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Abstract: Many works have been proposed on image saliency detection to handle challenging
issues including low illumination, cluttered background, low contrast, and so on. Although good
performance has been achieved by these algorithms, detection results are still poor based on RGB
modality. Inspired by the recent progress of multi-modality fusion, we propose a novel RGB-
thermal saliency detection algorithm through learning static-adaptive graphs. Specifically, we first
extract superpixels from the two modalities and calculate their affinity matrix. Then, we learn the
affinity matrix dynamically and construct a static-adaptive graph. Finally, the saliency maps can be
obtained by a two-stage ranking algorithm. Our method is evaluated on RGBT-Saliency Dataset with
eleven kinds of challenging subsets. Experimental results show that the proposed method has better
generalization performance. The complementary benefits of RGB and thermal images and the more
robust feature expression of learning static-adaptive graphs create an effective way to improve the
detection effectiveness of image saliency in complex scenes.

Keywords: RGB-thermal; static-adaptive graph; manifold ranking; saliency detection

1. Introduction

Image saliency detection aims to quickly capture the most important and useful
information from a scene by using the human visual attention mechanism, which can reduce
the complexity of subsequent image processing, and has been applied to numerous vision
problems including image classification [1], image retrieval [2], image encryption [3,4],
video summary [5], and so on. In the past few decades, researchers have proposed many
saliency detection algorithms, which can be divided into bottom-up data-driven models and
top-down task-driven methods. Bottom-up models [6–9] take the underlying image features
and some priors into consideration, such as color, texture, orientation, and brightness.
Itti et al. [10] proposed a visual attention mechanism, which opened research on saliency
detection in the field of computer vision. Cheng et al. [11] introduced a regional contrast-
based salient object detection algorithm, which simultaneously evaluates global contrast
differences and spatial weighted coherence scores. Wang et al. [12] improved the detection
effect of image saliency by optimizing seeds. Top-down models [13,14] are task driven. They
use a large amount of training data with category labels and supervised learning to conduct
a task-oriented analysis. Recently, most of these methods are based on deep learning, they
have better performance, but their training processes are time-consuming. We focus on the
bottom-up models. Many scholars have made many attempts to improve image saliency
detection and have obtained good performance in simple scenes. However, the effectiveness
of traditional RGB saliency detection methods decreases sharply in complex scenes, such
as poor lighting or saliency objects that have the same color and texture as the background.
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In recent years, multi-source sensor technology has become popular in image processing.
Li et al. [15–17] simultaneously extracted RGB and thermal features for tracking, which
effectively improved the effect of video target tracking at night or in rainy, hazy, and foggy
weather. Zhang et al. [18] extracted the depth features of RGB images and thermal images,
and then fused the two extracted features for saliency detection, which greatly improved
the detection effectiveness in the case of poor illumination or similar color and texture to
the background. The fusion of RGB and thermal images is proven to be effective in image
saliency detection. RGB images can provide texture details with high definition in a manner
consistent with the human visual system in simple scenes. By contrast, thermal images
can work well in low illumination, and also have good discrimination when the target and
the background have similar colors or shapes RGB-T saliency detection algorithms can
obtain better results by handling challenging issues including low illumination, cluttered
background, low contrast, and so on. Graph-based models [19–21] use pixels or superpixels
as nodes and the similarity weight between nodes as the edge to generate the graph,
which can achieve a great structure character from initial input images for RGB-T saliency
detection results. However, the existing graph-based fusion models only use the static
graph. The limitation of this kind of method is that it cannot explore the relationship
between nodes at the target level and gain better fusion of multi-modality information.
Inspired by these methods, we consider the spatial connectivity feature of graph nodes
to learn a static-adaptive graph, and propose a novel RGB-thermal saliency detection
algorithm to obtain more effective results, as in Figure 1.

Figure 1. Comparative results of static-adaptive graph-based method with traditional static graph
model. (a) RGB image; (b) thermal image; (c) the saliency map generated by the static graph-based
model; (d) the saliency map generated by our model; (e) ground truth.

Specifically, we first extract superpixels from the two modalities and calculate their
affinity matrix. Then, we learn the affinity matrix dynamically and construct a static-
adaptive graph. Finally, the saliency maps can be obtained by a two-stage ranking algo-
rithm. The contributions of this paper are summarized as follows.

• We construct an adaptive graph by sparse representation and carry out the optimiza-
tion solution;

• We learn a novel static-adaptive graph model to increase the fusion capacity by con-
sidering the spatial connectivity features of graph nodes in RGB-T saliency detection;

• We compare our method with the state-of-the-art methods on an RGB-T dataset with
11 kinds of challenging subsets. The experimental results verify the effectiveness of
our method.



Information 2022, 13, 84 3 of 14

2. Related Work

In this section, we give a brief review of methods closely related to our work. The rele-
vant work in this paper mainly includes the graph-based method, multi-modality fusion
method, and subspace-based method.

Graph-based method. In the past few decades, graph-based models have been suc-
cessfully used for saliency detection problems. Harel et al. [19] proposed a graph model.
The algorithm takes the pixel points as the graph nodes, constructs edges between the pixel
points according to the spatial distance and feature distance, and uses Markov random
field for feature fusion. Yang et al. [20] proposed a manifold ranking algorithm based on
a static graph, which is a typical two-stage model to gain more accurate saliency maps.
Jiang et al. [21] calculated a preliminary saliency map by Markov absorption probability on
a weighted graph via partial image borders as prior background. Zhang et al. [22] used
multi-scale to improve the manifold ranking algorithm. Xiao et al. [23] proposed a prior
regularized multi-layer graph ranking model in which they used the prior calculating by
boundary connectivity. Aytekin et al. [24] proposed a graph model that uses a convolution
kernel function network to learn the connection weight coefficients.

Multi-modality fusion method. In recent years, with the development of multi-sensors,
multi-modality fusion has become a new effective means to improve computer vision
tasks. Li et al. [25] combined gray and thermal information to deal with target tracking in
complex scenes. Li et al. [15] used multispectral (RGB and thermal) data to improve visual
tracking effectiveness. Li et al. [26] established a unified RGB-T dataset and proposed a
new algorithm to fuse RGB and thermal images for saliency detection, which incorporates
the cross-modality consistent constraints to integrate different modalities collaboratively.
RGB-D is an effective multi-modal fusion method in many aspects, such as manufactur-
ing [27], semantic segmentation [28–30], and saliency detection [31,32]. Liu et al. [33] used
three transformer encoders with shared weights to enhance multi-level features, and the
algorithm they proposed effectively improves the effectiveness of saliency detection.

Subspace-based method. Subspace-based methods represent high-dimensional data in
low-dimensional subspace. The purpose of subspace representation is to obtain a similarity
matrix in the basic subspace of the original data. In a dataset, each data point can be
reconstructed by an effective combination of other points, which are often helpful for data
processing, because data can better reflect the characters of data in its low-dimensional
subspace. Guo et al. [34] proposed a subspace segmentation method to jointly learn data
representation and affinity matrix relationships simultaneously in a model. Li et al. [35]
represented each patch with a linear combination of the remaining ones and learned the
weights of the global and local features of the detection object, achieving good effectiveness
in the application field of video tracking.

We learn static-adaptive graphs for saliency detection. The static graph is the tradi-
tional graph. Its structure is fixed, and it only considers the relationship between adjacent
nodes. The adaptive graph is obtained by the subspace method to mine the internal rela-
tionship between superpixels. Therefore, our algorithm considers both local and global
features, and has better effectiveness than the saliency detection algorithm which is only
based on the static graph. In multi-modality selection, we fuse RGB image and thermal
image, because RGB and thermal images have natural complementarity. Compared with
the RGB-D saliency detection algorithm, the RGB-T saliency detection algorithm has much
lower hardware requirements for computers, and can run well on computer with an i3 3.3G
CPU and 4GB RAM.

3. Brief Review of Manifold Ranking

A manifold ranking (MR) model [20] is a typical graph-based method for saliency
detection. For an image, simple linear iterative clustering (SLIC) [36] is always used to
obtain n superpixels as graph nodes in most of these models. Take a graph G = (V, E),
where V is a node set. Some of nodes are labeled as queries and the rest need to be ranked
according to their relevance to the queries. Let X = [x1, x2, . . . , xn] ∈ Rd×n be the character
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matrix, d the dimensionality of the feature vector, and n the number of the superpixels. E is
the set of undirected edges and Wij is the edge weight between node i and node j that can
be calculated by feature vectors of two nodes. Let q = [q1, q2, . . . , qn]T denote an indication
vector, where qi = 1 if node i is a labeled query, otherwise, qi = 0. The aim of MR is to gain
a ranking value fi for each graph node, which can be computed by solving Equation (1),

min
f

1
2
(

n

∑
i,j=1

Wij‖
fi√
Dii
−

f j√
Djj
‖2 + µ

n

∑
i=1
‖ fi − qi‖2) (1)

where Dii = ∑n
j=1 Wij.

To obtain more effective results, Yang et al. [20] obtained the ranking value by using
the un-normalized Laplacian matrix in Equation (2),

f = (D− λW)−1q, (2)

where D is a degree matrix, D = diag{D11, . . . , Dnn}, λ = 1/(1 + µ).

4. Static-Adaptive Graph Learning
4.1. Static-Adaptive Graph Construction

The graph of traditional models is static; most of them only consider adjacent nodes
and boundary nodes. The limitation of this kind of method is that it cannot explore
the relationship between nodes at the target level. Therefore, we consider the spatial
connectivity features of graph nodes to construct a static-adaptive graph, in which su-
perpixels with similar features in the region are also connected. Take multiple graphs
Gm = (Vm, Em), m = 1, 2, . . . , M, where Vm is a node set, and Em is the set of undirected
edges. Let Xm = [xm

1 , xm
2 , . . . , xm

N ] ∈ Rd×N , m = 1, 2, . . . , M be the character matrix of the
m-th modality. N is the number of graph nodes. d is the dimensionality of the feature
vector. As in traditional static graphs [20], when two nodes meet one of the following three
conditions, they are considered to have edges.

(1) Two nodes are directly adjacent;
(2) There is a common edge between two nodes;
(3) Superpixels are on the four boundaries.

If there is an edge between two nodes, the weight of the edge is calculated by
Equation (3).

Wm
i,j = e−γ0‖xm

i −xm
j ‖, m = 1, 2, . . . , M, (3)

where xm
i denotes the mean of the i-th superpixel in the m-th modality, and γ0 is a parameter.

We add the adaptive graph weight matrix to gain the weight matrix of the static-
adaptive graph as in Figure 2, which can be calculated by Equation (4).

W = Wa +
M

∑
m=1

tmWm, (4)

where Wa is the weight matrix of adaptive graph, which can be obtained by adaptive
graph learning.

Wm = [Wm
ij ]N×N , m = 1, 2, . . . , M is the initial weight matrix of the m-th modality. tm

can indicate the importance of different modalities of static and adaptive graphs.
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Figure 2. The general view of the static-adaptive graph on the multi-modality fusion image. The blue
edges are obtained by the traditional static graph. The green edges are obtained by our adaptive
graph learning model.

4.2. Adaptive Graph Learning Model Formulation

For M graphs Gm = (Vm, Em), m = 1, 2, . . . , M, we assume that all nodes in each
graph belong to the same sparse subspace, in which each node can be sparsely represented
by the remaining nodes. We can obtain Xm = XmZm, m = 1, 2, . . . , M, where Zm ∈ RN×N is
the sparse coefficient matrix. Sparse constraints can automatically select most informative
neighbor nodes for each node, and make the graph more powerful. Since the nodes
are often disturbed by noises, we introduce a noise matrix Em ∈ Rd×N to improve the
robustness. The joint sparse representation with the convex relaxation for all modalities
can be written as,

min
Z,Em

α‖Z‖1 + β
M

∑
m=1
‖Em‖2,1, s.t. Xm = XmZm + Em. (5)

where α and β are balanced parameters. Z = [Z1; · · · ; ZM] ∈ RN×(M∗N) is the joint sparse
representation coefficient matrix.

We consider the spatial connectivity feature of graph nodes and use C ∈ RN×N to
indicate the spatial connections of neighboring nodes.

If node i and j are 8-neighboring, Cij = 1; otherwise Cij = 0.

Cij =

{
1, i f i and j are 8-neighboring,
0, else.

(6)

The closer the distance, the greater the relevance. Inspired by [35], to capture the
global and local structure information, we employ Equation (7) to learn the adaptive graph
affinity matrix.

min
Wa

γ

2

N

∑
i,j=1
‖Zi − Zj‖2

FWa
ij +

δ

2

N

∑
i,j=1

Cij‖Zi − Zj‖2
F + λ1‖Wa‖2

F,

s.t. WaT1 = 1, Wa ≥ 0.

(7)

where γ and δ are the balancing parameters. The first item reflects the probability Wa
ij

from the same cluster based on the distance between their representations Zi and Zj. The
second item indicates that two close nodes will have similar representations. λ1‖Wa‖2

F is
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to avoid over-fitting of Wa. 1 denotes a unit vector. WaT1 = 1, Wa ≥ 0 are constraints to
guarantee the probability property of Wa

ij. We combine the Equations (5) and (7) and obtain
the following optimal function,

min
Z,Em ,Wa

α‖Z‖1 +
γ

2

N

∑
i,j=1
‖Zi − Zj‖2

FWa
ij +

δ

2

N

∑
i,j=1

Cij‖Zi − Zj‖2
F,

+ λ1‖Wa‖2
F + β

M

∑
m=1
‖Em‖2,1,

s.t. Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(8)

In order to solve the problem easily, let Da
ii = ∑N

j=1 Wa
ij, Dc

ii = ∑N
j=1 Cij. Equation (8) is

a slightly algebraic transformation to,

min
Z,Em ,Wa

α‖Z‖1 + γ tr(ZLaZT) + δ tr(ZLcZT)

+ λ1‖Wa‖2
F + β

M

∑
m=1
‖Em‖2,1,

s.t. Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(9)

where La = Da −Wa and Lc = Dc − C are Laplacian matrices of Wa and C, respectively.

4.3. Optimization
The variables in Equation (9) are not jointly convex; they are convex with respect to

the subproblem of each variable when others are fixed and have a close form solution. We
introduce two auxiliary variables, Pm and Qm, to make Equation (9) separable and then
use the alternating direction multiplier (ADMM) algorithm [37] for optimization iteration.
Then, we can obtain Equation (10).

min
Z,Em ,Wa

α‖Z‖1 + γ tr(ZLaZT) + δ tr(ZLcZT)

+ λ1‖Wa‖2
F + β

M

∑
m=1
‖Em‖2,1,

s.t. Pm = Zm, Qm = Zm, Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(10)

Thus, we obtain the Lagrange function [38] as Equation (11),

min
Z,Em ,Wa ,P,Q

α‖Q‖1 + γ tr(PLaPT) + δ tr(PLcPT) + λ1‖Wa‖2
F

+
M

∑
m=1

(β‖Em‖2,1 +
µ

2
‖Xm − XmZm − Em +

Ym
1

µ
‖2

F +
µ

2
‖Pm − Zm +

Ym
2

µ
‖2

F

+
µ

2
‖Qm − Zm +

Ym
3

µ
‖2

F −
1

2µ
(‖Ym

1 ‖2
F + ‖Ym

2 ‖2
F + ‖Ym

3 ‖2
F)).

(11)

where P = [P1; P2; . . . ; PM] and Q = [Q1; Q2; . . . ; QM]. µ is a penalty parameter; Ym
1 , Ym

2 ,
and Ym

3 are Lagrange multipliers.
There are five variables, Z, Em, Wa, P, and Q, needed to solve in Equation (11), The

solver iteratively updates one variable at a time by fixing the others.
Z-subproblem: In order to calculate Z, we fix other variables in Equation (11); the Z-

subproblem can be written as Equation (12). Then, we divide Z and set it to 0 to obtain
Equation (13),

min
Z

M

∑
m=1

(
µ

2
‖Xm − XmZm − Em +

Ym
1

µ
‖2

F

+
µ

2
‖Pm − Zm +

Ym
2

µ
‖2

F +
µ

2
‖Qm − Zm +

Ym
3

µ
‖2

F),

(12)
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Zm,k+1 = (µ(Xm)TXm + 2µkI)−1(µk(X
m)TXm

− µk(X
m)TEm,k + (Xm)TYm,k

1 + µkPm,k + µkQm,k − Ym,k
2 − Ym,k

3 ).
(13)

P-subproblem: In order to calculate P, we fix other variables in Equation (11); the P-
subproblem can be written as Equations (14) and (15), then dividing P and setting it to 0 to
obtain Equation (16),

min
P

γ tr(PLaPT) + δ tr(PLcPT) +
M

∑
m=1

µ

2
‖Pm − Zm +

Ym
2

µ
‖2

F, (14)

min
P

γ tr(PLaPT) + δ tr(PLcPT) +
µ

2
‖P− Z +

Y2
µ
‖2

F, (15)

Pk+1 = (µZk+1 − Yk
2)(γ(L

a)k + γ((La)k)T + δ(La)k + δ((Lc)k)T + µI)−1. (16)

Q-subproblem: In order to calculate Q, we fix other variables in Equation (11), then
the Q-subproblem can be written as Equations (17) and (18). Then, divide Q and set it to 0,
which is computed by the soft-thresholding (or shrinkage) method [39] as Equation (19),

min
Q

α‖Q‖1 +
M

∑
m=1

µ

2
‖Qm − Zm +

Ym
3

µ
‖2

F, (17)

min
Q

α‖Q‖1 +
µ

2
‖Q− Z +

Y3
µ
‖2

F, (18)

Qk+1 = so f t_thr(Zk+1 −
Yk

3
µ

,
α

µk
). (19)

Em-subproblem: In order to calculate Em, we fix other variables in Equation (11); then
the Q-subproblem can be written as Equation (20). Then, by dividing E and setting it
to 0, which is computed by the soft-thresholding (or shrinkage) method [39], we obtain
Equation (21),

min
Em

M

∑
m=1

β‖Em‖2,1 +
µ

2
‖Xm − XmZm − Em +

Ym
1

µ
‖2

F (20)

Em,k+1 = S β
µ

(XmZm,k+1 − Xm −
Ym,k

1
µk

) (21)

Wa-subproblem: In order to calculate Wa, we fix other variables in Equation (11),
then the Wa-subproblem can be written as Equation (22). Then dividing Wa and set it to 0
obtains Equation (23),

min
Wa

γtr(PLaPT) + λ1‖Wa‖2
F + γ‖Pi − Pj‖2

FWa
ij (22)

(Wa)k+1
i = (

1 + ∑s
j=1 Ûj

s
1−Uij)+ (23)

where Uj ∈ RN×1 is a vector whose i-th element is Uij =
γ‖Pi−Pj‖2

F
λ1

.
The Lagrange multiplier can be updated by Equation (24),
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Ym,k+1
1 = Ym,k

1 + µk(Xm − XmZm,k+1 − Em,k+1)

Ym,k+1
2 = Ym,k

2 + µk(Zm,k+1 − Pm,k+1)

Ym,k+1
3 = Ym,k

3 + µk(Zm,k+1 −Qm,k+1)

(24)

5. RGB-T Salient Detection

Given a pair of RGB-T images, considering that the thermal image has stronger anti-
interference ability in complex scenes, we first fuse the RGB and the thermal images at a
ratio of 1:4. To generate N non-overlapping superpixels, we use a simple linear iterative
clustering (SLIC) algorithm in the fused image. A two-stage ranking model is adapted to
calculate the final saliency map. In the first stage, we take the boundary as a prior and select
the nodes around the image as background seed queries. We use the top, bottom, left, and
right sides of the image as four kinds of queries, qt, qb, ql , qr, which are selected separately
to obtain four different detection results, ft, fb, fl , fr, by Equation (2). Considering that the
symmetry of the image and saliency objects are often cross-left boundary and cross-bottom
boundary, we select the large class nodes as queries by using the k-means method to
obtain two clusters on the left and bottom boundaries separately. Then, we normalize fk

(k = t, p, l, r) to the range between 0 and 1. The saliency value vector of N nodes sk can be
obtained by sk = 1− f̂k (k = t, p, l, r). The saliency ranking value vector of all nodes s1 in
the first stage can be calculated by Equation (25).

s1 = st × sb × sl × sr (25)

By using the object characteristics, secondary ranking is performed to improve the
first-stage saliency value. Given s1, we set an adaptive threshold to generate foreground as
queries q2. Then, the Equation (2) is used to obtain the second ranking results s2, which
are normalized to the range of 0 and 1 as ŝ2. In order to further reduce the background
noise, we let s = s1 × s2 be the final saliency value and obtain the final salient map S. The
main steps of the two-stage RGB-T salient object detection algorithm are summarized in
Algorithm 1.

Algorithm 1 The Static-Adaptive Graph based RGB-T Salient Detection Produce.

Require: The static-adaptive graph weight matrix W, the indicator vectors of the four
boundaries queries qt, qb, ql , qr.

1: Use Equation (2) to obtain ft, fb, fl , fr separately;
2: ft, fb, fl and fr are normalized to 0 and 1;
3: Set st=1− f̂t, sb=1− f̂b, sl=1− f̂l , sr=1− f̂r;
4: Obtain the first saliency value vector s1 = st × sb × sl × sr;
5: s1 is normalized to 0 and 1, and obtain ŝ1;
6: Use an adaptive threshold to binary ŝ1 and obtain foreground query q2;
7: Use Equation (2) to obtain the second saliency value vector s2;
8: s2 is normalized to 0 and 1 ŝ2;
9: Set s = ŝ1 × ŝ2 to suppress the background noise of image;

10: Set all superpixels value si to each pixel and obtain the final saliency map S.
Ensure: S is the saliency map of the static-adaptive graph model for RGB-T saliency detection.
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6. Experiment
6.1. Datasets and Experimental Settings

The RGBT-Saliency dataset [26] includes 821 pairs images with ground truth, in which the
images with high diversity are recorded under different scenes and environmental conditions.

The datasets can be download from the address http://chenglongli.cn/people/lcl/
journals.html (accessed on 20 December 2021).

The initial segmentation number of the superpixel N is set to 250. The edge weight
coefficient θ is set to 29. Other parameters in this paper are set to α = 0.11, β = 0.15,
γ = 0.04, δ = 0.3, and λ1 = 0.6.

6.2. Measuring Standard

To verify the effectiveness of our algorithm, we compared with other methods with
precision, recall, and F-measure (PRF) values, mean absolute error (MAE) values, and
PR curve.

PR (Precision, Recall) curve. The PR curve is a curve with the “precision rate” as the
ordinate and the “recall rate” as the abscissa. We binarize the original image S to obtain
M, and then calculate the precision value and recall value by comparing M and G (ground
truth) pixel by pixel in the following formula,

Precision =
|M ∩ G|
|M| (26)

Recall =
|M ∩ G|
|G| (27)

PRF (precision, recall, F-measure). Sometimes, the P and R indicators are contradictory,
so they need to be considered comprehensively. The most common method is F-measure
(also known as f-score). F-measure is the weighted average of precision and recall:

Fβ2 =
(1 + β2)× P× R

β2 × P + R
, (28)

where β2 = 0.3.
MAE (mean absolute error). MAE is the direct calculation of the average absolute error

between the salience map and the ground truth of the model output. It first binarizes them
and then calculates them with the following formula:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)| (29)

where W is the width of the salient map S and the ground truth map G; H is the height of
the salient map S and the ground truth map G.

6.3. Comparison Results

We compared our model with eight methods including BR [40], CA [41], MCI [42], NFI [43],
SS-KDE [44], GMR [20], GR [45], and MTMR [26] on the RGBT-Saliency dataset.

We generated PR curves for 11 challenging subsets and the entire dataset, and listed
their F values. The eleven subsets are eleven different challenges, which are: big salient
object (BSO), bad weather (BW), center bias (CB), cross image boundary (CIB), image
clutter (IC), low illumination (LI), multiple salient objects (MSO), out of focus (OF), similar
appearance (SA), small salient object (SSO), and thermal crossover (TC). In Table 1, we
describe in detail the division method of the eleven subsets [26].

http://chenglongli.cn/people/lcl/ journals.html
http://chenglongli.cn/people/lcl/ journals.html
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Table 1. List of the 11 challenging subsets of RGBT-Saliency-Dataset.

Challenge Description

BSO The radio of ground truth salient objects over the image is more than 0.26.
BW The image pairs are recorded in bad weather, such as snowy, rainy, hazy, or

cloudy weather.
CB The centers of salient objects are far away from the image center.
CIB The salient objects cross the image boundaries.
IC The image is cluttered.
LI The environmental illumination is low.
MSO The number of the salient objects in the image is more than one.
OF The image is out of focus.
SA The salient objects have similar color or shape to the background.
SSO The radio of ground truth salient objects over the image is less the 0.05.
TC The salient objects have similar temperature to the background.

As can be seen from Figure 3, only in the “BSO” and “CIB” subsets was our F-Measures
slightly lower than the best detection result, and they were the best in the other nine subsets.
Especially in the CB subset, the detection result has obvious advantages. Our detection
curve has no crossover with other curves.
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Figure 3. PR curves of the proposed approach with other baseline methods with RGB-T input on
eleven subsets and the entire dataset. The F0.3 values are shown in the legend.

The comparison results of the precision, recall, and F-measure values with other
methods in different modalities as shown in Table 2. We only provide the detection results
of MTMR [26] after multi-modality fusion because this model proposes to integrate multi-
modal information and use multi-modal adaptive weights to detect image saliency objects.
From the Table 2, we can see that the proposed algorithm is better than other methods in
terms of P value and the comprehensive measure F-measure.
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Table 2. Average precision (P), recall (R), F-measure (F) and mean absolute error (MAE) of our method
against different kinds of methods on the RGBT-Saliency dataset. In the evaluation parameters,
the larger the value of P, R, and F, the better the detection effect, while the smaller the value of MAE,
the better the effect. The red font indicates the best performance. The green is second best.

Algorithm RGB (P↑, R↑, F↑, MAE↓) Thermal (P↑, R↑, F↑, MAE↓) RGB-T (P↑, R↑, F↑, MAE↓)

BR [40] 0.724, 0.260, 0.411, 0.269 0.648, 0.413, 0.488, 0.323 0.804, 0.366, 0.520, 0.297
CA [41] 0.592, 0.667, 0.568, 0.163 0.623, 0.607, 0.573, 0.225 0.648, 0.697, 0.618, 0.195

MCI [42] 0.526, 0.604, 0.485, 0.211 0.445, 0.585, 0.435, 0.176 0.547, 0.652, 0.515, 0.195
NFI [43] 0.557, 0.639, 0.532, 0.126 0.581, 0.599, 0.541, 0.124 0.564, 0.665, 0.544, 0.125

SS-KDE [44] 0.581, 0.554, 0.532, 0.122 0.510, 0.635, 0.497, 0.132 0.528, 0.656, 0.515, 0.127
GMR [20] 0.644, 0.603, 0.587, 0.172 0.700, 0.574, 0.603, 0.232 0.694, 0.624, 0.615, 0.202
GR [45] 0.621, 0.582, 0.534, 0.197 0.639, 0.544, 0.545, 0.199 0.705, 0.593, 0.600, 0.199

MTMR [26] -, -, -, - -, -, -, - 0.716, 0.713, 0.680, 0.107
ours 0.697, 0.536, 0.603, 0.107 0.715, 0.569, 0.629, 0.112 0.804, 0.627, 0.716, 0.095

Sample Results. From the dataset, we extracted four photos with various challenges as
the data source and compared the detection results of our algorithm with other algorithms
for salient detection. It can be seen from the Figure 4 that our algorithm has a very robust
detection effectiveness in challenging scenes such as fuzzy images, large targets, small
targets, complex background, and center bias.

Figure 4. Sample results of the proposed approach and other baseline methods with the fusion of
RGB and thermal inputs. (a) The first two columns are the origin RGB images and thermal images.
(b–i) The results of the baseline methods with RGB and thermal inputs; (j) the result of our approach.
(k) ground truth.

Runtime Results. All results were obtained on a Windows 10 64-bit operating system
running Matlab 2014b with an i3 3.3G CPU and 4GB RAM. We compared the average
running time with other algorithms in Table 3. Compared with the algorithm in [20], we
spent more time mainly on the learning of the adaptive graph.

Table 3. Average runtime comparison on the RGBT-Saliency dataset.

Method BR [40] CA [41] MCI [42] NFI [43] SS-KDE [44] GMR [20] GR [45] MTMR [26] Ours

Runtime(s) 21.95 3.13 58.37 33.16 2.51 2.96 6.48 3.71 5.18

6.4. Analysis of Our Approach

In our method, we compared the following four combinations of image salient de-
tection results: (1) learning static-adaptive graphs for RGB image salient detection, called
our1; (2) learning static-adaptive graph for thermal image salient detection, called our2;
(3) not learning static-adaptive graphs and only fusing RGB and thermal image to detect the
salient, called our3; (4) learning static-adaptive graphs for RGB-T image salient detection,
called our4. It can be seen from Figure 5 that the fusion of multi-modality and the use of
learning static-adaptive graphs are both effective methods to improve the salient detection.
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Figure 5. PR curves of our approach with its variants on the entire dataset.

Advantages. We fused thermal and RGB images for image salient detection, which can
overcome the limitations of light, ambient temperature, background clutter, and color simi-
larity in single mode. By learning the static-adaptive method, we not only retained the local
features of superpixels, but also learned to mine their internal relations to obtain a better
affinity matrix of superpixels and greatly improve the detection accuracy of image saliency.

Limitations. Through the experiment, we found that under complex scenes, multi-
modality fusion can effectively improve the image in general. However, in some cases,
the single-modality has better detection accuracy. Our future work will set the modality
weight according to the image characteristics and further improve the detection effect of
image saliency in complex scenes.

7. Conclusions

In this paper, we combine RGB-thermal modality information for image salient de-
tection, which effectively improves the detection performance of single-modality RGB
images under poor illumination and when the background and foreground colors are
similar. At the same time, our method improves the detection accuracy of thermal images
under normal lighting conditions, especially in the case of small temperature differences
between the environment and the target. The image is dynamically learned, taking both
global and local cues into account, and thus our method is capable of capturing the intrinsic
relationship of superpixels. In the future, we will assign different weights to different
modality images according to the characteristics of different modality images.
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