostNet;
it illustrates that we can replace C3 module with C3Ghost, and Conv with GhostConv to
get analogous feature maps.

(a)

(b)

Figure 5. Standard 2D convolution is shown in (a) and group convolution is shown in (b).

3. Results
3.1. Feature Maps Visualization

The visualization of feature maps is shown in Figure 6. By saving the convolution
output of a specific layer, we get different feature maps by adding GhostNet in different
places. We add GhostNet module in the head, in the backbone and add both respectively;
the corresponding model is named HEAD-GHOST, BACKBONE-GHOST and ALL-GHOST.
We find that the output images are similar to output images without GhostNet; it illustrates
that we can replace C3 module with C3Ghost, and Conv with GhostConv to get analogous
feature maps.

Information 2022, 13, x FOR PEER REVIEW 7 of 17

(a)

(b)

Figure 5. Standard 2D convolution is shown in (a) and group convolution is shown in (b).

3. Results
3.1. Feature Maps Visualization

The visualization of feature maps is shown in Figure 6. By saving the convolution
output of a specific layer, we get different feature maps by adding GhostNet in different
places. We add GhostNet module in the head, in the backbone and add both respectively;
the corresponding model is named HEAD-GHOST, BACKBONE-GHOST and ALL-
GHOST. We find that the output images are similar to output images without GhostNet;
it illustrates that we can replace C3 module with C3Ghost, and Conv with GhostConv to
get analogous feature maps.

(a)

(b)

Figure 6. Cont.

Information 2022, 13, 548 8 of 17Information 2022, 13, x FOR PEER REVIEW 8 of 17

(c)

(d)

(e)

Figure 6. Cont.

Information 2022, 13, 548 9 of 17Information 2022, 13, x FOR PEER REVIEW 9 of 17

(f)

(g)

(h)

Figure 6. Cont.

Information 2022, 13, 548 10 of 17Information 2022, 13, x FOR PEER REVIEW 10 of 17

(i)

Figure 6. Visualization of Feature maps: (a) is the input image; (b) and (c) are the eighth and the
twenty-third layer of YOLOv5s, respectively; (d) and (e) are the eighth and the twenty-third layer
of YOLOv5s-BACKBONE-GHOST, respectively; (f) and (g) are the eighth and the twenty-third layer
of YOLOv5s-HEAD-GHOST, respectively; (h) and (i) are the eighth and the twenty-third layer of
YOLOv5s-ALL-GHOST, respectively.

We use the structural similarity metric (SSIM) to evaluate the similarity of two im-
ages. As can be seen in Equation (6), where x and y are two images, xμ , yμ , xσ ,

yσ , xyσ are the average of x , the average of y , the variance of x , the variance of y
and the covariance of x , y , respectively, c1 , c2 are two hyperparameters.

() ()()
()()

1 2

2 2 2 2
1 2

2 2x y xy

x y x y

c c
SSIM x, y

c c

μ μ σ

μ μ σ σ

+ +
=

+ + + +
 (6)

We get 32 images for every feature map from Figure 6. For brevity, we select the first
ten images and calculate SSIM with the output of the original feature maps respectively,
the heatmap is shown in Figure 7. The average score of SSIM is shown in Table 4. The
SSIM is close to 0.8 by adding the Ghost module.

Figure 7. Heatmaps of SSIM compared to original images. ALL-GHOST-8 and ALL-GHOST-23
means the output of the eighth and the twenty-third layer in which the Ghost module is added both

Figure 6. Visualization of Feature maps: (a) is the input image; (b,c) are the eighth and the twenty-third
layer of YOLOv5s, respectively; (d,e) are the eighth and the twenty-third layer of YOLOv5s-BACKBONE-
GHOST, respectively; (f,g) are the eighth and the twenty-third layer of YOLOv5s-HEAD-GHOST,
respectively; (h,i) are the eighth and the twenty-third layer of YOLOv5s-ALL-GHOST, respectively.

We use the structural similarity metric (SSIM) to evaluate the similarity of two images.
As can be seen in Equation (6), where x and y are two images, µx, µy, σx, σy, σxy are the
average of x, the average of y, the variance of x, the variance of y and the covariance of x, y,
respectively, c1, c2 are two hyperparameters.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (6)

We get 32 images for every feature map from Figure 6. For brevity, we select the first
ten images and calculate SSIM with the output of the original feature maps respectively,
the heatmap is shown in Figure 7. The average score of SSIM is shown in Table 4. The SSIM
is close to 0.8 by adding the Ghost module.

Since the detection network passes through the backbone part first and then the
head part, we choose the last layer for head and backbone, which correspond to 8 and 23
respectively. Referring to Table 4 it can be seen that the mean SSIM with added Ghost in
only one part (head or backbone) is higher than when adding both.

Table 4. Mean SSIM.

Model Mean SSIM

ALL-GHOST-8 0.819
ALL-GHOST-23 0.817

BACKBONE-GHOST-8 0.804
BACKBONE-GHOST-23 0.847

HEAD-GHOST-8 0.830
HEAD-GHOST-23 0.827

Information 2022, 13, 548 11 of 17

Information 2022, 13, x FOR PEER REVIEW 10 of 17

(i)

Figure 6. Visualization of Feature maps: (a) is the input image; (b) and (c) are the eighth and the
twenty-third layer of YOLOv5s, respectively; (d) and (e) are the eighth and the twenty-third layer
of YOLOv5s-BACKBONE-GHOST, respectively; (f) and (g) are the eighth and the twenty-third layer
of YOLOv5s-HEAD-GHOST, respectively; (h) and (i) are the eighth and the twenty-third layer of
YOLOv5s-ALL-GHOST, respectively.

We use the structural similarity metric (SSIM) to evaluate the similarity of two im-
ages. As can be seen in Equation (6), where x and y are two images, xμ , yμ , xσ ,

yσ , xyσ are the average of x , the average of y , the variance of x , the variance of y
and the covariance of x , y , respectively, c1 , c2 are two hyperparameters.

() ()()
()()

1 2

2 2 2 2
1 2

2 2x y xy

x y x y

c c
SSIM x, y

c c

μ μ σ

μ μ σ σ

+ +
=

+ + + +
 (6)

We get 32 images for every feature map from Figure 6. For brevity, we select the first
ten images and calculate SSIM with the output of the original feature maps respectively,
the heatmap is shown in Figure 7. The average score of SSIM is shown in Table 4. The
SSIM is close to 0.8 by adding the Ghost module.

Figure 7. Heatmaps of SSIM compared to original images. ALL-GHOST-8 and ALL-GHOST-23
means the output of the eighth and the twenty-third layer in which the Ghost module is added both

Figure 7. Heatmaps of SSIM compared to original images. ALL-GHOST-8 and ALL-GHOST-23
means the output of the eighth and the twenty-third layer in which the Ghost module is added
both in the head and backbone. BACKBONE-GHOST-8 and BACKBONE-GHOST-23 means the
output of the eighth and the twenty-third layer in which the Ghost module is added in backbone
only. HEAD-GHOST-8 and HEAD-GHOST-23 means the output of the eighth and the twenty-third
layer which Ghost module is added in head only.

3.2. Results on Pest Dataset

The results from comparing the performance of different models by adding GhostNet
to different locations in terms of parameters, weights, GFLOPs, mAp and inference time,
are shown in Table 5. The hardware environment of our experiments was an AMD Ryzen 5
3600 CPU, NVIDIA RTX2070 SUPER(8G), and the software environment was Ubuntu18.04.6
LTS, Pytorch1.9.0, Python 3.7. The epoch was set to 100 and other hyperparameters were
the same as the original YOLOv5. Some of the main parameters such as momentum were
set to 0.937, weight decay to 0.0005, warmup epochs to 3 and the augmentation was set to
true. The results illustrated that compared to the network without GhostNet the model
still worked well when GhostNet was added. A possible explanation is that the feature
maps have no significant differences. This can be seen from the previous heatmaps in
Figure 7. The corresponding semantic information loss was very small with the GhostNet
module. However, for the detection network, there were slight differences when adding the
GhostNet module in different places. The detection time was not significantly improved,
but the weights of model was reduced almost by half, and mAp increased by nearly 1%. It
illustrates that the GhostNet module can prune deep neural networks while maintaining a
comparable performance for orchard pests.

Table 5. Parameters of each model.

Models Params
(Millions) Weights (Mb) GFLOPs

YOLOv5n 1.77 3.75 4.2
YOLOv5n-ALL-GHOST 0.95 2.25 2.3

YOLOv5n-HEAD-GHOST 1.42 3.12 3.6
YOLOv5n-BACKBONE-GHOST 1.29 2.88 2.9

YOLOv5s 7.03 13.8 15.9
YOLOv5s-ALL-GHOST 3.7 7.52 8.2

YOLOv5s-HEAD-GHOST 5.6 11.1 13.4
YOLOv5s-BACKBONE-GHOST 5.1 10.1 10.7

Information 2022, 13, 548 12 of 17

Table 5. Cont.

Models Params
(Millions) Weights (Mb) GFLOPs

YOLOv5m 20.89 40.3 48.1
YOLOv5m-ALL-GHOST 8.55 16.8 18.4

YOLOv5m-HEAD-GHOST 15.5 30.1 38
YOLOv5m-BACKBONE-GHOST 13.89 27 28.5

YOLOv5l 46.17 88.6 108
YOLOv5l-ALL-GHOST 15.62 30.5 33.3

YOLOv5l-HEAD-GHOST 32.7 63.1 82
YOLOv5l-BACKBONE-GHOST 29.02 56 59.3

YOLOv5x 86.25 165 204.3
YOLOv5x-ALL-GHOST 25.09 48.7 53.3

YOLOv5x-HEAD-GHOST 59.2 113 151.3
YOLOv5x-BACKBONE-GHOST 52.1 100 106.4

3.3. Results on Loss Curve

For the object detection task, in addition to the classification accuracy of the detected
target, the prediction accuracy of its location was also important. Intersection over union
(IoU) is one of the important metrics to measure the location accuracy, which is shown in
Equation (7), where A is the ground truth, B the prediction box. The IoU loss is zero when
the two rectangles are disjoint. In order to measure the regression positioning loss better,
some researchers have considered the distance of two central points and have proposed
DIoU, which is shown in Equation (8), where b, bgt, d, c are the central point of the prediction
box, the central point of ground truth, the distance of two central points of two boxes and
the diagonal length of the smallest enclosing box covering two boxes, respectively. An
outstanding regression loss should consider overlapping areas, center point distance and
aspect ratio simultaneously. It is called CIoU, as is shown in Equations (9)–(11) and Figure 8,
where υ, wgt, hgt, w, h, α are the aspect ratio, the width and height of ground truth, the
width and height of the prediction box and a hyperparameter, respectively. Training loss is
shown in Figure 8, where classes loss and objectness loss utilizes cross-entropy loss.

IoU =
A ∩ B
A ∪ B

(7)

DIoU = IoU −
f ulllengthρ2(b, bgt)

c2 = IoU − d2

c2 (8)

CIoU = IoU − (
f ulllengthρ2(b, bgt)

c2 + αυ) (9)

υ =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)

α =
υ

(1− IoU) + υ
(11)

Information 2022, 13, x FOR PEER REVIEW 12 of 17

YOLOv5m-HEAD-GHOST 15.5 30.1 38
YOLOv5m-BACKBONE-

GHOST
13.89 27 28.5

YOLOv5l 46.17 88.6 108
YOLOv5l-ALL-GHOST 15.62 30.5 33.3

YOLOv5l-HEAD-GHOST 32.7 63.1 82
YOLOv5l-BACKBONE-

GHOST 29.02 56 59.3

YOLOv5x 86.25 165 204.3
YOLOv5x-ALL-GHOST 25.09 48.7 53.3

YOLOv5x-HEAD-GHOST 59.2 113 151.3
YOLOv5x-BACKBONE-

GHOST 52.1 100 106.4

3.3. Results on Loss Curve
For the object detection task, in addition to the classification accuracy of the detected

target, the prediction accuracy of its location was also important. Intersection over union
(IoU) is one of the important metrics to measure the location accuracy, which is shown in
Equation (7), where A is the ground truth, B the prediction box. The IoU loss is zero
when the two rectangles are disjoint. In order to measure the regression positioning loss
better, some researchers have considered the distance of two central points and have pro-
posed DIoU, which is shown in Equation (8), where b , gtb , d , c are the central point
of the prediction box, the central point of ground truth, the distance of two central points
of two boxes and the diagonal length of the smallest enclosing box covering two boxes,
respectively. An outstanding regression loss should consider overlapping areas, center
point distance and aspect ratio simultaneously. It is called CIoU, as is shown in Equations
(9)–(11) and Figure 8, where υ , gtw , gth , w , h , α are the aspect ratio, the width and
height of ground truth, the width and height of the prediction box and a hyperparameter,
respectively. Training loss is shown in Figure 8, where classes loss and objectness loss
utilizes cross-entropy loss.

A BIoU
A B

=

 (7)

()gtb,b dDIoU IoU IoU
c c

ρ
= − = −

2 2

2 2 (8)

gt(b,b)CIoU IoU ()
c

ρ αυ= − +
2

2 (9)

2
2

4 gt

gt

w w(arctan arctan)
hh

υ
π

= − (10)

1(IoU)
υα

υ
=

− +
 (11)

Figure 8. CIoU (Complete-IOU).

Information 2022, 13, 548 13 of 17

The rate of convergence with GhostNet in the head part is faster according to the
train loss curve. It is probably due to the model compact, fewer parameters lead to faster
convergence. There are only slight differences in the loss curve as is shown in Figures 9
and 10. Since the model performance in the loss curve is very similar after adding the ghost
module, there is a higher mAp as is shown in Table 6. It indicates that GhostNet is effective.

Information 2022, 13, x FOR PEER REVIEW 13 of 17

Figure 8. CIoU (Complete-IOU).

The rate of convergence with GhostNet in the head part is faster according to the
train loss curve. It is probably due to the model compact, fewer parameters lead to faster con-
vergence. There are only slight differences in the loss curve as is shown in Figures 9 and 10.
Since the model performance in the loss curve is very similar after adding the ghost mod-
ule, there is a higher mAp as is shown in Table 6. It indicates that GhostNet is effective.

(a) (b)

(c) (d)

Figure 9. Train loss curve: (a) is the box loss, (b) classify loss, (c) object loss, (d) total loss.
Figure 9. Train loss curve: (a) is the box loss, (b) classify loss, (c) object loss, (d) total loss.

Information 2022, 13, 548 14 of 17
Information 2022, 13, x FOR PEER REVIEW 14 of 17

(a) (b)

(c) (d)

Figure 10. Val loss curve: (a) is the box loss, (b) classify loss, (c) object loss, (d) total loss.

Table 6. mAP and detection time of each model.

Models mAP@0.5 Detection Time (ms)
Faster RCNN(ResNet50) 0.8134 117

Tiny-YOLOv3 0.875 3.33
YOLOv3 0.914 11.11

Tiny-YOLOv4 0.887 2.22
YOLOv4 0.929 12.22

YOLOv5n 0.95 9
YOLOv5n-ALL-GHOST 0.9513 10

YOLOv5n-HEAD-GHOST 0.9649 10
YOLOv5n-BACKBONE-GHOST 0.9499 11

YOLOv5s 0.9702 11
YOLOv5s-ALL-GHOST 0.9791 11

YOLOv5s-HEAD-GHOST 0.9866 11
YOLOv5s-BACKBONE-GHOST 0.9833 13

YOLOv5m 0.9863 14.3
YOLOv5m-ALL-GHOST 0.9704 16.3

YOLOv5m-HEAD-GHOST 0.9898 15.3
YOLOv5m-BACKBONE-GHOST 0.9843 15.3

Figure 10. Val loss curve: (a) is the box loss, (b) classify loss, (c) object loss, (d) total loss.

Table 6. mAP and detection time of each model.

Models mAP@0.5 Detection Time (ms)

Faster RCNN(ResNet50) 0.8134 117

Tiny-YOLOv3 0.875 3.33
YOLOv3 0.914 11.11

Tiny-YOLOv4 0.887 2.22
YOLOv4 0.929 12.22

YOLOv5n 0.95 9
YOLOv5n-ALL-GHOST 0.9513 10

YOLOv5n-HEAD-GHOST 0.9649 10
YOLOv5n-BACKBONE-GHOST 0.9499 11

YOLOv5s 0.9702 11
YOLOv5s-ALL-GHOST 0.9791 11

YOLOv5s-HEAD-GHOST 0.9866 11
YOLOv5s-BACKBONE-GHOST 0.9833 13

YOLOv5m 0.9863 14.3
YOLOv5m-ALL-GHOST 0.9704 16.3

YOLOv5m-HEAD-GHOST 0.9898 15.3
YOLOv5m-BACKBONE-GHOST 0.9843 15.3

Information 2022, 13, 548 15 of 17

Table 6. Cont.

Models mAP@0.5 Detection Time (ms)

YOLOv5l 0.9933 28
YOLOv5l-ALL-GHOST 0.9666 22

YOLOv5l-HEAD-GHOST 0.9889 22.7
YOLOv5l-BACKBONE-GHOST 0.9778 24

YOLOv5x 0.9945 48
YOLOv5x-ALL-GHOST 0.9775 32

YOLOv5x-HEAD-GHOST 0.9919 39
YOLOv5x-BACKBONE-GHOST 0.9827 34

4. Discussion

For the original YOLOv5 model, we have compared Ghost module inserts in different
positions. For a given input image, the results illustrate that there is no significant difference
between analogous feature maps. The reason for these results may be caused by many
repeated calculations during the convolution process. There are too many feature maps with
huge channels, and some of them may only have subtle differences. We can utilize GhostNet
to achieve similar feature maps while reducing the parameters, and this makes it more
convenient to deploy on embedding devices. Moreover, it can save a lot of computation
compared to traditional methods. Comparing to the other three models, the model which
adds GhostNet only in the head section performs most efficiently. It is probable that
there is still some feature information missed with GhostNet added, and the backbone
network plays an important role in extracting features information. So, we recommend that
GhostNet only need be added in the head section, and the network can achieve the same
effect as the original model with 75% weights and lower GFLOPs, or even better mAp in
some cases. The specific pruning effect depends on the depth of your network; the deeper
the network, the better the pruning effect. If you pursue the ultimate pruning effect, you
can add GhostNet to both the head part and the backbone part with 2× fewer parameters,
at least compared to the original model. The GhostNet is a plug-and-play module which is
easily transferred to others classical models, and it can dramatically reduce computation.
However, it is still necessary to consider the tradeoff between accuracy and model size at
the same time for different memory situations.

5. Conclusions

To reduce the computational costs of deep neural networks and employ a model which
is more convenient for embedding devices, this paper presents GhostNet on the original
YOLOv5 model for building efficient neural architectures. By replacing the convolution
kernel with a linear operation, these cheap operations will save a lot of computing resources.
We find that the feature maps have high similarity through feature visualization, and can
calculate the SSIM with the original image to confirm this conclusion. Comparing mAP,
detection time and loss curve respectively, we can conclude that the GhostNet module is
a plug-and-play module which is easily transferred to others classical models while still
retaining a comparable performance. The experimental results prove that under normal
conditions, adding a GhostNet module only in the head section is enough for a detection
task on embedding devices to produce a higher mAp and a lower loss. If there is enough
memory for embedding devices, there still needs to be consideration of the accuracy and
parameters. In some cases, the accuracy may be reduced. Since GhostNet can obtain the
effect of ordinary convolution through a series of cheap operations, we will consider the
possibility of GhostNet replacing ordinary convolution in the future.

Author Contributions: Conceptualization, Y.Z. and W.C.; methodology, W.C.; validation, S.F. and J.J.
investigation, R.S.; resources, Y.Z. and W.C.; writing-original draft preparation. Y.Z.; writing-review
and editing, Y.Z. and W.C.; funding acquisition, W.C. and J.J. All authors have read and agreed to the
published version of the manuscript.

Information 2022, 13, 548 16 of 17

Funding: This research was supported in part by the National Natural Science Foundation of
China under Grant 32073028 and Grant 31702393; and in part by the Ningbo Public Welfare Key
Project under Grant 2019C10098 and Grant 2019B10079; and in part by the Ningbo Natural Science
Foundation 2019A610075.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. King, A. Technology: The Future of Agriculture. Nature 2017, 544, S21–S23. [CrossRef] [PubMed]
2. Ma, B.; Jin, Z.M.; Jiang, X.C.; Wan, X.J.; Xiao, X.X.; Chen, L.X.; Lu, Y.J. Research progress on online monitoring technology of

stored grain pests. Grain Storage 2018, 47, 27–31.
3. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.

Intell. Neurosci. 2018, 2018, 7068349. [CrossRef] [PubMed]
4. Saxena, L.; Armstrong, L. A survey of image processing techniques for agriculture. In Proceedings of the Asian Federation for

Information Technology in Agriculture; Australian Society of Information and Communication Technologies in Agriculture:
Perth, Australia, 2014; pp. 401–413.

5. Chen, X.; Wu, Y.Z.; Zhang, Y.H.; Le, Y. Image recognition of stored grain pests based on deep convolutional neural network. Chin.
Agric. Sci. Bull. 2018, 34, 154–158.

6. Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28.
[CrossRef]

7. Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Jayas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018,
145, 319–325. [CrossRef]

8. Li, R.; Wang, R.; Zhang, J.; Xie, C.; Liu, L.; Wang, F.Y.; Chen, H.B.; Chen, T.J.; Hu, H.Y.; Jia, X.F.; et al. An effective data augmentation
strategy for CNN-based pest localization and recognition in the field. IEEE Access 2019, 7, 160274–160283. [CrossRef]

9. He, Y.; Zhou, Z.; Tian, L.; Liu, Y.; Luo, X. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning. Precis.
Agric. 2020, 21, 1385–1402. [CrossRef]

10. Wang, F.; Wang, R.; Xie, C.; Yang, P.; Liu, L. Fusing multi-scale context-aware information representation for automatic in-field
pest detection and recognition. Comput. Electron. Agric. 2020, 169, 105222. [CrossRef]

11. Xie, X.; Ma, Y.; Liu, B.; He, J.; Wang, H. A deep-learning-based real-time detector for grape leaf diseases using improved
convolutional neural networks. Front Plant Sci. 2020, 11, 751. [CrossRef] [PubMed]

12. James, E.C.; Francisdomson, Z.; Rizalyn, P.; Jaymer, J.; Rolyn, D. Design and development of a stationary pest infestation
monitoring device for rice insect pests using convolutional neural network and raspberry pi. Jcr 2020, 7, 635–638. [CrossRef]

13. Wang, H.X.; Li, Y.F.; Dang, L.M.; Hyeonjoon, M. An efficient attention module for instance segmentation network in pest
monitoring. Comput. Electron. Agric. 2022, 195, 106853. [CrossRef]

14. Pang, H.T.; Zhang, Y.T.; Cai, W.M.; Li, B.; Song, R.Y. A real-time object detection model for orchard pests based on improved
YOLOv4 algorithm. Sci. Rep. 2022, 12, 13557. [CrossRef] [PubMed]

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

16. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

17. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
18. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
19. Pang, H.T. Research on Intelligent Recognition Technology of Orchard Pests Based on Deep Learning. Master’s Thesis, Zhejiang

University, Hangzhou, China, 2021.
20. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

21. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. Panet: Few-shot image semantic segmentation with prototype alignment. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9197–9206.

22. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

23. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

24. Howard, A.G.; Zhu, M.L.; Chen, B.; Kalenichenko, D.; Wang, W.J.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

http://doi.org/10.1038/544S21a
http://www.ncbi.nlm.nih.gov/pubmed/28445450
http://doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://doi.org/10.1016/j.compag.2016.02.003
http://doi.org/10.1016/j.compag.2017.11.039
http://doi.org/10.1109/ACCESS.2019.2949852
http://doi.org/10.1007/s11119-020-09726-2
http://doi.org/10.1016/j.compag.2020.105222
http://doi.org/10.3389/fpls.2020.00751
http://www.ncbi.nlm.nih.gov/pubmed/32582266
http://doi.org/10.31838/jcr.07.15.97
http://doi.org/10.1016/j.compag.2022.106853
http://doi.org/10.1038/s41598-022-17826-4
http://www.ncbi.nlm.nih.gov/pubmed/35941200
http://doi.org/10.48550/arXiv.1704.04861

Information 2022, 13, 548 17 of 17

25. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

26. Han, K.; Wang, Y.H.; Tian, Q.; Guo, J.Y.; Xu, C.J.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.

27. Han, K.; Wang, Y.H.; Xu, C.; Guo, J.Y.; Xu, C.J.; Wu, E.H.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations.
Int. J. Comput. Vis. 2022, 130, 1050–1069. [CrossRef]

28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of
the 25th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’12), Lake Tahoe, NV, USA, 3–6
December 2012; pp. 1097–1105.

http://doi.org/10.1007/s11263-022-01575-y

	Introduction
	Materials and Methods
	Dataset Construction
	Detection Models
	GhostNet Module

	Results
	Feature Maps Visualization
	Results on Pest Dataset
	Results on Loss Curve

	Discussion
	Conclusions
	References

