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Abstract: Cyberattacks have increased as a consequence of the expansion of the Internet of Things
(IoT). It is necessary to detect anomalies so that smart devices need to be protected from these attacks,
which must be mitigated at the edge of the IoT network. Therefore, efficient detection depends
on the selection of an optimal IoT traffic feature set and the learning algorithm that classifies the
IoT traffic. There is a flaw in the existing anomaly detection systems because the feature selection
algorithms do not identify the most appropriate set of features. In this article, a layered paddy crop
optimization (LPCO) algorithm is suggested to choose the optimal set of features. Furthermore, the
use of smart devices generates tremendous traffic, which can be labelled as either normal or attack
using a capsule network (CN) approach. Five network traffic benchmark datasets are utilized to
evaluate the proposed approach, including NSL KDD, UNSW NB, CICIDS, CSE-CIC-IDS, and UNSW
Bot-IoT. Based on the experiments, the presented approach yields assuring results in comparison with
the existing base classifiers and feature selection approaches. Comparatively, the proposed strategy
performs better than the current state-of-the-art approaches.

Keywords: anomaly detection; capsule network; feature selection; paddy crop optimization; IoT edge

1. Introduction

IoT devices are widely employed in smart applications, including travel, healthcare,
and smart cities [1]. The ubiquity of IoT devices and the massive volume of data these
devices generate are the root causes of IoT security vulnerabilities [2]. Since IoT devices
lack adequate security measures and are connected to the Internet, they are susceptible
to attack [3]. By seizing control of intelligent gadgets that can be used maliciously to
exploit other IoT-connected devices, an attacker can quickly hack IoT devices [4]. By the
year 2025, there may be 27 billion smart devices online, as per the IoT market forecast [5].
The adoption of IoT devices could boost cyberattacks, including collusion, malware, and
distributed denial of service (DDoS) attacks. The expanding adoption of services offered
by smart devices is currently being hampered by cyberattacks. In order to protect IoT
devices, it is crucial to identify irregularities in IoT traffic. As more and more traffic is
generated by smart devices, it is important to detect the attacks on the fly at the edge of the
IoT network [6].

Statistical and machine learning techniques are used to identify anomalies in IoT
systems [7]. Only typical IoT traffic is used in statistical approaches to train models. This is
accomplished by machine learning algorithms by training their models on both legitimate
and non-legitimate messages. Based on the learning process, these techniques are divided
into supervised, unsupervised, and semi-supervised groups [8]. The traffic features are
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assigned to a traffic class, such as normal or attack, throughout the supervised learning
process. Only labelled datasets are used in this learning procedure. By detecting appealing
structures in the data, unsupervised learning finds the traffic features without being aware
of the traffic class. Unsupervised learning is used to group comparable data using semi-
supervised learning, and labelled data are used to categorise unlabeled data. Because the
class labels for the IoT traffic records in this study are known, the model was created using
supervised learning techniques.

Big data applications are centered on IoT devices due to the volume of traffic they
generate [9]. Consequently, real-time data processing techniques are essential for handling
enormous amounts of data. It is possible to learn data representation through deep learning
(DL), which recognizes correlations automatically [10]. There are several DL techniques
that are commonly used, including convolutional neural networks (CNNs), auto encoders
(AEs), recurrent neural networks (RNNs), capsule networks (CN), and long short-term
memory (LSTM) [11]. This type of analysis requires large amounts of data and powerful
computers [12].

The inadequacy of a centralised cloud to fulfil IoT requirements, such as resource alloca-
tion and scalability, is a major factor in the existing detection methods for anomalies. With
IoT, actions are carried out across a sizable number of devices, and enormous volumes of data
are exponentially generated. Because it enables consumers to access Internet-based services,
the cloud is essential to the IoT [13]. However, while performing expensive calculations, it
is unable to handle IoT devices due to its centralised architecture. The significant distance
between an IoT device and the centralised anomaly detection system contributes to the lengthy
detection time as well. Because the centralised cloud architecture can manage the service
requirements of IoT, anomaly detection in IoT differs from current methodologies [14].

The features that are utilised for attack detection determine the efficacy of detection
techniques; selecting the ideal set of features improves a detection system’s precision [15,16].
In order to select the features, filter and wrapper methods are employed. Based on the
connection between characteristics or the class label, the filter approaches employ statistical
techniques to find the pertinent features [17]. The drawback of filtering methods is that
each feature is assessed independently and does not reveal anything about the class on its
own [18]. The wrapper techniques select the attributes in accordance with categorization
approaches [19]. Wrapper techniques have the disadvantage that they produce more feature
subsets, which increases the danger of overfitting [20].

Fog computing, a new approach to distributed intelligence, is used to close the gap.
By processing data close to the data sources, or IoT devices, the fog communicates at the
edge of the IoT network [21,22]. When fog nodes are selected for distributed processing,
security measures can be used. In order to develop distributed security measures, it could
be conceivable to offload time-consuming calculations and storage from IoT devices [23,24].
We used this as inspiration to develop a framework for IoT traffic anomaly identification at
the edge of the network.

This study makes several key contributions, including:

1. The layered paddy crop optimization (LPCO) approach for selecting the optimal set
of features;

2. The architecture of a capsule network for learning;
3. A procedure for LPCO to select optimal features;
4. The analysis and comparison of the true positive rate, false positive rate, accuracy,

and error rate of the proposed anomaly detection system with respect to existing deep
learning classifiers and optimization-based feature selection methods.

The remainder of the study is structured as follows: Section 2 discusses the materials
and methods pertaining to this study. Section 3 describes the proposed layered paddy
crop optimization with the capsule network approach. Section 4 of the article acts as a
performance evaluation of the suggested approach. Section 5 concludes and provides
instructions for further investigation.
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2. Materials and Methods

This section discusses the literature pertaining to the current study.

2.1. Anomaly Detection

IoT networks incorporate a variety of devices, such as workstations, laptops, routers,
and IoT gadgets [25,26]. IoT networks are vulnerable because of their pervasive use of and
dependency on IoT devices, which produce a lot of data and can be the target of cyberattacks.
Attackers regularly use easily accessible, cost-free botnets to carry out a range of cyberat-
tacks [27]. A botnet is a collection of infected computers, often known as bots, that contain
infrastructure for command and control. They are employed for nefarious activities such as
DDoS, keylogging, identity theft, and the spread of more bot software [28].

Recent reviews of IoT security-learning strategies are given in [29,30]. The design
of learning algorithms, the confidentiality and security of learning methodology, and
hacker misuse of learning algorithms are among the issues explored. Anomalies have been
identified using a variety of machine learning methods, including the Bayesian network,
support-vector machine (SVM), artificial neural network (ANN), k-nearest neighbour
(KNN), logistic regression (LR), genetic algorithm (GA), decision tree (DT), and DL. Due to
their successful results, these learning algorithms can offer practical solutions for anomaly
identification. It has been noted that not all teaching strategies can provide a solution for
every issue. There are benefits and drawbacks to each strategy.

2.2. Feature Selection

There are numerous feature selection algorithms in the literature. Examples of
filter-based feature selection algorithms include correlation coefficient-based and mutual
information-based algorithms [31]. Mutual information-based intrusion detection tech-
niques use a redundancy parameter called beta to adjust for input data redundancy and
boost performance. It has been proven that higher performance is still possible without
this setting, though. By calculating the dependencies between the features, correlation
coefficient-based algorithms find the optimal feature set [32]. The sequential selection algo-
rithm and the heuristic search algorithm are examples of wrapper-based feature selection
algorithms. Several subsets of features are evaluated repeatedly, but the classifier accuracy
cannot be stored for later retrieval [33,34].

Despite the fact that the idea of evolutionary optimization is not new, the current
approaches have problems with lengthy run-times and early convergence to local min-
ima [35]. A local minimum is more likely to form when populations evolve towards smaller,
less diverse ones because of high run-time. Several evolutionary optimization techniques
include GA, differential evolution, particle swarm optimization (PSO), ant colony optimiza-
tion (ACO), and simulated annealing [36]. The development of techniques to significantly
enhance the performance of evolutionary algorithms by reducing their run-time, as well as
the usage of traditional encoding strategies for the representation of individuals, provide
obstacles for optimization algorithms [37]. The suggested optimization method uses a
new coding scheme, which speeds up the detection and selection of the optimal set of
features because only the best-fitting features are taken into account, in contrast to the
aforementioned existing optimization techniques.

2.3. Supervised Learning Based Anomaly Detection

A survey of machine learning-based detection methods can be found at [38]. It is
possible to classify unknown data after the model is constructed. Classifiers constructed
on neural networks offer better generalisation capabilities. The disadvantages include
overfitting and higher computational costs. Each neuron in an artificial neural network
generates a series of activations that have a definite value. Neurons are little, connectionless
processors. In learning, weights are determined that cause a neural network to act in a
desired way. Several lengthy computations may be necessary, each of which modifies
the network’s overall activation, depending on the issue and the connectivity of the neu-
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rons [39]. Weights are accurately assigned at different stages of the processing process
when using DL, and several processing layers can learn how to represent data at various
levels of abstraction [40]. The inclusion of the capsule network in the suggested solution is
justified by its capacity to adapt to dynamically changing network conditions.

3. Proposed LPCOCN Approach

This section discusses the proposed LPCOCN approach. The LPCOCN is a lightweight
approach that can detect network anomalies at the edge of the IoT. Figure 1 depicts the block
schematic of the proposed approach. The proposed approach consists of four modules:
feature selection using LPCO, conversion of selected features to image, capsule-network-
based learning, and LPCOCN-based anomaly detection.

Figure 1. Block schematic of proposed LPCOCN approach.

Let Tr be the training dataset with r records and n features with raw data for each
record. The nominally valued characteristics are transformed to integers. Min-max normal-
isation removes the bias from the raw data. By determining the low and high values for
each feature, the data are converted throughout the normalisation procedure in the range
[0, 1]. The following computation produces the normalised value NorFij:

NorFij =

(
RFij − Lj

)(
Hj − Lj

) (1)

where RFij denotes the value of the feature, Lj denotes the low value, and Hj denotes the
high value.

3.1. Proposed LPCO-Based Feature Selection

The proposed layered LPCO algorithm is based on the life cycle of a paddy crop and is
depicted in Figure 2. It consists of six stages, viz., seedling, tillering, replantation, selection,
reproduction, and harvest. These stages are discussed in the following subsections.

3.1.1. Layer 1: Seedling

This layer is the foundation stage as it decides the number of seeds, plants, and
generations. The seeds are the number of features in the dataset. The plants and generations
are randomly chosen. The seeds are randomly sown for each plant and are binary coded.
A seed value of 1 represents the presence of a feature, and 0 represents the absence of a
feature. The randomly generated plants belong to the first generation and are involved in
producing the best plants. Let P1, P2, P3, . . . , Pm be the plants, where m is the number of
plants, and let Si1, Si2, Si3, . . . , Sin be the seeds of the ith plant, where n is the number of
features in the dataset. Each plant is represented as follows:

Pi = [Si1 Si2 Si2 . . . Sin]. (2)
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Figure 2. Block schematic of proposed LPCO feature selection method.

3.1.2. Layer 2: Tillering

In the life cycle of a paddy crop, tillering is the stage in which terminal roots and up
to five leaves develop, and the plant becomes ready for replantation. In the proposed ap-
proach, the sown seeds with the presence of the feature are replaced with the corresponding
data from the training dataset.

[Si1 Si2 Si3 . . . Sin] =

{
[xi1 xi2 xi2 . . . xin], Sii = 1
[0 0 0 . . . 0], Otherwise

. (3)

3.1.3. Layer 3: Replantation

This layer is responsible for computing the fitness of each plant and rank according
to the fitness value. The distance-based classifier receives the plants as input, and the
accuracy is calculated [7]. The fitness value is computed, and the plants are ranked. It is
to be noted that the higher the fitness value is, the lower the rank is. The plant with the
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lowest rank is the top-fitted plant. The fitness is computed based on the accuracy, Acc, of
the distance-based classifier, DC, as follows:

FF = Acc(DC). (4)

3.1.4. Layer 4: Selection

This layer is responsible for selecting the top 50% of the best-fitted plants. Once the
plants are ranked, the condition is checked to see if this generation meets the stopping
criterion. If not, the top 50% of the plants are selected for reproduction. The top 50% of the
plants in the current generation, Pt50, are represented as follows:

Pt50 =


R1
R2
R3
...

Rp

. (5)

3.1.5. Layer 5: Reproduction

This layer is responsible for reproducing new plants from the best-fit plants. The sample
illustration is depicted in Figure 3. The top two plants are selected, and the position that they
differ is identified and converted to 0. Now, both the plants have an equal number of 1s, and
this forms the newly produced plant. The bottom 50% of the plants that are reproduced from
the best-fit plants of the current generation, Pb50, are represented as follows:

Pb50 =


NP1
NP2
NP3

...
NPp

. (6)

Figure 3. Illustration of proposed LPCO feature selection method.
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3.1.6. Layer 6: Harvest

This layer is responsible for generating the plants for the next generation. The plants
selected in layer 4 and the plants reproduced in layer 5 are concatenated and passed to
layer 2. This cycle is repeated until the stopping criterion is met.

Pnew = Pt50||Pb50. (7)

The following are the steps for the feature selection using LPCO:

• Step 1: Initialize the number of seeds, total number of plants in a generation, and the
number of generations.

• Step 2: The number of seed, s and number of plants, p are binary coded randomly,
where 1 represents the presence of a feature, and 0 represents the absence of a feature.

• Step 3: The distance-based classifier receives the plants with the available feature, and
the accuracy is calculated.

• Step 4: Rank the plants according to the accuracy, such that the higher the accuracy is,
the smaller the rank is.

• Step 5: The top 50% of plants are selected for reproduction.
• Step 6: The remaining 50% are produced as follows:

– Step 6.1: Select the top two plants, i and i+ 1, and compute the Hamming distance
between them.

– Step 6.2: The position of the plant which is involved for Hamming distance
computation is converted to ‘0’, i.e., the absence of a feature.

– Step 6.3: Steps 6.1 and 6.2 are repeated until the Hamming distance computation
is performed for all the features.

– Step 6.4: The pth plant is produced by finding the Hamming distance of all records.

• Step 7: The new generation is passed to step 3, and this continues until the number
of generations.

• Step 8: The features in the last generation are the optimal set of features.

The selected features using LPCO are represented as follows:

SOF = [x1 x2 x3 . . . xs] (8)

where s is the selected number of features.

3.2. Conversion of Selected Features to Image

In the proposed LPCOCN approach, the learning is performed using the capsule
network. The input to the capsule network must be an image. Therefore, the selected features
are converted to an image using the feature distance matrix approach [7]. Figure 4 depicts
the illustration of the steps involved in the conversion of selected features to an image.

Using the Manhattan distance technique, the inner correlation between the chosen
features is recovered as follows:

DtMan

(
SOFi , SOFj

)
=
∣∣∣SOFi − SOFj

∣∣∣. (9)

For record i, the feature distance matrix, FeaDM, is calculated as follows:

FeaDMi =


D f i

11 D f i
12 D f i

13 · · · D f i
1k

D f i
21 D f i

22 D f i
23 · · · D f i

2k
...

...
...

. . .
...

D f i
n1 D f i

n2 D f i
n3 · · · D f i

nk

. (10)

The function mattogray in MATLAB is utilized to convert the feature distance matrix
to a network traffic image.
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Figure 4. Conversion of selected features to image.

3.3. Capsule Network Based Learning

Capsule networks and dynamic routing techniques have been used to overcome
the drawbacks of convolutional neural network models [41]. Figure 5 depicts the block
schematic of the proposed capsule network. The convolution layer, pooling layer, primary
capsule, and label capsule make up the proposed capsule network. Lower-layer capsules
anticipate higher-layer capsules, and through a positive feedback loop, the parent is further
associated with the lower-layer capsules that are more suited to the higher-layer capsules.

Figure 5. Block schematic of proposed capsule network.

Considering that coi is the output of the ith capsule, the estimation of parent capsule
jth is as follows:

coi|j = Weiij.coi (11)

Here, Weiij is a weight matrix. When a coupling coefficient is multiplied by the
product, two capsules come to an agreement. This coefficient, CoCij, is computed using a
softmax function as follows:

CoCij =
exp(logppij)

∑k exp(logppjk)
(12)
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where logpp is the log prior probabilities between two linked capsules. The higher level
capsule’s input vector, HLCj, is computed as follows:

HLCj = ∑
i

CoCijcoi|j (13)

Long vectors are closer to one with the nonlinear squash activation function, and short
vectors are essentially zero with the squash activation function. The squash function is
computed as follows:

SQAj =
‖HLC2

j ‖
1 + ‖HLC2

j ‖
×

HLCj

‖HLCj‖
(14)

The margin loss of each output capsule, k, is computed as follows:

MLoss = Ukmax(0, q+ − ‖SQAk‖)2 + λ(1−Uk)max(0, ‖SQAk‖ − q−)2 (15)

The MLoss is the deciding factor to stop the learning process. Here, Uk is 1 when class
k actually exists; otherwise, 0, q+ and q− are hyperparameters, and λ is used to manage
how gradient backpropagation affects learning at the beginning.

3.4. LPCOCN Based Anomaly Detection

The test IoT traffic data are passed as input to this module. The optimal features
are selected using the LPCO feature selection approach. The feature distance matrix is
constructed for the optimal features and converted to image format, which is passed to the
capsule network. Equation (14) is utilized to classify the given test traffic as either normal
or attack.

4. Experimental Results

The proposed strategy was put into practice in MATLAB R2021b using an Intel Core
2 Quad CPU Q9650@3.00 GHz processor, NVIDIA GPU, and 16 GB RAM running Win-
dows 10. The publicly available benchmark network traffic datasets, such as NSL KDD,
UNSW NB, CICIDS, CSE-CIC-IDS, and UNSW Bot-IoT, were used to conduct the experi-
ments [42–46]. Table 1 displays the benchmark anomaly detection dataset statistics. The
class label is one of the features.

Table 1. Statistics of benchmark anomaly detection datasets.

Dataset Features
Training Data Test Data

Normal Attack Normal Attack

NSL KDD 42 13,449 9195 2152 3603
UNSW NB 48 20,520 4076 56,000 12,264

CICIDS 83 128,737 29,285 55,173 12,550
CSE-CIC-IDS 78 68,403 89,619 29,315 38,408

UNSW Bot-IoT 44 1018 303,6915 477 366,8045

Figure 6 depicts the epoch versus accuracy of all the datasets. The proposed feature
selection approach is tuned based on the number of epochs. The proposed approach has
been executed for 150 epochs. The maximum accuracy was obtained in 9, 6, 6, 7, and 7 for
the NSL KDD, UNSW NB, CICIDS, CSE-CIC-IDS, and UNSW Bot-IoT datasets, respectively.
The features selected in all the datasets are tabulated in Table 2. The number of features
selected are 7, 10, 12, 15, and 14 for the NSL KDD, UNSW NB, CICIDS, CSE-CIC-IDS, and
UNSW Bot-IoT datasets, respectively.
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(a) (b)

(c) (d)

(e)

Figure 6. Epoch vs. Accuracy: (a) NSL KDD, (b) UNSW NB, (c) CICIDS, (d) CSE-CIC-IDS,
(e) UNSW Bot-IoT.

Table 2. Selected features using LPCO approach.

Dataset Selected Features

NSL KDD src_bytes, dst_host_srv_serror_rate, dst_bytes, dst_host_serror_rate, serror_rate,
dst_host_count, dst_host_srv_rate

UNSW NB ct_srv, smean, sload, rate, sttl, ct_src, dmean, dloss, dwin, synack

CICIDS packet_length_std, total_length_bwd_packets, sub f low_bwd_byte, sub f low_ f wd_bytes,
average_packet_size, f wd_IAT_mean, f low_IAT_mean, idle_max, active_mean, act_data_pkt_ f wd,
f wd_packet_length_std, f wd_header_length

CSE-CIC-IDS init_win_bytes_backward, packet_length_std, total_length_bwd_packets, sub f low_bwd_byte,
sub f low_ f wd_bytes, average_packet_size, f wd_IAT_mean, f low_IAT_mean, idle_max, active_mean,
init_win_bytes_backward, act_data_pkt_ f wd, f wd_packet_length_std, f wd_header_length, f low_packets/s

UNSW Bot-IoT saddr, sport, daddr, dport, pkts, bytes, state, state_number, ltime, seq, dur, mean, dpkts,
Pkts_P_State_P_Protocol_P_SrcIP

Based on assessments of true negatives (TN), false positives (FP), false negatives (FN),
and true positives (TP), the performance of the proposed technique is assessed. The measures
TN, FP, FN, and TP, respectively, represent the proportion of records of normal traffic that are
correctly classified as normal, the proportion of records of normal traffic that are incorrectly



Information 2022, 13, 587 11 of 15

classified as attacks, the proportion of records of attacks that are incorrectly classified as
normal, and the proportion of records of attacks that are correctly classified as attacks. The
true positive rate (TPR), false positive rate (FPR), precision, recall, F1-score, accuracy, and error
rate (ER) are performance metrics that are calculated using Equations (16), (17), (18), (19), (20),
(21), and (22), respectively, and presented in Table 3. The percentage of the attack class that
was successfully identified as an attack is measured by the TPR. The percentage of the normal
class that was wrongly labelled as an attack is measured by the FPR. Recall is the percentage of
relevant instances that were really recovered, whereas precision is the percentage of relevant
occurrences among the retrieved instances. The harmonic mean of recall and precision is
known as the F1-score. The ability of the attack detection system to correctly identify the class
label is measured by accuracy. The anomaly detection system which erroneously identifies
the class label is measured as ER.

TPR =
TP

TP + FN
× 100 (16)

FPR =
FP

FP + TN
× 100 (17)

Precision =
TP

TP + FP
× 100 (18)

Recall =
TP

TP + FN
× 100 (19)

F1− Score = 2× Precision × Recall
Precision + Recall

(20)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (21)

ER =
FN + FP

TP + FP + TN + FN
× 100 (22)

Table 3. Performance evaluation.

Dataset Classifiers TPR FPR Precision Recall F1-Score Accuracy ER

NSL KDD

CNN 99.584 0.743 99.556 99.584 99.570 99.461 0.539
CNNLSTM 99.639 0.697 99.584 99.639 99.612 99.5135 0.4865
CN 99.695 0.558 99.667 99.695 99.681 99.600 0.400
GACN 99.722 0.418 99.750 99.722 99.736 99.670 0.330
PSOCN 99.667 0.279 99.833 99.667 99.750 99.687 0.313
ACOCN 99.750 0.372 99.778 99.750 99.764 99.705 0.295
Proposed LPCOCN 99.833 0.186 99.889 99.833 99.861 99.826 0.174

UNSW NB

CNN 98.785 0.605 97.278 98.785 98.026 99.285 0.715
CNNLSTM 98.720 0.561 97.472 98.720 98.092 99.310 0.690
CN 98.867 0.493 97.774 98.867 98.317 99.392 0.608
GACN 99.152 0.430 98.057 99.152 98.601 99.495 0.505
PSOCN 99.095 0.355 98.389 99.095 98.741 99.546 0.454
ACOCN 99.242 0.368 98.336 99.242 98.787 99.5620 0.438
Proposed LPCOCN 99.454 0.307 98.609 99.454 99.030 99.650 0.350

CICIDS

CNN 95.227 0.437 98.023 95.227 96.605 98.760 1.240
CNNLSTM 95.371 0.468 97.890 95.371 96.614 98.761 1.239
CN 95.912 0.430 98.069 95.912 96.979 98.893 1.107
GACN 96.080 0.401 98.200 96.080 97.128 98.947 1.053
PSOCN 96.000 0.410 98.159 96.000 97.067 98.925 1.075
ACOCN 96.167 0.395 98.226 96.167 97.186 98.968 1.032
Proposed LPCOCN 96.685 0.448 98.005 96.685 97.341 99.021 0.979
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Table 3. Cont.

Dataset Classifiers TPR FPR Precision Recall F1-Score Accuracy ER

CSE-CIC-IDS

CNN 98.305 0.849 99.345 98.305 98.822 98.671 1.329
CNNLSTM 98.336 0.795 99.385 98.336 98.859 98.712 1.288
CN 98.328 0.904 99.303 98.328 98.813 98.661 1.339
GACN 98.435 0.781 99.398 98.435 98.914 98.774 1.226
PSOCN 98.409 0.798 99.385 98.409 98.895 98.752 1.248
ACOCN 98.459 0.703 99.458 98.459 98.956 98.822 1.178
Proposed LPCOCN 98.519 0.628 99.516 98.519 99.015 98.888 1.112

UNSW Bot-IoT

CNN 99.956 5.031 99.999 99.956 99.978 99.956 0.044
CNNLSTM 99.957 5.451 99.999 99.957 99.978 99.956 0.044
CN 99.957 3.983 99.999 99.957 99.978 99.957 0.043
GACN 99.959 2.725 100.0 99.959 99.979 99.959 0.041
PSOCN 99.961 2.096 100.0 99.961 99.980 99.961 0.039
ACOCN 99.965 2.306 100.0 99.965 99.982 99.965 0.035
Proposed LPCOCN 99.972 1.258 100.0 99.972 99.986 99.972 0.028

The suggested method is contrasted with already known deep learning methods such
as CNN, a combination of CNN and LSTM, and CN, as well as optimization-based feature
selection methods such as GA, PSO, and ACO. Table 4 lists the deep learning approach
parameters that were used for comparison [47]. All optimization methods started with a
population size of 50.

Table 4. Parameters of existing deep learning approaches.

Model Layer Parameters

CN Convolution filters = 64, kernel = 3, stride = 1
Convolution capsule filters = 128, kernel = 2, stride = 1,

capsule vector = 8, capsule = 16
Fully connected capsule vector = 8, capsule = 2
LSTM hidden units = 32, bias = 1

CNN Convolution filters = 64, kernel = 3,4,5, stride = 1
CNNLSTM Convolution filters = 64, kernel = 3,4,5, stride = 1

LSTM hidden units = 32, bias = 1

Figure 7 depicts the performance of the proposed approach with selected features
using LPCO and with all the features. It is evident that the detection of anomalies with
the selected features outperforms the detection of anomalies without feature selection.
In UNSW Bot-IoT, there is not much difference between selected features and without
selected features as the number of records in normal traffic is much less as compared to
other datasets.

Table 5 tabulates the state-of-the-art comparison of the proposed approach with ex-
isting machine learning classifiers in terms of accuracy and error rate. It is observed that
the proposed approach exceeds the existing state-of-the-art approaches except [27], as this
approach considers only the five best features. The proposed LPCOCN approach selected
the optimal features using the LPCO feature selection method and detected the anomaly
efficiently using the capsule network approach with the best set of traffic features. As the
proposed approach used only the best set of features, it is fit to be deployed at the edge of
the IoT network.
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Figure 7. Traffic Dataset vs. Accuracy with respect to features.

Table 5. State-of-the-Art analysis of proposed LPCOCN using UNSW Bot-IoT dataset.

Approach/Year Accuracy (%) Error Rate (%)

FNN [21]/2019 95.0 5.0
SVM [9]/2019 88.3 11.7
RNN [9]/2019 97.9 2.1
LSTM [9]/2019 98.0 2.0
DT [22]/2020 99.99 0.01
NB [22]/2020 97.5 2.5
RF [22]/2020 99.98 0.02
SVM [22]/2020 97.8 2.2
VCDL [3]/2020 99.76 0.24
BiLSTM [11]/2020 98.91 1.09
LSTM [23]/2021 96.3 3.7
KNN [13]/2021 99.0 1.0
SVM [13]/2021 79.0 21.0
DT [13]/2021 96.0 4.0
NB [13]/2021 94.0 6.0
RF [13]/2021 95.0 5.0
ANN [13]/2021 97.0 3.0
LR [13]/2021 74.0 26.0
SMOTE-DRNN [27]/2021 100.0 0.0
LPCOCN 99.97 0.03

5. Conclusions

In this study, the LPCOCN approach is suggested for the detection of anomalies
at the edge of IoT networks. The aim is to build an anomaly detection system that is
suitable to detect traffic anomalies at the edge of IoT networks. The lightweight anomaly
detection system was built by selecting an optimal set of features using the proposed LPCO
feature selection approach, and the anomaly was detected using the capsule network. The
benchmark anomaly detection datasets, viz., NSL KDD, UNSW NB, CICIDS, CSE-CIC-IDS,
and UNSW Bot-IoT, have been used to evaluate the performance of the proposed LPCOCN
approach. The experimental study shows that the suggested technique converges after only
a few learning epochs. Additionally, the experimental results manifested that the suggested
approach significantly outperforms the cutting-edge deep learning algorithms in terms of
accuracy and error rate reduction. However, by capturing real-world network traffic, this
study might be extended to include on-the-fly anomaly identification in IoT networks.
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