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Abstract: The Android platform has become the most popular smartphone operating system, which
makes it a target for malicious mobile apps. This paper proposes a machine learning-based approach
for Android malware detection based on application features. Unlike many prior research that
focused exclusively on API Calls and permissions features to improve detection efficiency and
accuracy, this paper incorporates applications’ contextual features with API Calls and permissions
features. Moreover, the proposed approach extracted a new dataset of static API Calls and permission
features using a large dataset of malicious and benign Android APK samples. Furthermore, the
proposed approach used the Information Gain algorithm to reduce the API and permission feature
space from 527 to the most relevant 50 features only. Several combinations of API Calls, permissions,
and contextual features were used. These combinations were fed into different machine-learning
algorithms to show the significance of using the selected contextual features in detecting Android
malware. The experiments show that the proposed model achieved a very high accuracy of about
99.4% when using contextual features in comparison to 97.2% without using contextual features.
Moreover, the paper shows that the proposed approach outperformed the state-of-the-art models
considered in this work.
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1. Introduction

The Internet’s expansion and the technical revolution in smartphones have led to a
tremendous increase in the number of smartphone users. This encouraged competition
among various software industries to serve customers by releasing powerful platforms for
their smartphones. Android is the most popular mobile operating system, with millions of
users around the world taking advantage of its services. Google created and developed the
Android operating system in 2005, and the first Android smartphone was introduced in
2008 [1]. By 2021, there were approximately 2 Billion Android-based devices (smartphones
and tablets), indicating that Android applications are rapidly growing and exceeding other
mobile operating systems such as IOS, Windows, and others [2]. As the most popular and
powerful platform, Android provides a vast number of mobile applications in various
categories to be available for all android-based mobile users of various ages worldwide.

Android malware is growing immensely due to the vast growth of Android users,
which poses threat to the security and privacy of Android users. Android malware is
known for sending fraudulent SMS, misusing users’ private information, devouring traffic,
downloading malicious applications, remote control, data exploitation, and other danger-
ous behaviors [3]. According to some statistics [4], the number of Android-based malware
cases rises every year. About 3.5 million Android malware samples were observed in the
first quarter of 2021, up from 1 million in 2019 and 2020.

Android malware differs in various ways; it acts differently, hacks differently, and
performs different damage. Some Android malware infiltrates the device by exploiting
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the user and then launching an assault via malicious applications, while others replicate
and clone themselves in various locations before installing malicious applications in these
locations to inflict and spread damage as broadly as possible. Table 1 shows a list of mobile
malware types and their behaviors, as well as an example of each one.

Table 1. Types of mobile malware.

Mobile Malware Behavior Example

Trojan [5]
Looks to be a harmless application that

convinces users to download it and then
installs malware on their mobile devices.

Android.Counterlank

Worms [6]

Worms can infect additional devices while they
are operating on infected systems, and they
can carry a payload that degrades mobile

network capacity.

Ikee.B

Adware [7] Deceives the user through
malicious advertising. UAPush

Spyware [8]
Collects user’s data and behavior, such as

email and passwords, and sends it to another
location across the network.

Zitmo

Botnet [9]

Comprises many internet-connected
cellphones controlled by a malicious user; it

gains full access to the device and its contents
and sends data to the malicious controller.

Not compatible

The diversity and complexity of Android malware, as well as the employment of vari-
ous strategies to elude detection, make traditional malware detection techniques ineffective,
necessitating the development of more efficient and powerful ways to overcome this con-
straint [10]. Existing malware detection methods are limited and only reveal malware after
it has been infected. Automated detection techniques, such as the use of supervised and
unsupervised machine learning algorithms, operate effectively by extracting app features
using both static and dynamic analysis to execute an optimal and clear classification of
Android apps into two groups: malware or benign [11]. Current detection software is un-
able to detect zero-day attacks. As a result, most researchers use various machine learning
classifiers in the detection of Android-based malware, such as Support Vector Machines
(SVM), Naïve Bayes (NB), Random Forest (RF), and Decision Trees (DT) [12]. Machine
learning algorithms take advantage of features and characteristics learned from malware
and benign samples during training.

Machine learning detection techniques rely on static, dynamic, and hybrid analysis
to extract and gather application features that are used to classify and detect malicious
behaviors. System API Calls, permissions, privileges used, and contextual information
are some of the extracted features that machine learning-based algorithms use [13]. The
main machine-learning approaches used to detect Android malware are static and dynamic
approaches.

Static analysis involves extracting features from Java bytecode or the AndroidMani-
fest.xml file, which contains contextual information and a collection of features, such as
permissions required by the app [14]. The static analysis of Android applications to extract
static features is shown in Figure 1.
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Figure 1. Features extraction-based static analysis.

Dynamic analysis is used to discover harmful behavior in applications while they are
running. It collects the system calls that the application makes while it is executing. Further-
more, the dynamic analysis also works well with unidentified application signatures [15].
Figure 2 illustrates the dynamic analysis of Android applications.

Figure 2. Features extraction-based dynamic analysis.

The hybrid technique combines static and dynamic features to improve malware
detection results and prevent flaws that can occur when using either a static or dynamic
approach alone. The hybrid analysis of Android applications is illustrated in Figure 3.

Figure 3. Features extraction-bdased hybrid analysis.

The benefits of a static analysis include the ability to detect malware before it executes,
as well as the ability to detect unknown malware and code vulnerabilities. A dynamic
analysis has the advantage of being able to detect undiscovered malware as well as zero-
day attacks [16]. However, a dynamic analysis can be time-consuming and resource-
intensive usage.
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The contribution of the paper is summarized as follows:

1. The paper created a new dataset of static API Calls and permissions features from a
large number of Android APKs.

2. The paper selected and used the most relevant contextual features along with the API
Calls and permissions to test the efficacy of using contextual information in detecting
Android malware.

3. The proposed model used the Information Gain algorithm [17] to reduce the feature
space from 527 API Calls and permissions to 50 features only and achieve a very close
accuracy to what was achieved using 527 features.

4. The paper tested several machine learning algorithms, which are Random Forest,
Logistic Regression, SVM, K-NN, and Decision Trees using different combinations of
API Calls, permissions, and contextual features to evaluate their accuracy in detecting
Android malware.

5. The experiments show that using the selected contextual features, the proposed model
achieved a high accuracy of about 99.4% in detecting Android malware.

6. The paper considers different state-of-the art models that used contextual features or
the same dataset used in this work, and it shows that the proposed models outper-
formed the state-of-the art models.

The rest of the paper is organized as follows. Section 2 discusses some related work.
Section 3 describes the methodology of the proposed approach, discusses the dataset, data
pre-processing, features extraction, features selection, and machine learning algorithms.
Section 4 shows and discusses the experiments and results. Finally, Section 5 concludes
the work.

2. Related Work

Many research approaches have been conducted on detecting Android malware using
machine learning. This section discusses some related work in this direction.

Le et al. [18] proposed an approach for Android malware detection that employs
different machine learning methods as detectors to identify and detect malicious Android
applications. They extracted the features using the static analysis technique by decompiling
source files into snail code and using some C++ libraries to read the information from
AndroidManifest.xml. In their work, Decision Tree, Naïve Bayes, and an ensemble of
Random Forest, Stochastic Gradient Boosting, and AdaBoost were trained based on some
application features such as behavior, permission, the size of the application, the class
number in the application, and the user interface number of the application. The used
dataset contained about 16,589 malicious Android applications collected from different
sources, such as Virusshare [19] and Koodous [20], in addition to 12,290 benign Android
applications installed from Google Play. The results of their approach showed that the
Random Forest classifier achieved the best accuracy at about 98.66%.

Kaushal et al. [21] used permissions from AndroidManifest.xml files as features of
Android applications to build an automated Android malware detection system. They
trained two machine learning algorithms (Support Vector Machine (SVM) and Naïve Bayes)
with a deep learning algorithm (Recurrent Neural Network with LSTM architecture). Then,
they used the extracted permissions to perform malware classification into malicious or
benign. Their results showed that the Recurrent Neural Network achieved the best results
with an accuracy of 95%, outperforming other machine learning classifiers.

Hyoil et al. [22] used Support Vector Machines (SVM) for Android malware detection.
They have used a dataset of two samples of Android applications (malicious and benign),
where the number of malicious samples is 30,113 applications from the AMD [23] and
Drebin [24] dataset, and the benign samples contain 28,489 applications downloaded from
Google Play, the Amazon AppStore, and APKPure [25]. Then, they employed a static
analysis technique to extract 133,227 API Calls to be used as features for classification. They
claimed that the experiments showed that their approach outperformed existing approaches
by obtaining an accuracy of 99.97% in detecting malicious Android applications.
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Bilal et al. [26] used static and dynamic analysis techniques to propose an approach
for Android malware detection using machine learning algorithms based on a hybrid of
static, dynamic, and some intrinsic features. They extracted 20 different features from
a sample of about 600 Android applications (malicious and benign) that were collected
from the Androtracker project [27] and Google Play store [28]. After extracting these
features, two machine learning classifiers, which are the K-Nearest Neighbor and Logistic
Regression, were created as detection models to perform malware classification. The
experiments showed that the proposed approach performs well, and both machine learning
classifiers achieved the same accuracy of 97.5% in malware detection on the same training
dataset, while the Logistic Regression classifier outperformed other classifiers over the
testing dataset.

Fang et al. [29] proposed a method based on the Dalvik Executable file (Dex file)
for Android malware family classification. The method extracted the Dex files of 24,553
Android malicious samples from the Android Malware Dataset (AMD) [23] and obtained
RGB images and plaintext from the DEX file. Next, it extracted the text features of plaintext,
as well as the color and texture features of images. To perform the classification, the study
used the feature fusion algorithm based on multi-kernel machine learning. The experiments
showed that the proposed method achieved an accuracy of about 96%.

Danish et al. [30] proposed an image-based malware families multiclassification de-
tection method using fine-tuning Convolutional Neural Network (CNN). The method
transformed the raw malware binary files into color images to be used as inputs to the
CNN for classification. The experiments were performed on two different datasets. The
first one is the Malimg malware dataset [31], which consists of 9435 malicious samples,
while the other dataset is the IoT-Android mobile dataset, which includes 14,733 malicious
samples and 2486 benign samples. The data augmentation technique was adopted by
the proposed method during the fine-tuning process. The experiments showed that the
proposed method achieved an accuracy of about 98.82% on the Malimg malware dataset,
while on the IoT-Android mobile dataset achieved an accuracy of about 97.35%.

Halil et al. [32] proposed an approach for Android malware classification and detec-
tion based on a visualization technique and various machine-learning algorithms. They
converted some Android application files (Manifest.xml, DEXcode, and Resources (ARSC))
into grayscale images to extract different types of global and local image-based features to
be used for training. Before training the algorithms, they normalized the extracted global
features in one feature vector and applied the Bag of Visual Words (BOVW) algorithm to
build one feature vector from the extracted local features descriptors. To test the model,
they performed the experiments on three grayscale image datasets that consisted of 4850
benign samples and 4580 malicious samples for each one. Six machine learning algorithms,
Random Forest, K-Nearest Neighbor, Decision Tree, Bagging, AdaBoost, and Gradient
Boost, were tested. The experiments showed that the model achieved an accuracy of
about 98.75%.

Nuren et al. [33] proposed a machine learning-based approach for Android malware
detection. They extracted the application permissions from the AndroidManifest.xml
file using static analysis and loaded them in WEKA, where the top 15 permissions were
used as malware features. Five machine learning classifiers, Random Forest, J48, Multi-
Layer perceptron, Decision Table, and Naïve Bayes, were trained for classification. Using
a dataset of 10,000 malicious Android applications and 10,000 benign applications, the
Random Forest classifier achieved the best accuracy of about 89.36%.

Talal et al. [34] conducted an empirical study for Android malware detection using
various supervised machine-learning algorithms. They employed static analysis to extract
some features from the AndroidManifest.xml and Dex files. The extracted features were
permissions, intents, and API Calls. Then, they evaluated and compared the performance of
six different supervised machine learning classifiers, K-Nearest Neighbour, Support Vector
Machine, Decision Tree, Naïve Bayes, Random Forest, and Logistic Regression, on a dataset
of 1260 malicious Android applications and 2539 benign Android applications. The results
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showed that the Random Forest classifier achieved the best accuracy of about 99.21%, while
the Naïve Bayes classifier achieved the lowest detection accuracy of about 95.45%.

Other methods in this field were performed by Du et al. [35], Narayanan et al. [36],
Mahdavifar et al. [37], and Hadiprakoso et al. [38]. Du et al. [35] proposed a context-
based approach that used the semantics and contextual information of the network flow
of Android applications. Similarly, Narayanan et al. [36] proposed a contextual-based
approach that used a multiple kernel learning method to detect malicious code patterns.
Mahdavifar et al. [37] and Hadiprakoso et al. [38] used the same dataset that is used
in this work, which is CIC_Maldroid2020 [39]. However, both approaches did not use
contextual information. The aforementioned approaches in this paragraph are selected as
the state-of-the-art models and are explained in detail in Section 5.

3. Methodology

This section introduces and discusses the methodology of the proposed approach.
Figure 4 shows an illustration of the methodology, and each step is discussed in the
following subsections.

Figure 4. A framework for context-aware Android malware detection approach using machine
learning techniques.

3.1. Datasets

Unlike many studies conducted in this field, which used small datasets, this paper
used a large dataset of APK samples of malicious and benign Android applications (APKs)
called CICMalDroid2020 [39] and extracted a new dataset of API Calls and permissions
features. The APKs were collected and published by Mahdavifar et al. [37] and provided by
the Canadian Institute for Cybersecurity [40]. It consists of about 16,900 Android samples
in different categories; 12,800 samples of the dataset are malware applications, while the
rest of the 4100 samples are benign applications. The dataset was collected from 2017 to
2018 from different sources such as MalDozer [41], AMD [23], the VirusTotal service [42],
and the Contagio security blog [43]. The collected Android application samples include
various application categories, such as advertising, social, educational, etc. The dataset
categories samples and their numbers are shown in Figure 5. Table 2 provides a brief
explanation of each category of malware inspected in this paper.
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Figure 5. Dataset description.

Table 2. Malware categories.

Android Malware Category Concept

Adware Malware uses advertising to exploit the user.
Banking Malware exploits the banking accounts of the user.

SMS Malware exploits the user by sending a malicious SMS.
Riskware A program that behaves as good but is malware.

3.2. Features Extraction

The samples of Android applications are in the form of an Android Application
Package (APK). An APK is a file that holds all files and components that are responsible
for running the application. Figure 6 illustrates the structure of the Android application
(APK) [44]. APKs need to be converted and analyzed to get the features that will be used
for detection.

Figure 6. Android Application Package (APK) structure.

Static analysis is a technique to extract static application features from the APK files
without running the application. This paper adopts a static analysis approach to extract
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static features from the applications such as API Calls, permissions, and some contextual in-
formation, using Python programming language. The feature extraction process produced
a total of 531 distinct features, as shown in Table 3. More information about the extracted
features is provided next.

Table 3. Number of extracted features.

Application Features Set Number of Extracted Features

API Calls 15
Permissions 512

Contextual Information 4
Total 531 Features

3.2.1. API Calls Features

The Application Programming Interface (API) is a set of rules that the application uses
for communication. API Calls are considered a significant indicator to distinguish between
malware and benign applications and to reveal any suspicious behavior [45]. Therefore, we
extracted a set of API Calls from Android APK samples to be used for malware detection.
Table 4 shows the extracted API Calls. The API Calls for each application were extracted
using a script code written in Python using “Androguard”, which is a full-featured Python
utility for manipulating and handling Android files [46]. It uses reverse engineering by
analyzing the DEX file of each APK file [47]. Then, API Calls were converted into binary
values (0 or 1) that indicate the presence of API Calls in an APK. A total of 15 API Call
features were extracted from 15,836 Android samples, resulting in 11,800 malicious applica-
tions and 4036 benign applications. Table 5 displays the number of Android application
samples for each category from which API Call features were extracted.

Table 4. Extracted API Call categories.

API Calls Desc.

startService Requests the launch of a specific app service.

getDeviceId Gets the device ID from which an event originated.

createFromPdu Sending an SMS message using the Protocol Data Unit (PDU), which is a cellular
data transmission technology.

getClassLoader Returns a class loader that can be used to get classes from a package.

getClass Returns the object’s runtime class.

getMethod Returns a method object that represents the class or interface represented by this
class object’s public member method.

getDisplayOriginatingAddress Gives the message’s originating address, or the email address if it was sent
through an email gateway.

getInputStream Returns a read-only input stream from any of the open connections.

getOutputStream Returns a write-only output stream to the specified connection.

killProcess The process with the supplied ID will be terminated.

getLine1Number For line 1, this function returns the phone number string.

getSimSerialNumber Gives the SIM serial number.

getSubscriberId Provides the subscriber’s unique ID.

getLastKnownLocation Returns the data from the last known location retrieved from the supplied source.

isProviderEnabled Returns if the given provider is enabled or disabled.
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Table 5. Number of Android application samples from which API Call features were extracted.

Android Application Category Number of Samples from Which API Call Features
Were Extracted

Adware 1499
Banking 2277

SMS 4761
Riskware 3263

Benign 4036
Total 15,836

3.2.2. Permissions Features

Android application permissions grant apps access to the phone’s hardware and data,
as well as the ability to control the phone. Permissions can be legitimate or malicious. For
example, when an application asks for permission to access sensitive data, such as the
phone book or the camera, the application could be suspicious and potentially malicious.
Therefore, permissions are powerful indicators for detecting malicious apps and separating
them from benign ones. Figure 7 shows examples of some requested permissions by an
Android application.

Figure 7. Android application permissions.

A large set of permissions were extracted from Android application samples for use
in malware detection. Tables 6 and 7 provide a brief description of some normal and dan-
gerous permissions extracted from various Android applications [44]. Each application’s
used permissions were extracted using a Python script code using “Androguard” and then
converted to binary representation “0 or 1”. About 700 permissions features were extracted
from 16,703 Android samples, including 12,692 malicious apps and 4011 benign apps. The
number of Android application samples from which permissions features were extracted is
shown in Table 8.

Table 6. Sample of normal extracted permissions.

Normal Permission Desc.

‘android.permission.INTERNET’ This permission opens network ports for applications.

‘android.permission.ACCESS_WIFI_STATE’ Permits Wi-Fi network information to be accessed by apps.

‘android.permission.ACCESS_NETWORK_STATE’ Allows apps to gain access to network information.

‘android.permission.SET_WALLPAPER’ Allows apps to change the background image.

‘android.permission.SET_TIME_ZONE’ Allows apps to change the time zone of the phone.
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Table 7. Sample of extracted dangerous permissions.

Dangerous Permission Desc.

‘android.permission.READ_CONTACTS’ Allows apps to access the contact information of the user.

‘android.permission.CAMERA’ Allows apps to gain access to the phone camera.

‘android.permission.READ_CALL_LOG’ Allows apps to see the call log of a user.

‘android.permission.SEND_SMS’ This permission enables apps to send text messages.

‘android.permission.READ_PHONE_STATE’ Gives apps access to the current state of the phone, such as the
device’s phone number, cellular network, and active calls.

Table 8. Number of Android application samples from which permissions features were extracted.

Android Application Category Number of Samples from Which Permissions
Features Were Extracted

Adware 1499
Banking 2494

SMS 4803
Riskware 3896

Benign 4011
Total 16,703

3.2.3. Contextual Features Extraction

Contextual Information refers to information that characterizes the state of an Android
application, such as the activities that the app launches, the system services that the app
uses, the resources that the app loads, and so on. Because many studies relied solely on
API Calls and permissions to distinguish between malware and benign applications, this
paper combines application contextual information with API Calls and permissions to
enhance the detection performance and detect malicious behavior in Android applications
with high accuracy. The authors of the dataset used in this paper employed a dynamic
analysis technique to run all Android application samples in a VMI-based dynamic analysis
system using CopperDroid, and then recorded the results in JSON format [40]. In this paper,
we parsed and analyzed the massive chunk of JSON data for each Android application
(APK) using Python scripting codes to extract related contextual information that helps
in improving Android malware detection. As indicated in Table 9 below, four categories
of application contextual information were selected from various Android application
samples. Table 10 shows the number of Android application samples from which contextual
information was extracted.

Table 9. Extracted contextual features.

Android Application Contextual Information

num_services
num_receivers
num_activities
num_providers
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Table 10. Number of APK samples from which the contextual features were extracted.

Android Application Category Number of Samples from Which Contextual
Features Were Extracted

Adware 1243
Banking 1878

SMS 3908
Riskware 2498

Benign 494
Total 10,021

3.3. Features Processing

The term “features preprocessing” refers to the act of preparing and transforming
features so that they may be trained by machine learning algorithms. Features transforma-
tion, or converting features from one format to another, is one of the feature preprocessing
mechanisms used in this paper. All extracted API Calls and permissions were converted
to binary representation (0 or 1). In other words, if an application calls a specific API (for
example, startService), the value will be 1; otherwise, it will be 0. Similarly, if an application
uses a specific permission (for example, SEND SMS), the value will be 1; otherwise, it
will be 0. An example of the binary representation process of the extracted API Calls and
permissions features is shown in Tables 11 and 12. In this example, as shown in Table 11, the
first Android application uses API Call 1 and API Call 2, the second Android application
only uses API Call 3, and the third Android application uses all API Calls (1, 2 and 3).
According to Table 12, the first Android application only uses permission 3, the second
Android application uses all permissions (1, 2 and 3), and no permission have been used
by the third Android application.

Table 11. Binary representation of the extracted API Calls.

Android Application (APK) API Call 1 API Call 2 API Call 3

Application 1 1 0 1
Application 2 0 0 1
Application 3 1 1 1

Table 12. Binary representation of the extracted permissions.

Android Application (APK) Permission 1 Permission 2 Permission 3

Application 1 1 0 1
Application 2 0 0 1
Application 3 1 1 1

3.4. Feature Extraction and Selection

Many application API Calls and permissions have been extracted. Therefore, this
paper uses feature selection on the API Calls with permissions to eliminate duplicate and
inconsistent API Calls and permissions features that reduce classification efficiency. To
achieve this task, Information Gain (IG) was used. IG is a feature evaluation method
that evaluates the quantity of information about the class prediction and the projected
reduction in entropy if the only information provided is the presence of a feature and
the accompanying class distribution [48]. IG is based on entropy, which is calculated by
determining how much of a term may be used for the classification of data [49]. It is a
method for selecting the optimal API Calls and permissions features that have been adopted
in this paper. The results of using IG in the API Calls and permissions selection, where
the top 50 ranked were selected, are shown in Figure 8. Each API Call and permissions
feature has an IG value with a high value indicating a significant impact on classification.
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The proposed method employed mutual information to measure the correlation between
variables, where a higher value means higher dependency.

Figure 8. Top 50 ranked-selected API and permissions based on Information Gain (IG).

3.5. Machine Learning Algorithms

Supervised and unsupervised learning are two types of machine learning algorithms.
This paper relies entirely on the supervised technique, which predicts the class of problem-
based on related input examples of similar objects. Machine learning classifiers use many
features extracted from static analysis to accomplish training for malware classification.
This section discusses the various machine learning algorithms used in this paper.

3.5.1. Random Forest RF

RF is one of the most powerful and versatile supervised machine-learning algorithms
for classification and regression. Random Forest fits the forest of numerous decision trees, in
which the number of trees increases the robustness of the prediction, resulting in improved
accuracy and avoiding overfitting [50]. The Random Forest classifier is the best machine
learning discriminator between malware and benign applications, according to the results
of a literature review performed on Android malware detection, as described by [51–54].
This paper sets the value of the n_estimators to 100, after testing 10, 50, 100, and 200.

3.5.2. Support Vector Machines SVM

SVM is a supervised learning model used for classification analysis by creating the
hyperplane to divide the data into classes [55]. SVM are solid classifiers that give accurate
results, but their computations are complex and they work slowly with huge datasets [56].
This paper applied the linear support vector classification SVC, with kernel = “linear”;
this has more flexibility in the choice of the loss functions and is better to scale with large
numbers of samples.

3.5.3. Logistic Regression LR

LR is a statistical machine learning classification technique used for predicting binary
dependent variables. This classifier excels at linear problems, delivering accurate results
while consuming minimal computer resources [57].
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3.5.4. Naïve Bayesian NB

This is a Bayes Theorem-based probabilistic supervised machine learning algorithm
that gives the conditional probability of an event A given event B, and is used for classifica-
tion tasks [57]. The NB classifier is quick to calculate and can deal with noisy data, but it
performs poorly when the data includes many features [56].

3.5.5. K-Nearest Neighbor KNN

The K-Nearest Neighbors (KNN) technique is a simple, easy-to-implement, and com-
monly used supervised machine learning algorithm that calculates the similarity between
training and testing samples to handle classification and regression tasks [58]. This paper
set the value of n_neighbors to 10.

3.5.6. Decision Trees DT

DT is a supervised machine learning algorithm and a type of tree structure classifier,
which is used to accomplish classification and regression tasks. DT splits the data into
subsets and presents the results as a tree with two entities: decision nodes for data splitting
and leaf nodes for final decisions [59,60].

4. Experiments and Results

This section discusses the experiments conducted to evaluate the model and analyzes
the results. The first subsection goes over each experiment that was performed in order to
detect malicious Android apps based on their features. The second subsection summarizes
all the experiments and determines which one had the highest detection accuracy.

4.1. Results and Analysis

Different metrics were computed to measure and evaluate the performance and effec-
tiveness of each machine learning classifier in order to select the best and most accurate
one. The mathematical calculations of the various evaluation metrics are shown in the
following equations:

Accuracy =
TP + TN

TP + TN + FP + FN

Recal =
TP

TP + FN

Precision =
TP

TP + FP

F1 − Score =
2 × Precision × Recall

Precision + Recall

where

• TP (True Positive) is the number of malware detections that are correctly labeled
as malware,

• TN (True Negative) is the number at which benign is accurately identified as benign,
• FP (False Positive) is the number of benign that are mistakenly identified as mal-

ware, and
• FN (False Negative) is the number at which malware is incorrectly identified as benign.

The most intuitive evaluation metric is accuracy, which reflects the correctly predicted
ratio. In some circumstances, accuracy is not always a reliable indicator; instead, alternative
metrics should be evaluated, such as Precision, which is the rate of correctly predicted
positive outcomes to all positive outcomes. The F1-Score (F-Measure) is the average
of Precision and Recall, with Recall referring to the percentage of properly recognized
outcomes across all samples [61].



Information 2022, 13, 563 14 of 25

4.1.1. API Calls-Based Android Malware Detection

In this part, Android API Calls features were used to classify the applications. A
dataset of 15 features from 15,836 Android application APKs (11,800 malware and 4036 be-
nign) were been used to train various machine learning classifiers. The outcomes of the
classification using the Random Forest classifier, along with the confusion matrix, are
shown in Figure 9.

Figure 9. Android application permissions classification report and confusion matrix for the Random
Forest classifier—API Calls only.

The classification report in Figure 9 shows the Random Forest classifier detection
performance for each class of Android applications. For example, on adware, the Random
Forest obtained 80% Precision, which means it can identify 80% of the adware dataset.
Similarly, it shows a 78% Recall, which means it correctly predicts 78% of the adware.
Random Forest on adware also earned a 79% F1-Score, which implies it properly predicts
79% of the data.

The number of correct and incorrect predictions for each type of Android application
is shown in the confusion matrix in Figure 9. For example, the number of true adware
predictions achieved by Random Forest is 477 out of 600, while the number of incorrect
predictions is 123. Here are some examples of faulty predictions of adware: seven adware
are falsely labeled as banking, fifty-six adware are labeled as benign, fifty-four adware are
labeled as riskware, and four adware are labeled as SMS.

Table 13 and Figure 10 show how API Calls-based Android malware detection com-
pares to different machine learning classifiers. They show that employing API Calls only
to detect malicious applications is insufficient to produce accurate detection results. The
Random Forest classifier had the best Accuracy, Precision, Recall, and F1-Score, but overall,
this experiment performed poorly over different machine learning algorithms. The results
show that the algorithm’s detection accuracy is between 75% and 87%, implying that the
percentage of inaccurate predictions is about 25%, which is not excellent. Furthermore, the
algorithms attained a precision of 75–87%, implying that they were able to identify 75–87%
of the data during testing. The different algorithms have achieved a Recall of 75–87%,
which implies they properly detect 75–87% of malicious applications.

Table 13. Machine learning classifiers results—API Calls only.

Accuracy Precision Recall F1-Score

RF 0.873244 0.873244 0.873244 0.855546
LR 0.776796 0.776796 0.776796 0.738052

SVM 0.753118 0.753118 0.753118 0.708540
DT 0.871665 0.871665 0.871665 0.853826
NB 0.754854 0.754854 0.754854 0.705594

K-NN 0.865509 0.865509 0.865509 0.846865
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Figure 10. Other machine learning classifier results in detecting malicious Android applications—API
Calls only.

4.1.2. Permissions-Based Android Malware Detection

This experiment involves extracting permissions from Android apps to train various
machine-learning algorithms to classify whether the app is malicious or benign. For
training, a dataset of 512 features from 16,703 Android application APKs (12,692 malicious
and 4011 benign) was employed. Figure 11 shows the results of the classification using the
Random Forest classifier, as well as the confusion matrix.

Figure 11. Android application permissions classification report and confusion matrix for Random
Forest classifier—permissions only.

The detection performance of the random forest classifier for each class of Android
applications is shown in Figure 11. For riskware, for example, the Random Forest achieved
95% precision, which means it can properly predict 95% of the riskware dataset, and 98%
Recall, which means it can identify 98% of the riskware dataset. Random Forest on riskware
received an F1-Score of 97%, indicating that it correctly predicts 97% of the data.

The confusion matrix in Figure 11 shows the number of correct and wrong predictions
for each type of Android application. The number of genuine riskware predictions made
by Random Forest, for example, is 1522 out of 1558, with 36 incorrect predictions. Here
are some examples of riskware predictions that were incorrect: three riskware are incor-
rectly categorized as adware, eighteen riskware are incorrectly labeled as banking, twelve
riskware are benign, and three riskware are incorrectly labeled as SMS.

The performance of different machine learning classifiers in detecting Android mal-
ware applications is shown in Table 14 and Figure 12. Table 14 and Figure 12 show that
using application permissions to discriminate between malicious and benign programs is
effective and yields reliable detection results. The Accuracy, Precision, Recall, and F1-Score
of the Random Forest classifier were the best. The detection accuracy of the algorithms
is between 95% and 97%, meaning a low percentage of incorrect predictions, which is
desirable. Furthermore, the algorithms achieved a precision of 95–97% during testing,
meaning that they were able to recognize 95–97% of the data. The various methods have a
recall of 95–97%, indicating that they correctly detect 95–97% of the malicious programs.
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Table 14. Other machine learning classifier results in Android malware detection—permissions only.

Accuracy Precision Recall F1-Score

RF 0.973810 0.973810 0.973810 0.971126
LR 0.953607 0.953607 0.953607 0.950187

SVM 0.954205 0.954205 0.954205 0.951107
DT 0.961838 0.961838 0.961838 0.955036
NB 0.801556 0.801556 0.801556 0.792031

K-NN 0.955253 0.955253 0.955253 0.949705

Figure 12. Other machine learning classifier results in detecting malicious Android applications—
permissions only.

4.1.3. API Calls and Permissions-Based Android Malware Detection

In this experiment, we leveraged the existing API Calls and permissions in the apps
and combined them so that the machine learning algorithms learn to achieve better effi-
ciency in detecting harmful Android applications. Various machine learning algorithms
have been trained with 527 features from 11,781 malware and 4008 benign real-world
Android applications. The classification report, as well as the confusion matrix using the
Random Forest classifier, is shown in Figure 13.

Figure 13. Android application permissions classification report and confusion matrix for the Random
Forest classifier—API Calls with permissions.

Figure 13 displays the random forest classifier detection performance for each class of
Android applications. For SMS, for example, the Random Forest obtained 99% precision,
meaning it can correctly predict 99% of the dataset and 99% Recall, meaning it can correctly
identify 99% of the dataset. The F1-Score for Random Forest on SMS was 99%, showing
that it correctly predicts 99% of the data. Moreover, the number of correct and incorrect
predictions for each type of Android application is shown in the confusion matrix in
Figure 13. Random Forest, for example, produced 1895 genuine SMS predictions out of
1905, with only 10 wrong guesses. Here are a few examples of wrong SMS predictions: four
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SMSs were wrongly classified as riskware, one SMS was incorrectly classified as benign,
five SMSs were classified as banking, and no SMSs were classified as adware.

Table 15 and Figure 14 demonstrate that combining API Calls and permissions im-
proves the detection of Android malicious apps. The Random Forest classifier has the
best Accuracy, Precision, Recall, and F1-Score. The algorithm’s detection accuracy ranges
from 96% to 98%, indicating a high percentage of correct predictions. Furthermore, during
testing, the algorithms were able to recognize 96% to 98% of the data with a Precision from
96% to 98%. The various approaches have a Recall from 96% to 98%, meaning that 96% to
98% of harmful applications are correctly detected.

Table 15. The results of using machine leaning algorithms in detecting Android malware—API Calls
with permissions.

Accuracy Precision Recall F1-Score

RF 0.980526 0.980526 0.980526 0.977692
LR 0.966276 0.966276 0.966276 0.963571

SVM 0.967226 0.967226 0.967226 0.964235
DT 0.969601 0.969601 0.969601 0.965232
NB 0.852913 0.852913 0.852913 0.841969

K-NN 0.963743 0.963743 0.963743 0.958180

Figure 14. Other machine learning classifier performance in Android malware detection—API Calls
with permissions.

4.1.4. API Calls and Permissions-Based Android Malware Detection with Feature Selection

To reduce the dimension of the feature and improve detection performance, we used
the feature selection method (mutual information gain) on the combined API Calls and
permissions in this experiment. The top-ranked 50 API Calls and permissions features were
picked from 11,781 malware and 4008 benign real-world Android applications; refer to
Figure 8 for more information. They were picked after experimenting with different feature
dimensions, as shown in Figure 15. This experiment shows an increased efficiency with no
discernible effect on classification accuracy.
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Figure 15. Accuracy scores when training with different feature dimensions.

Figure 16 shows the confusion matrix as well as the classification report using the
Random Forest classifier. The results of various machine learning classifiers in detecting
fraudulent Android applications are shown in Table 16 and Figure 17.

Figure 16. Classification report and confusion matrix for the Random Forest Classifier—API Calls
with permissions (with feature selection).

Table 16. The results of the other machine learning algorithms in Android malware detection—API
Calls with permissions (with feature selection).

Accuracy Precision Recall F1-Score

RF 0.972451 0.972451 0.972451 0.967090
LR 0.932394 0.932394 0.932394 0.923305

SVM 0.929544 0.929544 0.929544 0.918958
DT 0.960735 0.960735 0.960735 0.955430
NB 0.826314 0.826314 0.826314 0.802296

K-NN 0.955668 0.955668 0.955668 0.946952

The adoption of the feature selection technique did not increase detection accuracy,
as shown in Table 16 and Figure 17. The findings of this experiment are nearly identical
to those of the prior experiment (without feature selection), in which the Random Forest
classifier had the best Accuracy, Precision, Recall, and F1-Score. The only advantage we
can see in this experiment is that the algorithm’s performance, i.e., the time it takes to
predict, has improved. That is, while this experiment did not enhance the accuracy results,
it improved performance.
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Figure 17. Machine learning classifiers results in detecting Android malware—API Calls with
permissions (with feature selection).

4.1.5. API Calls and Permissions with Feature Selection and Contextual Information-Based
Android Malware Detection

In this experiment, four contextual information features, num_services, num_receivers,
num_activities, and num_providers, were selected and used along with the selected 50 API
Calls and permissions features (used in the previous experiment) to show the effectiveness
of using contextual information on the detection accuracy. These four features represent the
number of times the application performs a certain activity, making them crucial and high-
indication features for detecting malicious behavior and distinguishing between malware
and benign applications. The number of applications used in this experiment is 842 benign
samples and 5866 malware samples.

Table 17 and Figure 18 show that using contextual features along with API Calls and
permissions increases detection accuracy and delivers better results. The Random Forest
classifier produced the greatest results, with an accuracy of 99.4%. Figure 19 compares
the accuracy results of all tested algorithms according to the use of API and permissions
features only, without feature selection (527 features), with feature selection (50 features),
with feature selection (50 features), and contextual features. The figure shows that using
the contextual features with 50 API and permissions features only enhances the accuracy
of all algorithms and outperforms the accuracy of the other models (with using feature
selection and without using feature selection). In addition, an important finding is obvious
in the results, which is the rise of the accuracy of NB when using contextual information.
The results show that when we used the contextual features, the accuracy of NB increased
sharply from 82.6% to 92.5%, which is an outstanding enhancement.

Table 17. Android malware detection results with other machine learning algorithms—API Calls,
permissions, and contextual information.

Accuracy Precision Recall F1-Score

RF 0.994220 0.994220 0.994220 0.991228
LR 0.972598 0.972598 0.972598 0.971393

SVM 0.971247 0.971247 0.971247 0.970111
DT 0.978740 0.978740 0.978740 0.969944
NB 0.925197 0.925197 0.925197 0.914010

K-NN 0.975449 0.975449 0.975449 0.958354
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Figure 18. Detection of Android malware results with other machine learning algorithms—API Calls,
permissions, and contextual information.

Figure 19. Enhancement of the accuracy of the proposed model using contextual features.

Figure 20 shows the confusion matrix as well as the Random Forest classifier classifi-
cation results. As shown in the Figure, the detection results for each Android application
category are outstanding, with a very small proportion of wrong predictions. The Random
Forest algorithm was capable of successfully identifying 99.4% of malicious apps. More-
over, the number of incorrect predictions for all Android malware categories is modest, as
illustrated in the confusion matrix in Figure 20. For example, just 6 predictions out of 1331
are incorrect predictions for SMS, and only 8 predictions out of 426 are wrong predictions
for adware.

Figure 20. The classification results and confusion matrix for the Random Forest Classifier—API
Calls, permissions, and contextual features.
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4.2. Results Summary

The results of many experiments conducted in this paper show that using API Calls to
identify suspicious applications is insufficient; the results were not accurate enough, and
there were numerous incorrect predictions. Meanwhile, the results of detection based on
application permissions only were better than those of using API Calls only. However,
the results of Android malware detection based on API Calls and permissions together
were clearly better, which was higher by 1% and reached around 98% accuracy using the
Random Forest algorithm. The features selection approach did not enhance the security.
However, it achieved a close accuracy of about 97.2% using 50 features only, instead of 98%
using 527 features.

The interesting results were achieved when the contextual features were used along
with the selected 50 API Calls and permissions. Using this combination, the highest results
reached about 99.4% using the Random Forest algorithm. This proves that using the
selected contextual features enhances the classification and detects Android malware with
very high accuracy when it is used with API Calls and permissions features. Moreover,
using contextual features enhanced Naïve Bayesian accuracy sharply from 82.6% to 92.5%.

4.3. State of Art

The proposed model in this work has achieved very high accuracy, as discussed in
the previous section. To show the significance of this work, four stat of art models are
considered, which are Du et al. [35], Narayanan et al. [36], Mahdavifar et al. [37], and
Hadiprakoso et al. [38].

Du et al. [35] proposed a context-based approach, called FlowCog, that used natural
language processing and deep learning methods to analyze the semantics and contextual
information of the network flow of Android applications. Their approach used a large
dataset of more than 8000 samples collected from different sources, such as the ICC-bench
dataset [62], Google Play, and Drebin. The results of their approach showed that their
proposed model achieved an accuracy of about 95.4%. Similarly, Narayanan et al. [36]
proposed a contextual-based approach, called MKLDroid, which used a multiple kernel
learning method that extracted the contextual subgraph features from the applications’
dependency graphs to detect malicious code patterns. MKLDroid was applied using two
datasets, Drebin and Virusshare. The authors claimed that MKLDroid achieved an accuracy
of about 97%.

Mahdavifar et al. [37] and Hadiprakoso et al. [38] used the same dataset used in this
work, CIC_Maldroid2020. However, both methods did not use contextual information in
their approaches. The authors in [37] proposed a deep neural networks method that used
about 470 features, such as system calls, binders, and composite behaviors. Their results
showed that their proposed method achieved an accuracy of about 97.84%. Meanwhile,
Hadiprakoso et al. [38] proposed a machine-learning model and tested several machine-
learning algorithms such as SVM, KNN, RF, and XGBoost. Their model used many static
and dynamic features such as API Calls, permissions, and system calls. The authors claimed
that their model achieved an accuracy of about 96%.

Table 18 shows a comparison between the accuracy of the proposed model and the
state-of-theart models. The table shows that the proposed work outperformed the ap-
proaches that used contextual features, which are [35] and [38], which achieved an accuracy
of about 95.4% and 97%, respectively. However, these approaches did not use the Mal-
Droid2020 dataset that was used in this work, and they did not use conventional machine
learning algorithms. This proves the significance of the machine learning model that
has been proposed in this work and the significance of the chosen contextual features in
detecting Android malware with very high accuracy. Moreover, the table shows that the
proposed work outperformed the approaches that used the same dataset in this work. These
approaches used deep learning algorithms and conventional machine learning methods,
but they did not use contextual features. This proves the significance of using contextual
features in achieving very high accuracy in Android malware detection.
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Table 18. Comparison with the state-of-the-art methods.

Work Year Dataset Features Number of
Features Methods Accuracy

[35] 2022
Modified ICC-Bench

dataset [61]
Drebin [24]

Network flow semantics, such
as flow contexts and

inter-component
communication

NA
Natural language

processing and deep
learning approaches

95.4%

[37] 2020 CICMalDroid2020 [39]
System calls,

binders, and composite
behaviors

470 Deep neural networks 97.84%

[38] 2020
Drebin [24]

Malgenome [63]
CICMALDROID2020 [39]

Static (permissions, API Calls,
intent, command signatures,

and binaries)
Dynamic (system calls, binder

calls, and composite
behaviors)

261
SVM, KNN, MLP, RF
DT, and Naïve Bayes

XGBOOST
96%

[36] 2018 DREBIN [24]
Virusshare [19]

contextual information
(contextual subgraph features) NA Multiple lernel

learning 97%

The proposed
work 2022 CICMalDroid2020 [39] API Calls, permissions, and

contextual features 54 Random Forest 99.4%

5. Conclusions

The accuracy of Android malware detection methods using machine learning depends
on the features used. API Calls and permissions are two of the most important features that
are used in Android malware detection. However, most machine learning methods use
these features without considering the context. This paper has shed light on the importance
of using contextual features with API Calls and permissions on the detection accuracy of
machine learning models. The paper has proposed a machine learning model based on
the use of four important contextual features and fifty API Calls and permission features,
which were extracted from a large dataset of 12,800 malicious and 4100 benign Android
apps. To test the model, the paper has used several machine learning algorithms, Random
Forest, SVM, Linear Regression, Naïve Bayesian, K-NN, and Decision Tree. The results
have shown that when using the proposed model with API Calls and permissions only, the
best results achieved were 98.1% using the Random Forest algorithm. Moreover, the results
have shown that after applying the Information Gain selection algorithm to select the best
relevant features, only 50 features out of 527 can be used to achieve a close accuracy of
about 97.2%. Furthermore, the results have shown that using contextual features along
with the 50 API Calls and permissions achieved a very high accuracy of about 99.4% when
using the Random Forest algorithm. In addition, the results have shown that the most
affected algorithm by using contextual features was the Naïve Bayesian algorithm, where
its accuracy raised sharply from 82.6% to 92.5%, which is an interesting change for the
Naïve Bayesian. Moreover, this paper considered four important methods as state-of-
theart models. The comparison has shown that the proposed model outperformed the
state-of-the-art models.
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