
����������
�������

Citation: Liu, L.; Chen, H.; Xu, Z.

SPMOO: A Multi-Objective

Offloading Algorithm for Dependent

Tasks in IoT Cloud-Edge-End

Collaboration. Information 2022, 13,

75. https://doi.org/10.3390/

info13020075

Academic Editor: Corinna Schmitt

Received: 12 January 2022

Accepted: 2 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

SPMOO: A Multi-Objective Offloading Algorithm for
Dependent Tasks in IoT Cloud-Edge-End Collaboration

Liu Liu 1, Haiming Chen 1,2,* and Zhengtao Xu 3

1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
Lliu661004@163.com

2 Zhejiang Provincial Key Laboratory of Mobile Network Application Technology, Ningbo University,
Ningbo 315211, China

3 Chu Kochen Honors College, Zhejiang University, Hangzhou 310063, China; xuzhengtao@zju.edu.cn
* Correspondence: chenhaiming@nbu.edu.cn

Abstract: With the rapid development of the internet of things, there are more and more end devices,
such as wearable devices, USVs and intelligent automobiles, connected to the internet. These devices
tend to require large amounts of computing resources with stringent latency requirements, which
inevitably increases the burden on edge server nodes. Therefore, in order to alleviate the problem that the
computing capacity of edge server nodes is limited and cannot meet the computing service requirements
of a large number of end devices in the internet of things scenario, we combined the characteristics of
rich computing resources of cloud servers and low transmission delay of edge servers to build a hybrid
computing task-offloading architecture of cloud-edge-end collaboration. Then, we study offloading
based on this architecture for complex dependent tasks generated on end devices. We introduce a two-
dimensional offloading decision factor to model latency and energy consumption, and formalize the
model as a multi-objective optimization problem with the optimization objective of minimizing the
average latency and average energy consumption of the task’s computation offloading. Based on this,
we propose a multi-objective offloading (SPMOO) algorithm based on an improved strength Pareto
evolutionary algorithm (SPEA2) for solving the problem. A large number of experimental results show
that the algorithm proposed in this paper has good performance.

Keywords: internet of things (IoT); cloud-edge-end collaboration; task offloading; delay;
energy consumption

1. Introduction

With the rapid development of various internet-of-things (IoT) fields, such as intelli-
gent traffic, intelligent home and intelligent manufacturing [1–4], the number of various
IoT devices (e.g., wearable devices, unmanned surface vehicles (USVs) and intelligent
automobiles [5–7] etc.) has increased significantly. According to Cisco, there are now more
than 30 billion mobile IoT devices worldwide, generating about 2.5 EB of data per day,
which often requires further processing and analysis. However, IoT devices have limited
computing power and storage resources because they are mostly small, battery-powered
and equipped with sensors. So, many latency-sensitive computing tasks generated in
real time, such as face recognition, virtual reality (VR) and augmented reality (AR) [8–10],
are present difficulties in guaranteeing users’ real-time experience when executed on local
devices. These tasks are usually passed to the cloud, which costs time and computation
power in maintaining the long-distance connection [11]. However, since the ultra-long-
distance communication between IoT devices and remote clouds in real-world scenarios
requires a large amount of bandwidth resources, sending all locally generated tasks to
remote clouds for processing would bring serious problems, such as high latency and
network congestion.

To alleviate these problems, one of the more effective approaches today is to offload all
complex computing tasks from the local device to a nearby edge server. The edge servers

Information 2022, 13, 75. https://doi.org/10.3390/info13020075 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13020075
https://doi.org/10.3390/info13020075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3311-1837
https://doi.org/10.3390/info13020075
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13020075?type=check_update&version=2

Information 2022, 13, 75 2 of 15

are geographically closer to the local devices, they feature low communication costs and
short response times. SDN can be set up at the edge layer to manage network traffic
and resources with more flexibility and scalability support [12]. This not only ensures the
real-time requirements of latency-sensitive tasks, but also reduces the energy consumption
of the local devices. However, due to cost and scale constraints, the computing resources on
edge servers are not unlimited. When a large number of tasks are offloaded to edge servers
at the same time or when resource-poor local devices require more computing and storage
resources, the edge servers can be overloaded and cannot effectively meet the complex
application requirements.

Since these single-computing paradigms cannot solve all offload problems, there
is a need to jointly consider the heterogeneity of cloud and edge computing to build
a cloud-edge-end-collaborative computing architecture. A white paper from ETSI illus-
trates that cloud and edge computing are highly complementary, and that cloud-edge-
end-collaborative computing can provide better computing performance and transport
performance than cloud or edge computing alone [13]. However, it remains a challenge
to effectively offload in a cloud-edge-end-computing environment due to resource hetero-
geneity, the diversity of user requirements, network complexity and task dependencies.
At present, a part of the related work does not consider the complexity of tasks in realistic
scenarios and only considers each computing task as an indivisible whole when performing
offloading [14–21], which is obviously unreasonable. Another part of the related work con-
siders the complexity of the tasks and partitions the tasks, but the complexity of calculating
the communication cost between subtasks makes it extremely difficult to perform offload-
ing research in cloud-edge-end architectures [22–26], so their work is often performed in
two-tier offloading architectures (cloud–edge architecture or edge–end architecture, etc.).
Therefore, in this paper, we propose a multi-objective optimal offloading algorithm for
the offloading problem of complex tasks in IoT cloud-edge-end-computing architectures,
aiming to optimize both the average latency and average energy consumption through the
offloading of subtasks and the scheduling of resources in a heterogeneous environment.
The main contributions of this paper are as follows:

1. We integrate the characteristics of edge computing and cloud computing, and then
fully integrate and, based on heterogeneous computing resources, establish an IoT
cloud-edge-end-collaborative computing offload architecture.

2. Defining tasks as a directed, acyclic graph (DAG) composed of a set of nodes with
interdependent subtasks, we then establish latency and energy consumption models
by introducing two-dimensional offloading factors.

3. Based on the delay and energy consumption models, the offloading problem is for-
malized as a multi-objective optimization problem with the objective of minimiz-
ing the average delay and average energy consumption of task offloading, and a
multi-objective offloading (SPMOO) algorithm based on an improved strength Pareto
evolutionary algorithm (SPEA2) is proposed for solving the problem.

The rest of the paper is organized as follows. Section 2 discusses the related work;
Section 3 presents the system model and the analysis of the problem; Section 4 describes
the proposed multi-objective task offloading algorithm in detail; in Section 5 we perform
extensive simulations and analyze different aspects; finally, Section 6 concludes the paper
and discusses future work.

2. Related Work

To address the important challenges of working together with IoT systems and emerg-
ing computing paradigms, some researchers have proposed many effective task offload-
ing algorithms to maximize application service performance from different perspectives.
Based on whether the computing tasks are divisible or not, the tasks involved in the
current related offloading research work are divided into two main categories: indivis-
ible independent tasks and complex tasks consisting of multiple subtasks with data or
logical dependencies.

Information 2022, 13, 75 3 of 15

2.1. Offloading Strategies for Independent Tasks

Since the dependency between subtasks is not involved, the offloading problem of
independent tasks is much easier than that of dependent tasks. Therefore, there are many
studies on the offloading strategy of independent tasks at present.

The study [15] proposed an online task scheduling algorithm for improving the total
weighted response time (WRT) of all jobs. The study [16] considered the optimization
problem of minimizing the long-term average delay of an IoT fog–cloud system and
applied the Lyapunov drift-plus-penalty method to solve it. However, the optimization of
long-term average delay may lead to performance imbalance among different tasks or time
slots. The study [17] proposed an online method that attempts to maximize the number
of tasks that meet the deadline while minimizing the average completion time (ACT) of
the tasks through joint scheduling of network and computing resources. The study [18]
proposed an energy-efficient dynamic task offloading (EEDTO) algorithm with the goal of
minimizing energy consumption and task response time. This algorithm could adaptively
select the optimal computation location for each task without requiring future system
information as a priori knowledge. The study [19] transformed the dynamic performance
optimization problem of service deployment for each user during system operation into a
multi-arm bandit problem (MAB), which was then solved using a contextual Thompson
sampling learning approach. The study [20] proposed a distributed, deep-learning method.
They used a parallel deep neural network (DNN) to input the output of task load and
offload decisions and updated the DNN parameters with the newly generated data.

2.2. Offloading Strategies for Dependent Tasks

The tasks generated by IoT devices in real scenarios are usually composed of a number
of subtasks with logical or data dependencies. Any subtask must start execution only after
all its predecessors have been executed; and, when executing these subtasks at different
locations, data transfer between subtasks with dependencies is required, which can incur
communication costs. Therefore, achieving optimal offloading decisions should not only
focus on user requirements, complex access networks and resource utilization, but also
take into account the dependencies between subtasks.

The study [27] proposed a greedy task graph partitioned offloading algorithm in order
to minimize task communication overhead and energy consumption, which offloaded
tasks at the device layer, cloudlet layer and cloud layer based on the computing power
of the device and the type of task. However, the algorithm easily fell into local optimal
solutions. The study [22] proposed an adaptive content-aware task scheduling (CATSA)
framework. The approach was based on a multi-criteria technique to determine the way
each task pair matches each computing paradigm and then selected an optimal solution
from the solution set using a random search method. However, this work did not consider
the resource heterogeneity between different computing layers. The study [28] used a
long-short-term memory (LSTM) approach to predict the data size for each task. Based on
the predicted values, the latency of each user task was optimized. However, this work
simply partitioned the tasks without considering the dependencies between subtasks.
The study [23] considered response time, reliability, and task execution cost in an edge
cloud environment, and then formulated the offloading problem as an NP-hard, multi-
objective optimization problem based on then on-dominated sorting genetic algorithm
(NSGA-II) [29] and simulated binary crossover and polynomial variation to provide an
offloading policy in the Pareto frontier. However, this work did not consider the power
consumption model. The study [24] designed an online recurring score matrix-based
heuristic algorithm (RSM-H) using a network state prediction method for the offloading
problem of stateful, dataflow applications. However, this work only offloaded to the edge
cloud and did not consider the power consumption model. The study [30] quantified the
execution overhead as a weighted sum of task completion time and data transfer energy
consumption and used this as an optimization objective to determine the execution location of
a task. However, this work ignored the queueing order of tasks and the waiting execution time.

Information 2022, 13, 75 4 of 15

3. System Model and Problem Formulation
3.1. Overview

Since cloud servers have powerful computing and storage resources and rich appli-
cations, while edge servers have advantages of low communication cost, short response
time,and strong network adaptability, we establish an IoT cloud-edge-end-collaborative
computing offload architecture by combining the characteristics of both, fully integrating
and invoking heterogeneous computing resources, and offloading tasks to the appropriate
location based on the requirements of different applications in terms of computing power,
energy cost and latency. As shown in Figure 1, the architecture consists of three layers,
the end-device layer, edge layer and cloud layer. The end-device layer consists of a wide
variety of IoT devices with sensors. These devices are usually small in size, have limited
battery capacity, and have only limited computing and storage capabilities. So, to further
process the data, these devices transmit the task data to the edge or cloud layers through
wireless access points (APs) or base stations (BSs) [31]. The edge layer mainly consists
of some lightweight edge servers that can provide low-latency computing services at the
edge of the network. Meanwhile, to avoid overload, the edge servers can transfer tasks to
the cloud servers for processing via wired links. The cloud layer has many cloud servers
with rich computing and storage resources, and these servers provide services for users in
different areas at the same time. However, the sharing among multiple users and the long
transmission distance of connections to other layers lead to high communication cost for
data transmission.

Figure 1. cloud-edge-end-collaborative computing offload system architecture.

In this three-tier computing offload architecture, it is assumed that a total of U =
{1, 2, 3, . . . , u} computing tasks are generated at the end device layer and sent to the edge
layer, with K = {1, 2, 3, . . . , k} edge server nodes and S = {1, 2, 3, . . . , s} cloud server nodes
available to provide services. Then we partition the computing tasks from end devices into
multiple subtasks with dependencies, which are offloaded to edge servers or cloud services
for execution.

In this paper, these interdependent subtasks are defined architecturally as a directed
acyclic graph (DAG) G = (V, E) as shown in Figure 2. Where the vertex V = {iu | iu = 1u,
2u, 3u, . . . , nu} represents the services or microservices used by all subtasks of the task u.
The modularity of the services or microservices makes it possible to deploy each service
or microservice on various types of hardware, virtualized devices and specific libraries,
thus solving the compatibility problem. The edge E = {(iu, ju) | iu, ju ∈ V} represents the
dependency between subtask iu and subtask ju, and wu

i,j indicates the size of data to be

Information 2022, 13, 75 5 of 15

transferred between iu and ju, which will incur additional communication cost when these
two subtasks are executed at different locations when data transfer is required.

Figure 2. Task execution pipeline model.

Meanwhile, we introduce the offloading decision factor xu,i ∈ {0, 1} to indicate
whether the subtask iu is offloaded or not, and the offloading location factor xu,i ∈ {−1, 0, 1}
to indicate the specific location where the subtask iu is offloaded. When xu,i = 0 indicates
that subtask iu is executed locally, at this time yu,i = −1 indicates that iu is not offloaded.
When xu,i = 1, yu,i = 0 indicates that subtask iu is offloaded to the edge node, and when
xu,i = 1, yu,i = 1 indicates that subtask iu is offloaded to the cloud node. For convenience,
some important symbols adopted in this paper and their description are listed in Table 1.

Table 1. Important symbols used in the paper and their description.

Symbols Description

U the total number of tasks
K the total number of edge servers
S the total number of cloud servers
N the total number of subtasks
u index of tasks
k index of edge devices
s index of cloud devices
i index of subtasks

prei index of the predecessor of the subtask
xu,i the offloading decision factor to indicate whether the subtask iu is offloaded or not

yu,i
the offloading location factor to indicate the specific location where the subtask iu
is offloaded

wu
i,j the size of data to be transferred between iu and ju

Du
i the CPU resources required to execute subtask iu

tst
u,i the time when the subtask iu started to be executed

ted
u,i the time when the subtask iu finished to be executed

flocal the CPU frequency of local device
fk the CPU frequency of edge server
fs the CPU frequency of cloud server

ru,k the transmission rate between the end device and the edge server
ru,s the transmission rate between the end device and the cloud server
rk,s the transmission rate between the edge server and the cloud server
B wireless transmission channel bandwidth

Hu channel gain
cu transmission power of the end device for wireless transmission

dη
u,k path loss between the end device and the edge server

dη
u,s path loss between the end device and the cloud server

Pu
i the set of all predecessor nodes of subtask iu

Ttotal
u the total delay required for the execution of task u
µu the CPU energy factors of the end device
µk the CPU energy factors of the edge server

Ecal
u the computing energy consumption of the task u

Etrans
u the transmission energy consumption of the task u

Etotal
u the total energy consumption

Information 2022, 13, 75 6 of 15

Here is an example which takes USVs as end devices for intelligent water quality
monitoring application. The application breaks through the limits of conventional manual
sampling monitoring, realizing the collection of changes of water quality, water temperature
and other data in a certain area, and can regularly report the regional water quality analysis
results. As shown in Figure 3, the application includes the following four parts: information
collection and inspection, water quality level analysis and evaluation, historical water
quality data query and water-quality distribution visualization. Among them, information
collection and inspection can only be run locally, while the other three parts can be run
locally, on the edge or cloud. The specific task offload execution position is determined by
the scheduler according to the system state and task configuration information.

Figure 3. USVs intelligent water quality monitoring.

3.1.1. Delay Model

Since each subtask has a time to start execution and a time to finish execution, in this
paper we use tst

u,i to denote the subtask iu start execution time and ted
u,i to denote the subtask

finish execution time. Then we denote the delay required for subtask iu to be executed at

the local device as Du
i

flocal
, the delay required at the edge server node as Du

i
fk

, and the delay

required at the cloud server node as Du
i

fs
, where Du

i denotes the CPU resources required to
execute subtask iu, flocal denotes the CPU frequency of local device, fk denotes the CPU
frequency of edge server, and fs denotes the CPU frequency of cloud server. From this we
can obtain:

ted
u,i = tst

u,i + (1− xu,i) ·
Du

i
flocal

+ xu,i ·
(
(1− yu,i) ·

Du
i

fk
+ yu,i ·

Du
i

fs

)
(1)

Since the end device layer generally communicates with the edge server and the cloud
server through wireless access points (APs) or small base stations (BSs), the transmission
rate ru,k between the end device and the edge server can be obtained according to Shannon’s
formula as:

ru,k = B log2

(
1 +

Hucudη
u,k

σ2

)
(2)

where B denotes the channel bandwidth of wireless transmission, Hu denotes the channel
gain of the end device communicating through the wireless channel or base station, cu de-
notes the transmitting power of the end device for wireless transmission, and dη

u,k denotes
the path loss between the end device and the edge server. Similarly, the transmission rate
ru,k between the end device and the cloud server can be expressed as:

Information 2022, 13, 75 7 of 15

ru,s = B log2

(
1 +

Hucudη
u,s

σ2

)
(3)

since edge servers usually communicate with cloud servers through wired links, we denote
the transmission rate between them as rk,s.

For each subtask, its earliest start execution time is mainly limited by the completion
execution time of all its predecessor nodes, and if the subtask is not executed at the
same location as its predecessor nodes, the time consumed by data transmission is also
considered, which can be expressed as:

tst
u,i = maxpre∈Pu

i


ted
u,prei

+ xu,i ·
(
1 + xu,i ⊕ xu,prei

)(
yu,i − yu,prei

)2 ·
wu

pre→i
rk,s

+
(

xu,i ⊕ xu,prei

)((
yu,i + yu,prei + 1

)
·

wu
pre→i
ru,s

+
(
yu,i + yu,prei

)2 ·
wu

pre→i
ru,k

)
 (4)

where, ted
u,prei

denotes the completion execution time of the predecessor nodes of subtask iu,
Pu

i denotes the set of all predecessor nodes of subtask iu, and wu
pre→i denotes the amount of

data to be transferred between subtask iu and its predecessor nodes.
To facilitate the representation of the total delay of the task computation, we abstracted

the input and output of the task as two subtasks iu
0 and iu

n+1, which do not need to consider
the amount of computation, placed at the beginning and end of the task, respectively,
so that the total delay required for the execution of task u can be expressed as:

Ttotal
u = tst

u,n+1 − tst
u,0 (5)

3.1.2. Energy Consumption Model

When the task is executed in the cloud server, the energy required is often negligible
compared to the abundant computing resources of the cloud service nodes themselves,
so this paper mainly considers the energy consumption of three parts, local computing
energy, edge server node computing energy and communication transmission energy.
Among them, the computing energy consumption of the task u can be expressed as:

Ecal
u =

N

∑
i=0

(µu · (1− xu,i) · Du
i + µk · xu,i · (1− yu,i) · Du

i), (6)

where, µu and µk denote the CPU energy conversion factors of the end device and the edge
server node, respectively.

The energy consumption generated by data transmission during the execution of task
u includes the communication energy consumption Etrans

u (local, edge) between the local
device and the edge server, the communication energy consumption Etrans

u (local, cloud)
between the local device and the cloud server and the communication energy consumption
Etrans

u (edge, cloud) between the edge server and the cloud server, which can be expressed as:

Etrans
u (local, edge) =

N+1

∑
i=1

Pu
i

∑
pre

(
xu,i ⊕ xu,prei

)(
yu,i + yu,prei

)2 ·
wu

pre→i

ru,s
· cu,s (7)

Etrans
u (local, cloud) =

N+1

∑
i=1

Pu
i

∑
pre

(
xu,i ⊕ xu,prei

)(
yu,i + yu,prei + 1

)
·

wu
pre→i

ru,s
· cu,k (8)

Etrans
u (edge, cloud) =

N+1

∑
i=1

Pu
i

∑
pre

xu,i ·
(
1 + xu,i ⊕ xu,prei

)(
yu,i − yu,prei

)2 ·
wu

pre→i

rk,s
· ck,s (9)

Information 2022, 13, 75 8 of 15

Therefore, the total communication energy consumption generated by performing
data transfer during the execution of task u is

Etrans
u = Etrans

u (local, edge) + Etrans
u (local, cloud) + Etrans

u (edge, cloud). (10)

Finally, the total energy consumption required during the computation and offloading
performed by task u can be expressed as:

Etotal
u = Ecal

u + Etrans
u . (11)

3.2. Problem Formulation

Considering the real scenario where there is a conflict between the objectives of min-
imizing the average delay and minimizing the average energy consumption of task compu-
tation offload, if we use the weighted sum aggregation method to assign weights to the
objectives, we can only obtain a single optimal solution, for which it is often difficult to meet
the diverse needs of different users or service providers in a resource-variant environment.
Therefore, in order to better meet the needs of users and providers, and to improve user
experience and resource utilization as much as possible, we formalize the problem as a
multi-objective optimization problem, where the optimization objective is to minimize the
average delay and average energy consumption of task computation offloading. According
to Equations (5) and (11), the optimization objective can be expressed as:

min
1
U

U

∑
u=1

Ttotal
u (12)

min
1
U

U

∑
u=1

Etotal
u (13)

s.t. C1 : xu,i ∈ {0, 1}, yu,i ∈ {−1, 0, 1}, ∀u ∈ [1, U], ∀i ∈ [0, N + 1]

C2 : xu,0 = 0, xu,N+1 = 0, ∀u ∈ [1, U]

C3 : tst
u,i ≥ max ted

u,prei
, ∀pre ∈ Pu

i , ∀u ∈ [1, U], ∀i ∈ [1, N + 1]

C4 :
U

∑
u=1

N

∑
i=1

xu,i ·
[
(1− yu,i) ·M

(
τ − tst

u,i
)
·M
(

tst
u,i +

Du
i

fk
− τ

)
+yu,i ·M

(
τ − tst

u,i
)
·M
(

tst
u,i +

Du
i

fs
− τ

)]
≤ K + S

(14)

Constraint C1 in Equation (14) indicates that for any subtask can only be executed
on the edge server node or on the cloud server node. Constraint C2 indicates that for
any task u, its input and output are at the local device. Constraint C3 indicates that each
subtask must complete all its predecessors before it can start execution. Constraint C4
indicates that any edge server node and cloud server node cannot process multiple subtasks
simultaneously in parallel. In this paper, we divide the time duration into a sequence of
T = {1, 2, 3, . . . , τ} time slots, and for each time slot, the number of offloaded subtasks
cannot exceed the sum of the number of edge servers and cloud servers.

4. The Proposed SPMOO Algorithm

For the multi-objective optimization problems formulated in Section 3.2, the more
frequently used solution algorithms are NSGA-II, MOEA/D, SPEA2, and etc [29,32–34].
In this paper, a multi-objective offloading algorithm (SPMOO) based on the improved
strength Pareto evolutionary algorithm (SPEA2) is proposed considering the parallel pro-
cessing mechanism and global optimization. Since the standard SPEA2 algorithm has
high randomness and poor ability in local search, we add local search set to enhance the
local search ability of the algorithm based on the original algorithm, and we also adopt
intergenerational crossover and individual similarity judgment strategies to improve popu-

Information 2022, 13, 75 9 of 15

lation diversity and convergence speed. Therefore, our algorithm is able to obtain a set of
Pareto-optimal solutions for user or supplier selection in a short time.

As shown in Algorithm 1, we initialize the population P0 with size M and create an
empty external archive set A0 and an empty local search set L0, both with size M′. Then we
calculate the fitness of all individuals in the population and external archive set and local
search set, and save all the non-dominated solution sets in them to the next generation
of external archive set At+1 and local search set Lt+1. If the number of individuals in
the external archive set exceeds M′ at this time, truncate the operation; if the number of
individuals does not reach, we select some of the dominant liberation from Pt and At
into At+1 and Lt+1. After that, the local search update is performed for Lt+1, and the
individuals from the external archive set At+1 at this time are selected into the mating pool
for crossover and mutation and the results are kept into the next generation population
Pt+1 to recalculate the fitness, thus iterating. Finally, the non-dominated solution set in
At+1 is taken as the final output of the offloading policy.

Algorithm 1: SPMOO

Input: M (population size), M′ (archive size), T (maximum number of iterations)
Output: Q (offloading strategy)

1 Initialize the first generation P0, empty external set A0 and local search set L0 ;
2 t = 0 ;
3 Calculate fitness values of individuals in Pt, At and Lt;
4 Copy all nondominated individuals from Pt, At and Lt to At+1 ;
5 for t < T do
6 if Pt + At > M′ then
7 Clip At+1 by truncation operation ;

8 else
9 Add dominated individuals from Pt, At and Lt to At+1 ;

10 Lt+1 = At+1 ;
11 Conduct the binary tournament selection on At and At+1 for filling the mating

pool ;
12 Crossover and mutation operation ;
13 Perform a partial search update on Lt ;
14 Set At+1 as the next generation ;
15 t = t + 1 ;

16 Set Q to the set of offloading strategy vectors represented by the nondominated
individuals in At+1 ;

17 final ;
18 return Q;

4.1. Fitness Calculation

To avoid the situation that individuals have the same fitness, the SPEA2 algorithm
calculates the number of dominated solutions for each individual in the population and
external archive set and defines it as the strength value S(i), and based on this, the original
fitness R(i) is defined to represent the number of dominated solutions for individual i.
The larger the R(i), the more individuals dominate individual i.

S(i) = |{j | j ∈ Pt + At ∧ i � j}| (15)

R(i) = ∑
j∈Pt+At ,j�i

S(i) (16)

When most of the individuals are non-dominated, it is difficult to distinguish them by
R(i) alone, so the density value D(i) is introduced, and the density value is calculated using

Information 2022, 13, 75 10 of 15

the K-nearest neighbor method, where the density value of any individual is a function of
the distance of its k neighboring individuals.

D(i) =
1

σk
i + 2

(17)

k =
√

M + M′ (18)

In the above equations, σk
i represents the Euclidean distance between individual i and

its adjacent individual k. Finally, the fitness of individual i is obtained:

F(i) = R(i) + D(i). (19)

4.2. Local Search Update

In order to avoid falling into local optimum, we replicate the external archive set to
create a local search set, and then rank the individuals in this set according to their fitness and
perform domain search on some of them with higher fitness. First, the decision factor of the
selected individuals is the center of the circle, and then the search is performed within the
determined search range, where the search radius and search density can be set by ourselves,
and the higher the radius and density, the stronger the local search capability, and at the same
time the computing effort will increase. Generally speaking, individuals with high adaptability
will be closer to the Pareto optimal solution boundary, and the local search operation for these
individuals can effectively improve the search efficiency of the algorithm.

4.3. Intergenerational Crossover

The standard SPEA2 algorithm uses tournament selection to select individuals from
an external archive to generate a mating pool. As the number of individuals in the non-
dominated solution gradually increases, this approach reduces the genetic composition
of the resulting next generation because it has a high probability of selecting similar indi-
viduals to generate a mating pool. Intergenerational crossover uses tournament selection
with replacement to select an individual from the current generation external archive set
while selecting an individual from the previous generation archive set. Compared to the
original crossover, intergenerational crossover generates both good and bad individuals,
so we keep only the best solutions from both intergenerational and original crossovers.

On the other hand, we evaluate the similarity of individuals before performing a
crossover, and only perform a crossover operation on two individuals when the difference
between them exceeds the maximum threshold of similarity. Many related works use
the number of identical gene positions of chromosomes as individual similarity, which
is simple to operate but has some drawbacks. For binary coding, there may be many
identical gene positions in two chromosomes corresponding to the same position, but their
corresponding actual values may be very different, which may easily cause the Hamming
cliff phenomenon [35]. Therefore, this paper adopts the Euclidean distance of individuals
to be crossed as the measure of individual similarity. Its corresponding formula is:

Crossover =

{
1, Dij ≥ Dmax
0, Dij < Dmax

, (20)

where, Dij denotes the Euclidean distance between individuals to be crossed and Dmax
denotes the set maximum similarity threshold.

4.4. Algorithm Complexity Analysis

The computational complexity of the NSGA-II, MOEA/D and SPEA2 algorithms are
O
(
rN2), O(rNT) and O(rN log N). The computational complexity of SPMOO proposed

in this paper is O(rN log N), where r is the number of objective functions and N is the
population size. The evaluation population set P, external archive A and empty local search
set L0 are taken into consideration simultaneously in SPMOO, so N = M + 2M′. Compared

Information 2022, 13, 75 11 of 15

with the SPEA2 algorithm, the SPMOO algorithm optimizes the evolutionary selection
mechanism without increasing time complexity, which reduces mutation and crossover
operations of optimal solutions and accelerates the iteration speed.

5. Simulation Results

In this section, we conducted a large number of experiments to verify and evaluate
our algorithm. Firstly, we describe the experimental setup and several benchmark methods.
Then, we do some comparison with the benchmark methods and finally we analyze and
evaluate the experimental results.

5.1. Simulation Settings

In the simulation experiments, we set the number of endpoint devices to 40 by de-
fault. Since the number of edge layer nodes is usually much smaller than the number of
endpoint layers, we set the number of servers to eight by default. The execution time of
the tasks varies from device to device, since they have different processing capabilities.
All parameters used in the experiments are shown in Table 2.

Table 2. Parameters and values.

Parameter Value Parameter Value

U [20, 60] fs 20 GHz
K [2, 10] Du

i [1000, 1500] megacycles
S [1, 2] wu

i,j [200, 500] kB
N [4, 12] cu [1, 2] W
B 10 MHz Hu [2, 4]
fu [0.5, 1] GHz dη

u,k [0.0001, 0.0005]
fk [2, 10] GHz σ 30 dBm

We compare the proposed SPMOO algorithm with the following three benchmark
algorithms, which are described as follows.

ALE (All Local Execution), which does not consider the resources of edge nodes and
cloud nodes, with all tasks processed locally on the device.

RA (Random Allocation), which randomly places all subtasks, except those that can
only be executed locally, to the edge or cloud nodes.

GA (Genetic Algorithm), which simulates the natural biological evolution mechanism
and performs efficient, parallel random global search and optimization for all policies,
and adaptively controls the search process to find the optimal solution.

5.2. Analysis and Evaluation

From Figure 4a, we can see that the average delay of the four algorithms does not
change much when the number of end devices increases, and the average delay of the
SPMOO algorithm proposed in this paper is the lowest among the four algorithms. This is
mainly due to the full consideration of the environmental factors in the subtask offloading
process, such as the computing power of the edge server and the communication laws
between subtasks and nodes, which make our algorithm more accurate and efficient in
performing task offloading. The traditional GA algorithm does not introduce methods
such as local search strategy and intergenerational crossover strategy, which leads to a
gap between it and the algorithm proposed in this paper in terms of constraint processing.
The RA algorithm does not use an optimization algorithm for the node offloading location,
so it performs poorly in terms of both average delay and average energy consumption.
The analysis of the average energy consumption in Figure 4a is similar to the analysis in
Figure 4b.

Information 2022, 13, 75 12 of 15

(a) (b)

Figure 4. Comparison of the four algorithms when the number of end devices is {20, 30, 40, 50, 60};
(a) Average delay; (b) Average energy consumption.

It can be seen in Figure 5a,b that when the number of end devices is kept constant
and the number of subtasks increases, the average latency of all four algorithms increases
accordingly, while the SPMOO algorithm proposed in this paper has the best results.

(a) (b)

Figure 5. Comparison of the four algorithms when the number of subtasks is {4, 6, 8, 10, 12};
(a) Average delay; (b) Average energy consumption.

Figure 6a,b show the graphs of average delay and average energy consumption
with the number of edge servers when the number of end devices is 10, 15, 20 and 25,
respectively. We can see that the latency and energy consumption slowly decrease with the
increase of the number of edge servers, and when the number of edge servers reaches eight,
the average latency and average energy consumption can basically reach an optimal state.
Therefore, in order to improve the utilization of resources and allocate them rationally,
we can occupy as few edge servers’ resources as possible while ensuring the latency
and energy consumption requirements. Figure 7a,b show the graphs of average delay
and average energy consumption with the number of edge servers when the number of
subtasks is 6, 8, 10 and 12, respectively. Similarly, the average delay and average energy
consumption can be seen to decrease and stabilize as the number of edge servers increases.

Information 2022, 13, 75 13 of 15

(a) (b)

Figure 6. Variation of the average delay and the average energy consumption with the number
of edge servers when the number of end devices is {30, 40, 50, 60} respectively; (a) Average delay;
(b) Average energy consumption.

(a) (b)

Figure 7. Variation of the average delay and the average energy consumption with the number of
edge servers when the number of subtasks is {6, 8, 10, 12} respectively; (a) Average delay; (b) Average
energy consumption.

6. Conclusions

In this paper, we study the multi-objective optimization task offloading problem
with resource-constrained edge servers in an IoT environment. To address this problem,
we construct a cloud-edge-end-collaborative computing offload architecture consisting of
end device layer, edge layer and cloud layer. Based on this, we construct a latency and
energy consumption model by introducing two-dimensional offloading decision factors,
and formalize the model as a multi-objective optimization problem with the optimization
objective of minimizing the average latency and average energy consumption of task
offloading, and then propose a multi-objective offloading (SPMOO) algorithm based on
an improved strength Pareto evolutionary algorithm (SPEA2) for solving the problem.
Extensive experiments show that our proposed method can significantly reduce the overall
average delay and average energy consumption of the system. However, our method is
less adaptable to new scenarios and takes a lot of time to get new offload decisions when
the type of offload tasks or device resources change. Therefore, in future work we will
further explore how to get offload decisions faster in dynamically changing heterogeneous
scenarios by combining the feature of deep reinforcement learning that builds on prior
experience to significantly accelerate the learning of new tasks.

Author Contributions: Data curation, L.L.; methodology, L.L.; funding acquisition, H.C.; formal anal-
ysis, Z.X.; visualization, L.L.; supervision, H.C.; writing—original draft, L.L.; writing—review and
editing, H.C. and Z.X. All authors have read and agreed to the published version of the manuscript.

Information 2022, 13, 75 14 of 15

Funding: This research was funded by Ningbo Natural Science Foundation grant number 2021J090.

Institutional Review Board Statement: Not Applicable, the study does not involve humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not Applicable, the study does not report any data.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances

and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [CrossRef]
2. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things.

IEEE Access 2018, 6, 6900–6919. [CrossRef]
3. Mallapuram, S.; Ngwum, N.; Yuan, F.; Lu, C.; Yu, W. Smart City: The State of the Art, Datasets, and Evaluation Platforms.

In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China,
24–26 May 2017; pp. 447–452. [CrossRef]

4. Wang, K. Migration strategy of cloud collaborative computing for delay-sensitive industrial IoT applications in the context of
intelligent manufacturing. Comput. Commun. 2020, 150, 413–420. [CrossRef]

5. Arias, O.; Wurm, J.; Hoang, K.; Jin, Y. Privacy and Security in Internet of Things and Wearable Devices. IEEE Trans.-Multi-Scale
Comput. Syst. 2015, 1, 99–109. [CrossRef]

6. Zhang, J.; Dai, M.; Su, Z. Task Allocation with Unmanned Surface Vehicles in Smart Ocean IoT. IEEE Internet Things J. 2020,
7, 9702–9713. [CrossRef]

7. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015,
58, 431–440. [CrossRef]

8. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020,
9, 1188. [CrossRef]

9. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

10. Hu, L.; Tian, Y.; Yang, J.; Taleb, T.; Xiang, L.; Hao, Y. Ready Player One: UAV-Clustering-Based Multi-Task Offloading for
Vehicular VR/AR Gaming. IEEE Netw. 2019, 33, 42–48. [CrossRef]

11. Ning, H.; Farha, F.; Mohammad, Z.N.; Daneshmand, M. A Survey and Tutorial on “Connection Exploding Meets Efficient
Communication” in the Internet of Things. IEEE Internet Things J. 2020, 7, 10733–10744. [CrossRef]

12. Bouras, M.A.; Farha, F.; Ning, H. Convergence of Computing, Communication, and Caching in Internet of Things. Intell. Converg.
Netw. 2020, 1, 18–36. [CrossRef]

13. Reznik, A.; Murillo, L.M.C.; Fang, Y.; Featherstone, W.; Filippou, M.; Fontes, F.; Giust, F.; Huang, Q.; Li, A.; Turyagyenda, C.; et al.
Cloud RAN and MEC: A Perfect Pairing; ETSI White Paper; ETSI: Sophia Antipolis, France, 2018; pp. 1–24.

14. Hu, X.; Wang, L.; Wong, K.K.; Tao, M.; Zhang, Y.; Zheng, Z. Edge and Central Cloud Computing: A Perfect Pairing for High
Energy Efficiency and Low-Latency. IEEE Trans. Wirel. Commun. 2020, 19, 1070–1083. [CrossRef]

15. Han, Z.; Tan, H.; Li, X.Y.; Jiang, S.H.C.; Li, Y.; Lau, F.C.M. OnDisc: Online Latency-Sensitive Job Dispatching and Scheduling in
Heterogeneous Edge-Clouds. IEEE/ACM Trans. Netw. 2019, 27, 2472–2485. [CrossRef]

16. Li, L.; Guo, M.; Ma, L.; Mao, H.; Guan, Q. Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task
Service Delay. Sensors 2019, 19, 3830. [CrossRef]

17. Meng, J.; Tan, H.; Li, X.Y.; Han, Z.; Li, B. Online Deadline-Aware Task Dispatching and Scheduling in Edge Computing.
IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1270–1286. [CrossRef]

18. Wu, H.; Wolter, K.; Jiao, P.; Deng, Y.; Zhao, Y.; Xu, M. EEDTO: An Energy-Efficient Dynamic Task Offloading Algorithm for
Blockchain-Enabled IoT-Edge-Cloud Orchestrated Computing. IEEE Internet Things J. 2021, 8, 2163–2176. [CrossRef]

19. Ouyang, T.; Li, R.; Chen, X.; Zhou, Z.; Tang, X. Adaptive User-managed Service Placement for Mobile Edge Computing:
An Online Learning Approach. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Paris, France,
29 April–2 May 2019; pp. 1468–1476. [CrossRef]

20. Wu, H.; Zhang, Z.; Guan, C.; Wolter, K.; Xu, M. Collaborate Edge and Cloud Computing with Distributed Deep Learning for
Smart City Internet of Things. IEEE Internet Things J. 2020, 7, 8099–8110. [CrossRef]

21. Alfakih, T.; Hassan, M.M.; Gumaei, A.; Savaglio, C.; Fortino, G. Task Offloading and Resource Allocation for Mobile Edge Computing
by Deep Reinforcement Learning Based on SARSA. IEEE Access 2020, 8, 54074–54084. [CrossRef]

http://doi.org/10.1109/MCOM.2017.1600514
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/ICIS.2017.7960034
http://dx.doi.org/10.1016/j.comcom.2019.12.014
http://dx.doi.org/10.1109/TMSCS.2015.2498605
http://dx.doi.org/10.1109/JIOT.2020.2991578
http://dx.doi.org/10.1016/j.bushor.2015.03.008
http://dx.doi.org/10.3390/electronics9081188
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/MNET.2019.1800357
http://dx.doi.org/10.1109/JIOT.2020.2996615
http://dx.doi.org/10.23919/ICN.2020.0001
http://dx.doi.org/10.1109/TWC.2019.2950632
http://dx.doi.org/10.1109/TNET.2019.2953806
http://dx.doi.org/10.3390/s19183830
http://dx.doi.org/10.1109/TPDS.2019.2961905
http://dx.doi.org/10.1109/JIOT.2020.3033521
http://dx.doi.org/10.1109/INFOCOM.2019.8737560
http://dx.doi.org/10.1109/JIOT.2020.2996784
http://dx.doi.org/10.1109/ACCESS.2020.2981434

Information 2022, 13, 75 15 of 15

22. Lakhan, A.; Li, X. Content Aware Task Scheduling Framework for Mobile Workflow Applications in Heterogeneous Mobile-
Edge-Cloud Paradigms: CATSA Framework. In Proceedings of the 2019 IEEE Intl Conf on Parallel Distributed Processing
with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking
(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 242–249. [CrossRef]

23. De Maio, V.; Kimovski, D. Multi-objective Scheduling of Extreme Data Scientific Workflows in Fog. Future Gener. Comput. Syst.
2020, 106, 171–184. [CrossRef]

24. Ding, S.; Yang, L.; Cao, J.; Cai, W.; Tan, M.; Wang, Z. Partitioning Stateful Data Stream Applications in Dynamic Edge Cloud
Environments. IEEE Trans. Serv. Comput. 2021, 1, 1. [CrossRef]

25. Wang, S.; Ding, Z.; Jiang, C. Elastic Scheduling for Microservice Applications in Clouds. IEEE Trans. Parallel Distrib. Syst. 2021,
32, 98–115. [CrossRef]

26. Zhang, T.; Chen, W. Computation Offloading in Heterogeneous Mobile Edge Computing with Energy Harvesting. IEEE Trans.
Green Commun. Netw. 2021, 5, 552–565. [CrossRef]

27. Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

28. Miao, Y.; Wu, G.; Li, M.; Ghoneim, A.; Al-Rakhami, M.; Hossain, M.S. Intelligent Task Prediction and Computation Offloading
based on Mobile-Edge Cloud Computing. Future Gener. Comput. Syst. 2020, 102, 925–931. [CrossRef]

29. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

30. Sun, H.; Yu, H.; Fan, G.; Chen, L. Energy and Time Efficient Task Offloading and Resource Allocation on the Generic IoT-Fog-Cloud
Architecture. Peer-to-Peer Netw. Appl. 2020, 13, 548–563. [CrossRef]

31. Liu, H.; Eldarrat, F.; Alqahtani, H.; Reznik, A.; de Foy, X.; Zhang, Y. Mobile Edge Cloud System: Architectures, Challenges, and
Approaches. IEEE Syst. J. 2018, 12, 2495–2508. [CrossRef]

32. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; Eidgenössische Technische
Hochschule Zürich (ETH): Zürich, Switzerland, 2001. [CrossRef]

33. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

34. Xu, X.; Wu, Q.; Qi, L.; Dou, W.; Tsai, S.B.; Bhuiyan, M.Z.A. Trust-Aware Service Offloading for Video Surveillance in Edge
Computing Enabled Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1787–1796. [CrossRef]

35. Strasser, S.; Goodman, R.; Sheppard, J.; Butcher, S. A New Discrete Particle Swarm Optimization Algorithm. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), Denver, CO, USA, 20–24 July 2016; pp. 53–60. [CrossRef]

http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00044
http://dx.doi.org/10.1016/j.future.2019.12.054
http://dx.doi.org/10.1109/TSC.2021.3051046
http://dx.doi.org/10.1109/TPDS.2020.3011979
http://dx.doi.org/10.1109/TGCN.2021.3050414
http://dx.doi.org/10.1109/JIOT.2021.3064225
http://dx.doi.org/10.1016/j.future.2019.09.035
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s12083-019-00783-7
http://dx.doi.org/10.1109/JSYST.2017.2654119
http://dx.doi.org/10.3929/ethz-a-004284029
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TITS.2020.2995622
http://dx.doi.org/10.1145/2908812.2908935

	Introduction
	Related Work
	Offloading Strategies for Independent Tasks
	Offloading Strategies for Dependent Tasks

	System Model and Problem Formulation
	Overview
	Delay Model
	Energy Consumption Model

	Problem Formulation

	The Proposed SPMOO Algorithm
	Fitness Calculation
	Local Search Update
	Intergenerational Crossover
	Algorithm Complexity Analysis

	Simulation Results
	Simulation Settings
	Analysis and Evaluation

	Conclusions
	References

