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Abstract: Software-defined networking (SDN) and network function virtualization (NFV) make a
network programmable, resulting in a more flexible and agile network. An important and promising
application for these two technologies is network security, where they can dynamically chain virtual
security functions (VSFs), such as firewalls, intrusion detection systems, and intrusion prevention
systems, and thus inspect, monitor, or filter traffic flows in cloud data center networks. In view of
the strict delay constraints of security services and the high failure probability of VSFs, we propose
the use of a security service chain (SSC) orchestration algorithm that is latency aware with reliability
assurance (LARA). This algorithm includes an SSC orchestration module and VSF backup module.
We first use a reinforcement learning (RL) based Q-learning algorithm to achieve efficient SSC
orchestration and try to reduce the end-to-end delay of services. Then, we measure the importance
of the physical nodes carrying the VSF instance and backup VSF according to the node importance
of VSF. Extensive simulation results indicate that the LARA algorithm is more effective in reducing
delay and ensuring reliability compared with other algorithms.

Keywords: security service chain; reinforcement learning; low delay; reliability assurance; backup

1. Introduction

For traditional networks, security services are generally implemented by deploying dedi-
cated hardware devices in series or bypassing at the key positions of the network. Dedicated
hardware devices are expensive and tightly coupled with the network topology [1]. With
the continuous change in network attacks, the disadvantages of this static defense method,
such as its poor flexibility, low degree of automation, and low intelligence, are becoming
increasingly prominent [2]. In view of this, SDN and NFV technology were created.

SDN is a new technology that separates the data and control planes. The data plane is
responsible for data forwarding. The control plane can manage network resources, make
configurations more flexible, and dynamically update forwarding rules [3]. NFV uses IT
virtualization technology to integrate dedicated network equipment into a generic industry
server. It can centrally manage resources and promote resource sharing [4]. The combina-
tion of the two technologies provides strong support for exploring new network security
service models [5,6]. Network end-to-end security services usually require different types
of security service functions and thus, are types of SSC technology based on SDN/NFV.

SSC technology is considered to be a promising and important application field. The
SSC is essentially a set of orderly security service functions. It uses NFV technology to
virtualize traditional dedicated devices and deploys them on physical nodes. With the help
of the centralized management of SDN, traffic is guided to the VSF instance on the physical
node in order according to the security service request so as to provide security services
for users [7]. The process by which the SSC provides security services can be divided into
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three phases: chain formation, deployment, and scheduling [8]. The efficient and dynamic
deployment of SSC is one of the most challenging issues that must be faced in this field.

SSC technology involves the application of service function chain (SFC) technology
in the security field. Much of the existing research in this field focuses on SFC resource
allocation for user service requirements in a generic NFV environment [9–13], and very little
work is required to embed security services into the cloud data center network. However,
the vulnerability of VNF introduces significant challenges to the reliability of SFCs. The
factors that lead to VNF failures are complex and diverse. For example, hardware failures
associated with processor, memory, storage, and network interface, or software failures
associated with host operating systems, hypervisor, virtual machines, and VNF software
configuration will cause SFC failures. Although there is some research on SSC, these studies
mainly focus on the resource consumption of SSC orchestration [14,15], without considering
the low latency and reliability required by security services.

Specifically, the main contributions of this paper can be summarized as follows.

(1) We take the strict delay constraints of security services and the high failure probability
of VSFs into account, and propose the LARA algorithm for an SSC orchestration
problem with low latency and high reliability demands.

(2) We apply AI algorithms to the SSC placement problem and use an RL-based Q-learning
algorithm. This speeds up the security service response by reducing the end-to-end
delay of the SSC. The end-to-end delay of an SSC defined in this paper includes
the VSF processing delay on the substrate node and the transmission delay on the
substrate link.

(3) In the VSF backup phase, we quantify the node importance of VSF and minimize the
backup resource overhead on the basis of ensuring the reliability of the SSC.

(4) We compare the LARA algorithm with three classical algorithms. The simulation
results show that the proposed LARA algorithm has a better performance in end-to-
end delay and reliability assurance.

The rest of this article is organized as follows. We review related work in Section 1,
discuss system models in Section 2, introduce our LARA algorithm in Section 3, conduct
experiments and evaluations in Section 4, and finally provide our conclusions in Section 5.

2. Related Work
2.1. Delay-Aware SFC Orchestration

The most important indicator used to measure SSCs’ service quality is the end-to-
end delay. In the case of a network attack, the SSC is required to respond quickly and
implement security protection so as to minimize the loss. Therefore, in order to ensure the
quality of security services, it is necessary to orchestrate the SSC intelligently and efficiently.
Since there are few studies on the SSC at present and the SSC is a special form of SFC, we
analyzed the existing research on the SFC of delay awareness.

Chua et al. [16] proposed the use of a round-robin scheduling heuristic algorithm
for calculating a feasible solution for the resource allocation calculation of the SFC. This
solution distributes network traffic between switches on the top of the rack to reduce the use
of nodes and minimize the end-to-end delay as much as possible. The designed algorithm
is relatively simple and fails to consider the resource constraint conditions for service chain
mapping. Taking into account the time-varying nature of the delay parameters of the phys-
ical link, Cho et al. [17] designed an online algorithm that can complete the transmission
and processing of SFC traffic within the delay threshold. Additionally, Liu et al. [18] con-
structed the selection of the best deployment location as a 0–1 planning problem, iteratively
determined the location of each middleware based on a greedy selection strategy, and used
the simulated annealing algorithm to improve the solution within the allowable time. This
efficiency of this method depends on neighbor production, temperature management, etc.

Although many achievements have been made in the research of delay-aware SFC
scheduling, there are still deficiencies in the research of resource intelligent scheduling
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in dynamic scenarios. Therefore, it is necessary to use artificial intelligence methods to
improve the mapping effect of service chains.

2.2. Reliability Assurance SFC Orchestration

The reliability of the virtual network function is much lower than that of hardware,
and any network function failure in the SFC will lead to the failure of the whole chain and
service failure. Therefore, studying the SSC orchestration mechanism of reliability assurance
is of great significance to the normal operation of security services. The current virtual
network function (VNF) backup methods in the literature include dedicated protection
backup and shared protection backup [19]. Dedicated backup is used to allocate dedicated
physical resources for the VNF to be backed up, while the backup resources are not shared
with other VNFs. The backup node will consume the same resources as the main VNF node,
meaning that this solution is relatively inefficient. In shared backup, multiple VNFs can
share backup resources, which reduces the resource occupation of the backup and makes it
more efficient.

Hmaity et al. [20] proposed a redundant backup method, which ensures the availability
of services in the event of a single point of failure by backing up the entire service chain.
Casazza et al. [21] designed a heuristic strategy based on the use of a greedy algorithm
for VNF backup. This strategy can reduce the computational overhead. Wang et al. [22]
used the average time between failures and the average available time of the VNF to
measure the reliability of the VNF, determine the system backup priority, and back up
the most important and second most important VNFs. Hmaity et al. [23] aimed to solve
the reliability problem of single-link and single-node failures, weighing the contradiction
between delay demand and resource cost as the optimization goal, and proposed the use of
three redundant protection strategies and corresponding ILP models to obtain an optimal
strategy.

In summary, the existing research on SFC orchestration has the following deficiencies:

1. Deficiencies in intelligent resource scheduling in dynamic scenarios;
2. At present, there is little research on SSC, and there is no joint consideration of the

impact of end-to-end delay and reliability on the quality of security services.

In this work, we take the strict delay constraints of security services and the high
failure probability of VSFs into account and propose the LARA algorithm for an SSC
orchestration problem with low latency and high reliability demands. In the SSC mapping
phase, we apply AI algorithms to the SSC placement problem, and use the RL-based Q-
learning algorithm. It speeds up the security service response by reducing the end-to-end
delay of SSC. In the VSF backup phase, we quantify the node importance of VSF and
minimize the backup resource overhead on the basis of ensuring the reliability of the SSC.

3. System Model
3.1. Problem Description

Figure 1 is a schematic diagram of SSC orchestration for reliability assurance. The
SSC requests constructed by users will include VSF type, VSF resource requirement, and
SSC reliability requirement. When the system receives the SSC requests, it starts mapping.
As shown in Figure 1, the reliability requirements of SSC1 and SSC2 are 95% and 98%,
respectively, while the reliability of FW, IDS, and IPS in SSC1 are 0.96, 0.98, and 0.98,
respectively. After the orchestration is completed, the reliability of SSC1 is 0.96 × 0.98 ×
0.98 = 94.1%; since it does not meet the reliability requirements of SSC1 (95%), the backup
phase is started. SSC1 and SSC2 share the physical node carrying the FW instance. Backing
up this node can improve the reliability of SSC1 and SSC2 at the same time. After the FW
is backed up, the reliability can be increased to R(FW ′) = 1− (1− 0.96)2 = 0.998. At this
time, the reliability of SSC1 is increased to 0.998 × 0.98 × 0.98 = 95.8%, which meets the
reliability requirements of SSC1. Then, the backup node is linked to the SSCs.
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Figure 1. Reliability assurance SSC orchestration.

3.2. Network Model
3.2.1. Substrate Network

A substrate network is modeled as a weighted undirected graph Gs = (N, E) (the nota-
tion s denotes substrate) in which a substrate node set is represented by N = {n1,n2,. . .,nX}
(the notation X denotes the total number of substrate nodes) and a substrate link set is
represented by E = {ei,j|ni,nj ∈ N}. Each substrate node ni ∈ N, the notation {ic, im}
denotes the available CPU resources and storage resources of the node ni. Additionally, the
notation bi,j denotes the available bandwidth resources between node ni and nj.

3.2.2. SSC Request

Let SSC = {S1,S2,. . .,Sc} represent the set of SSC requests in the network. Each SSC
request consists of multiple VSFs connected in a specific order. The VSF set is represented by
Sc = { f c

1 , f c
2 , . . ., f c

z}(z = length(Sc)). The notation ωc denotes the reliability requirement of
Sc. The link between the substrate nodes carrying adjacent VSFs in the SSC is represented by
lc
i(i+1) = (nc

i , nc
i+1), while the notation bc

i(i+1) denotes the bandwidth resource requirement
of lc

i(i+1). In the cloud security environment, the VSF may be provided by different vendors,
meaning that the reliability of the VSF is different. The notation err(t) denotes the failure
probability of the VSF of type t.

3.3. Modeling
3.3.1. SSC Orchestration

In Table 1, we begin with some necessary notations.
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Table 1. Notations.

Notations Definitions

DP
k The processing time of the VSF f c

k on the substrate node ni ∈ N
DL

i,j The transmission delay on the substrate path ei,j

R(Sc) The reliability of SSC Sc

Dsum The sum of DP
k and DL

i,j

r( f c
k) The reliability of VSF f c

k
err( f c

k) The failure probability of f c
k

R′(Sc) The reliability of SSC Sc after backup
r′( f c

k ) The reliability of VSF f c
k

csc(ni) The CPU resource consumption of the substrate node after backup

msc(ni) The memory resource consumption of the substrate node after backup

lpre
i The length of the link between the backup VSF and the previous VSF of

the original VSF,that is, the number of hops between physical nodes

lpost
i The length of the link between the backup VSF and the post VSF of the

original VSF—that is, the number of hops between physical nodes
bpre The outflow bandwidth of the previous VSF
bi The outflow bandwidth of the backup VSF
Ai

f c
k

A given Boolean variable.It is 1 if a request rc’s requested VSF f c
k is

embedded on the substrate node ni ∈ N; and 0 otherwise

Ai,j
lc
u,v

A given Boolean variable. It is 1 if the link lc
u,v between two adjacent security

functions on the SSC passes through the substrate link ei,j and 0 otherwise
B f c

k
A given Boolean variable. It is 1 if VSF f c

k s backed up and 0 otherwise

Objective:

Max obj =
R(Sc)

Dsum
=

∏
k∈[1,Z]

r( f c
k )

∑
ni∈N

∑
f c
k∈Sc

Ai
f c
k
· DP

k + ∑
ei,j∈E

∑
lu,v∈L

Ai,j
lc
u,v
· DL

u,v

(1)

Reliability constraints:

r( f c
k ) = An

f c
k
× (1− err( f c

k ))× t(An
f c
k
= 1) (2)

Equation (1) maximizes the ratio of SSC reliability and delay. The premise for SSC to
provide reliable security services is that all security functions in the service chain can operate
normally. Therefore, the reliability of Sc is ∏

k∈[1,Z]
r( f c

k ), f c
k ∈ Sc. The total delay includes the

VSF processing delay on the substrate node ( ∑
ni∈N

∑
f c
k∈Sc

Ai
f c
k
· Dp

k ) and the transmission delay

on the substrate link ( ∑
ei,j∈E

∑
lu,v∈L

Ai,j
lc
u,v
· DL

u,v). Equation (2) calculates the reliability of VSF f c
k ,

and its value is related to the deployment location and the number of backups.

3.3.2. VSF Backup

Objective:

Min backup− cos t = ∑
ni∈N

∑
f c
k∈Sc

B f c
k
× ((csc(ni)

+ msc(ni)
) + (lpre

i · bpre + lpost
i · bi)) (3)

Reliability constraints:
R′(Sc) ≥ ωc (4)
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R′(Sc) = ∏
k∈[1,Z]

r′( f c
k ) = ∏

k∈[1,Z]
Ai

f c
k
× B f c

k
× 1− err( f c

k )
C f c

k (5)

Placement constraints:
Ai

f c
k
+ Ai

f ′
c
k
≤ 1 (6)

Equation (3) minimizes the total resource consumption of the backup. The total backup
cost includes the node resource cost and the link resource cost. The cost of node resources is
the sum of the CPU resources csc(ni)

and storage resources consumed msc(ni)
when the VSF

is deployed on the node. The cost of link resources is the bandwidth resources consumed
by the backup link when the backup VSF is connected to the SSC to which the original VSF
belongs. Equation (4) guarantees that for each SSC, the reliability requirements ωc will be
met after backup. Equation (5) calculates the SSC Sc’s reliability after backup; the value
of R′(Sc) is related to the deployment location of f c

k in the orchestration phase and the
number of backups C f c

k
in the backup phase. Equation (6) ensures that the backup VSF is

not deployed on the same substrate node as the original VSF to avoid simultaneous failure
when the substrate node fails.

4. Algorithm Description
4.1. Algorithm Introduction

This section proposes a SSC orchestration algorithm with a low latency and reliability
assurance. The algorithm includes an SSC orchestration module and VSF backup module.
The flow chart of the algorithm is shown in Figure 2.

yes no

i + +

yes

Step1 SSC Mapping

Start

Input:

substrate network,

SSC request set

while(              )?

Do:

SSC mapping based on Q-Learning,

save the mapping results in set

no
?)( ii

SR w<

           Place       in set      SSCw

Step2 VSF Backup

Backup the most important VSF

yes

    Calculate the reliability of all     

    SSCs in set 

     Calculate the importance of

     all VSFs in set 

Remove SSCs that meet reliability 

requirements from set 

VSFw

Output mapping and backup results

End

no

1i =

O

i C£

iS

Æ=SSCw

SSCw

SSCw

Figure 2. Algorithm flow chart.

Firstly, we input the substrate network Gs = (N, E) and the SSC request set
SSC = (S1, S2, . . ., Sc). Secondly, we call the SSC orchestration module, perform SSC
mapping based on the Q-learning algorithm, and output the result set O = (O1, O2, . . ., Oc).
Thirdly, we place the SSC whose reliability does not meet the requirements in set ωSSC.
Finally, we call the VSF backup module to process the SSC in set ωSSC until the reliability
of all SSCs is satisfied and the algorithm ends.
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4.2. SSC Mapping Based on Q-Learning Algorithm
4.2.1. Q-Learning Model

Existing studies usually use linear programming techniques to orchestrate the service
chain [7]. However, in actual scenarios, the physical network topology is often large in
scale and the linear programming method takes a long time to solve the optimal solution
for the orchestration and deployment of the dynamically reached SSC [24]. In order to
achieve efficient SSC orchestration, this paper applies RL technology and proposes an SSC
orchestration method based on the Q-learning algorithm.

The Q-learning algorithm model is shown in Figure 3. The Q-learning algorithm
usually solves complex decision optimization problems with less prior knowledge [25].
The agent Q agent first senses the environment state selects an action a, and executes it
according to the Q function on the basis of the current state s. When moving to the next
state s′, the agent calculates the reward function R(s, a) and updates the Q function Q(s, a)
based on the environmental feedback, then selects the next action based on the new Q value
and the current environmental state and iteratively proceeds until the optimal strategy is
obtained [26].

'
sa

s

),(Q as

),(R as

Figure 3. Q learning algorithm model.

We define the environment state set, the action set, and the reward function as follows:

A. Environment state set

The state set is the set of information that the Q agent receives from the environment
to take an action that will return a given reward in the long run. The environment state
set can be represented by the available resources of the substrate nodes and the available
bandwidth of the substrate links at present. Assuming that the CPU and memory resources
required by different types of VSFs can be simulated by the sum of several normal distri-
butions, these resources are randomly sampled at different time points to represent the
resource consumption status of the substrate nodes. The state set is composed of three
components, as defined by Equation (7).

state = {{1c, 2c, . . ., Xc}, {1m, 2m, . . ., Xm}, {bi,j}} (7)

where X represents the number of substrate nodes in the network; Xc is the current CPU
resource status of node X; Xm is the current memory resource status of node X; and bi,j is
the current bandwidth resource status of the substrate link ei,j.
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B. Action set

The action set is a vector that defines a unique action that the Q agent can take at a
given time t. In this paper, the action is the SSC placement decision for each VSF. There are
X nodes in the substrate network and each action corresponds to a node; thus, there are X
actions in the action set. Equation 8 shows the action set used in this study.

action ∈ {1, 2, . . ., X} (8)

In each effective decision, only one VSF should be mapped in a time step, and then the
agent should observe the state transition in the state space. Once the current VSF mapping
is completed, the next VSF mapping will continue.

C. Reward function

The reward is a signal that the Q agent receives from the environment after taking
an action in a specific state. Based on the reward value, the agent learns the best policy
to follow during training. The SSC’s delay is used as a measure of the reward function,
including the sum of the VSF processing delay on the substrate node and the transmission
delay on the substrate link. We assume that the substrate path between VSFs follows the
shortest path first protocol. Equation (9) shows the calculation of the total delay. The
reward is calculated as Equation (10). Equation (11) shows the cumulative reward, where λ
is the discount factor.

Delay = ∑
ni∈N

∑
f c
k∈Sc

Ai
f c
k
· DP

k + ∑
ei,j∈E

∑
lu,v∈L

Ai,j
lc
u,v
· DL

u,v (9)

r = 1/(Delay + 1) (10)

Rt =
∞

∑
t=1

γkrt+k+1 (11)

Assuming that the current system state is s and the selected action is a, the selected
action needs to satisfy Equation (12). Based on the current state s, we make a decision in
ε− greedy manner—that is, under a small probability ε, the agent will randomly choose one
of all legal actions, while under the probability of 1− ε, the agent will choose the largest
action according to Equation (12) so as to avoid being stuck in a state local optimum. After
executing the action, the system will enter the next state s′. At the same time, feedback
r(s, a) is obtained according to Equation (10). After this, the Q matrix needs to be updated
according to Equation (13).

Q(s, a) = max
a
{Q(s, a)} (12)

Q(s, a) = Q(s, a) + α[r(s, a) + γmax
a
·Q(s′, a′)−Q(s, a)] (13)

4.2.2. Algorithm Procedure

The whole procedure of the SSC mapping is as shown in Algorithm 1 and the whole
procedure of Q-table training is as shown in Algorithm 2.
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Algorithm 1: Q-Learning Algorithm for SSC mapping
Input: Substrate network graph Gs = (N, E),
SSC request SSC = {S1,S2,. . .,Sc}.
Output: Orchestration result set O = {O1, O2, . . ., Oc}.
01: Initialize the learning factor α and discount factor λ;
02: for each request Sc ∈ SSC, do
03: if the available substrate network resources meet the needs of Sc, then
04: select a substrate node as the starting point of Sc randomly

and define the current state s = s0.
05: while VSF( f c

k ∈ Sc), do
06: deploy f c

k on the substrate node in the current state s.
07: if using the ε− greedy strategy to select the next action,
08: select action a from the action set randomly.
09: else
10: select action a according to Equation (12).
11: end if
12: execute action a to obtain the next state s′.
13: update the Q table using Equation (13).
14: s = s′.
15: end while
16: else
17: refuse request Sc.
18: end if
19: update O.
20: end for
21: return O.

Algorithm 2: Q-table training
Input: Substrate network graph Gs = (N, E),
SSC request SSC = {S1,S2,. . .,Sc}.
Output:Q-table.
01: Initialize the learning factor α and discount factor λ;
02: Initialize Q(s, a) = 0, ∀s ∈ state, a ∈ action;
03: for each episode,do
04: while Sc ∈ SSC, do
05: use Algorithm 1 to orchestrate Sc.
06: end while
07: update Q-table
08: restore the substrate network state.
09: end for
10: return Q-table.

4.3. VSF Backup
4.3.1. Node Importance of VSF

This section measures the importance of the physical nodes carrying the VSF instance
and backup VSF with a higher importance until the reliability of all SSCs is satisfied. After
backing up a VSF, we define the improvement of the SSC reliability as follows:

SPc
f c
k
=

{
R′(Sc)/ωc, R′(Sc) < ωc

1, others
(14)
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where R′(Sc) is the reliability of Sc after backing up the VSF f c
k , and SPc

f c
k

is the ratio of

R′(Sc) to its target reliability ωc. It can be seen from Equation (14) that if the reliability of
Sc is satisfied by backing up the VSF f c

k , the value of R′(Sc) is 1; otherwise, it is less than 1.
We use MoN f c

k
to represent the node importance of the VSF f c

k ; this can be calculated
using Equation (15).

MoN f c
k
=

e
∏

c∈[1,C]
SPc

f c
k
−1

−e−((csc(ni)
+msc(ni)

)+(lpre
i ·bpre+lpost

i ·bi)) + 1
(15)

The numerator is the increase in the reliability of all SSCs in set ωSSC after backup;
the denominator is the backup resource overhead. When the reliability of all SSCs in set
ωSSC is satisfied, the numerator of MoN f c

k
reaches the maximum value of 1.

4.3.2. Algorithm Procedure

The whole procedure of the VSF backup is as shown in Algorithm 3. Firstly, we
calculate the reliability of all SSCs in the result set O = {O1, O2, . . ., Oc}. If SSC Oc does
not meet reliability requirement ωc, we will put Oc in set ωSSC and put all the VSF f c

k that
makes up SSC Oc into set ωVSF. Then we calculate the node importance of all VSFs in set
ωVSF and backup VSF with the largest MoN f c

k
value. After backup VSF, we recalculate

the reliability of all SSCs in set ωVSF. If SSC Oc meets reliability requirement ωc, we will
delete the SSC Oc and all the VSF f c

k that makes up SSC Oc from set ωSSC and set ωVSF,
respectively. Finally, we judge whether set ωSSC is an empty set. If ωSSC 6= ∅, we will
repeat the above steps; otherwise it means that the reliability of all SSCs is met and the
algorithm ends.

Algorithm 3: VSF backup based on node importance

Input: Orchestration result set O = {O1, O2, . . ., Oc}.
Output: VSF backup results.
01: for each SSC Oc ∈ O, do
02: calculate the reliability of Oc.
03: if R′(Oc) ≥ ωc, then
04: put Oc in ωSSC,

put all the f c
k that makes up Oc into ωVSF

05: end if
06: end for
07: while ωSSC 6= ∅, do
08: backup f c

k with the largest MoN f c
k

value
09: for each SSC Sc ∈ ωSSC, do
10: calculate the reliability of Sc

11: if R′(Sc) ≥ ωc, then
12: delete Sc from ωSSC
13: end if
14: end for
15: end while
16: return VSF backup results.

5. Evaluation
5.1. Simulation Setup

This section uses Python to build the environment for simulation, which includes four
modules: a substrate network building module, an SSC request generation module, an SSC
mapping module based on the Q-learning algorithm, and a VSF backup module.
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We use the Brite topology generator to generate a network topology with 1000 substrate
nodes and several links. The CPU resources, storage resources, and link bandwidth
resources of substrate nodes are randomly distributed in [40, 90]. The number of VSFs
contained in each SSC is randomly distributed in [2, 4]. The VSF processing delay on
the substrate node is randomly distributed in [0.2, 0.5] and the transmission delay on
the substrate link is randomly distributed in [0.1, 0.4]. According to the service level
consensus of Google applications, the reliability requirements of each SSC in the simulation
experiment are selected from this set: [95%, 98%, 99%, 99.5%, 99.9%] [27]. The arrival of the
SSC requests follows a Poisson process with a constant arrival rate λ. The lifetime of SSC
requests follows an exponential function with rate 1/µ, where µ is the average lifetime.

5.2. Results and Discussion

According to the method described in Section 3.2.2, we initialize the model. The
simulation and experimental parameters are summarized in Table 2.

Table 2. Simulation and experimental parameters.

Parameters Value Definitions

α 0.01 Learning rate
λ 0.9 Discounting factor
ε 0.5 Greedy rate

After every 60 learning rounds of the agent, the greedy coefficient e decreases by 0.1.
After 300 learning rounds, the agent will completely adopt the greedy strategy. The overall
training process takes 38.49 s, and the convergence process is shown in Figure 4. In Figure 4,
the horizontal axis represents the number of learning rounds of the agent, and the vertical
axis represents the average time steps, when each learning round reaches the minimum
end-to-end delay of SSCs.

Figure 4. Algorithm convergence process.

To further demonstrate the effectiveness of the proposed LARA algorithm, we compare
our proposed algorithm with three other algorithms. The details are as follows.
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1. RD-MaxIncre: The orchestration step randomly selects substrate nodes to place the
VSF. In the backup step, each iteration selects the VSF with the lowest reliability on
the SSC in the model for backup so as to achieve the goal of maximum SSC reliability
increment and finally heuristically solve the redundant backup scheme.

2. SP-MinCost: The orchestration step adopts the short path algorithm based on the
greedy algorithm to directly calculate the shortest path between user endpoints as
the basic path for data flow forwarding, then deploys VSF on the substrate node of
the path. In the backup step, each round of iteration selects the VSF with the smallest
physical resource demand on the SSC in the model for backup so as to achieve the
goal of minimizing the backup cost used in each round, before finally heuristically
solving the redundant backup scheme.

3. QLR-DP: The orchestration step adopts SSC mapping based on the Q-learning algo-
rithm proposed in this paper. The backup step adopts a dedicated backup, and the
VSF with the lowest reliability on each SSC is backed up by multiple SSCs regardless
of the sharing of the VSF.

The obtained simulation results and the corresponding analysis are as follows.

(1) METRIC1: average end-to-end latency.

In this experiment, we simulated 300 SSC requests and deployed them using four
algorithms. Figure 5 shows the average end-to-end latency of the SSCs. The total delay
of an SSC includes the sum of the VSFs’ processing delay on the substrate nodes and
the transmission delay on the substrate links. Generally, we can observe in Figure 5 that
the SP-MinCost algorithm has the shortest average end-to-end latency (1.72 ms), while
the RD-MaxIncre algorithm has the longest (2.51 ms). The reason for this is that the SP-
MinCost algorithm forwards the data flow through the shortest path between the substrate
endpoints. However, network resources are limited. The SP-MinCost algorithm will cause
the SSC requests to be centrally deployed on a few shortest paths, making it is easy to lead
to link congestion and reduce service performance. The LARA algorithm and QLR-DP
algorithm both adopt the Q-learning algorithm in the orchestration step, which is as close
to the minimum delay as possible in the process of searching for the optimal solution. VSFs
are dynamically deployed to near-optimal nodes and obtain a good effect.

Figure 5. Average end-to-end latency comparison.

(2) METRIC2: resource consumption

This experiment compares the average number of backup VSFs for a single SSC and
the total backup overhead when backing up with different algorithms under different
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reliability requirements of the SSC. In this experiment, we simulated 300 SSC requests and
the reliability requirements took the following five target values: 95%, 98%, 99%, 99.5%,
and 99.9%.

In Figure 6, the abscissa is the reliability requirement and the ordinate is the average
number of backup VSF for a single SSC. Figure 6 compares the backup performance of
different algorithms for a single SSC. With the increase in the reliability requirements, the
number of VSFs needed for a single SSC backup increases gradually for all four algorithms.
As shown in Figure 6, under the same reliability requirement condition, the average number
of backup VSFs for a single SSC needed by the QLR-DP algorithm becomes much larger
than that of the other three algorithms. The reason for this is that the VSF backup of the
QLR-DP algorithm is based on a single SSC, ignoring the situation where a single VSF
can be shared by multiple SSCs, meaning that the reliability improvement of the backup
shared VSF on other SSCS is not taken into account. Among the other three algorithms, the
incremental number of backup VSF of the RD-MaxIncre algorithm is the most obvious with
an improvement in the reliability requirements. This is because, after the improvement of
the reliability requirements, the efficiency of the RD-MaxIncre algorithm in improving the
reliability requirements gradually decreases and the algorithm convergence speed is slow.

Figure 6. Comparison of the average number of VSF backups for a single SSC.

Figure 7 compares the total backup cost of different algorithms; the abscissa is the
reliability requirement and the ordinate is the total backup cost. It is easy to see that the
backup cost of all algorithms increases with the increase in the reliability requirements.
However, under the same reliability requirement, the total backup cost of the LARA
algorithm is the lowest. Although the SP-MinCost algorithm selects the VSF resource
requirement for every backup, the reliability increase brought about by these backup
VSFs may not be large, which will cause more VSFs to be backed up and consume more
substrate resources. Although the RD-MaxIncre algorithm selects the least reliable VSF for
backup every time, the substrate resource consumption caused by these VSFs may not be
the smallest.
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Figure 7. Total backup cost comparison.

(3) METRIC3: request acceptance rate

The reliability requirements of security services may not be met due to the limitation
of substrate resources. In this experiment, the SSC reliability requirements are set at 98%,
and the security service acceptance of the four algorithms is simulated in the case of 200,
300, 400, and 500 SSCs so as to measure the security service quality.

Figure 8 shows the number of SSC request acceptances of the four algorithms, and
Figure 9 shows the SSC request acceptance rate of the four algorithms. The abscissa of
Figures 8 and 9 indicate the number of service requests: the ordinate of Figure 8 indicates
the number of SSCs that are successfully deployed and meet reliability requirements, and
the ordinate of Figure 9 indicates the acceptance rate of SSC requests. It can be seen
that the experimental results of the LARA, RD-Maxincre, and SP-Mincost algorithms are
similar, while the request acceptance rate of the QLR-DP algorithm is lower. The reason
for this is that the first three algorithms all use shared backup in the backup step. As the
number of SSC requests increases, the number of SSCs accepted also increases gradually.
This is because the substrate resources are gradually used in full, meeting the reliability
requirements of more SSCs and meaning that more SSCs are accepted. When the number of
SSC requests is the same, LARA’s acceptance rate is always higher than 90%. However, the
lowest acceptance rate of the QLR-DP algorithm is 68% when the number of SSCs is 500,
while the highest rate is 90% when the number of service requests is 300. This is because
the QLR-DP algorithm uses dedicated backup, occupying a large number of physical nodes
and resulting in insufficient underlying resources, which ultimately means that the SSC
reliability cannot be met, leading to it being rejected in large numbers.
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Figure 8. Comparison of the number of accepted requests.

Figure 9. Request acceptance rate comparison.

6. Conclusions

Considering the dynamic nature of cloud data center networks, determining the
mapping and backup of VSFs to ensure the quality of security services is a challenging
problem, particularly without violating the security resource utilization constraints and
security service requirements.

In view of the strict delay constraints of security services and the high failure proba-
bility for VSFs, this paper proposes an SSC orchestration algorithm that is latency aware
with reliability assurance. Firstly, we use an RL-based Q-learning algorithm to select the
appropriate VSF placement, realize efficient SSC orchestration, reduce end-to-end delay,
and ensure the quality of the service. Then, we measure the importance of the physical
nodes carrying the VSF instance and backup VSF with a higher importance to minimize
the cost of backup resources on the basis of ensuring the reliability of the SSC. Finally, we
compare three classical algorithms. The simulation results show that the proposed LARA
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algorithm has better performance in end-to-end delay and reliability assurance. We are still
exploring how to combine our proposed LARA algorithm with some machine-learning-
based approaches (e.g., GNN [28,29], MLP [30]), which can forecast the future trends of
link/node load and traffic variations ahead of time, and thus improve the efficacy of the
SSC resource allocation algorithm.
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