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Abstract: As more and more power information systems are gradually deployed to cloud servers, the
task scheduling of a secure cloud is facing challenges. Optimizing the scheduling strategy only from
a single aspect cannot meet the needs of power business. At the same time, the power information
system deployed on the security cloud will face different types of business traffic, and each business
traffic has different risk levels. However, the existing research has not conducted in-depth research on
this aspect, so it is difficult to obtain the optimal scheduling scheme. To solve the above problems, we
first build a security cloud task-scheduling model combined with the power information system, and
then we define the risk level of business traffic and the objective function of task scheduling. Based
on the above, we propose a multi-objective optimization task-scheduling algorithm based on artificial
fish swarm algorithm (MOOAFSA). MOOAFSA initializes the fish population through chaotic
mapping, which improves the global optimization capability. Moreover, MOOAFSA uses a dynamic
step size and field of view, as well as the introduction of adaptive weight factor, which accelerates
the convergence and improves optimization accuracy. Finally, MOOAFSA applies crossovers and
mutations, which make it easier to jump out of a local optimum. The experimental results show
that compared with ant colony (ACO), particle swarm optimization (PSO) and artificial fish swarm
algorithm (AFSA), MOOAFSA not only significantly accelerates the convergence speed but also
reduces the task-completion time, load balancing and execution cost by 15.62–28.69%, 66.91–75.62%
and 32.37–41.31%, respectively.

Keywords: secure cloud; cloud computing; task scheduling; multi-objective optimization; load balance

1. Introduction

With the development of parallel computing, grid computing and distributed comput-
ing technologies, cloud computing can provide users with convenient access and flexible
resource extension services, so it has been widely used. As an important branch of cloud
computing, security cloud is a cloud that provides security protection. The security cloud
uses the cloud computing technology to create and integrate security infrastructure re-
sources and optimize security protection mechanisms to provide customers with overall
security services.

In recent years, with the in-depth development of power informatization, more and
more power applications and tasks are deployed in the cloud [1]. On the premise of
protecting the power information system and preventing data leakage, the security cloud
can continuously provide visual and highly reliable security services as needed, including
firewall, intrusion detection, intrusion prevention and other security services. With more
and more power business deployed to the security cloud, the task scheduling of the security
cloud is facing challenges. In a secure cloud, task scheduling is a combinatorial optimization
problem. The task schedule affects the efficiency of the whole secure cloud facility and
plays a key role in improving the service quality of power business. The task-scheduling
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process in the security cloud is as follows. Firstly, the service traffic submitted by users
is detected by the service traffic management module (The service traffic management
module contains virtual security component resources, such as abnormal traffic detection),
and abnormal traffic is separated out. Secondly, through the scheduling center module, the
separated abnormal traffic is allocated to the corresponding virtual security component
resources (VSCRs) in the security component resource pool. This process creates a mapping
between the abnormal traffic and the VSCRs. The task-scheduling strategy adopted directly
affects user satisfaction and the efficiency of task processing by the VSCRs. A good task-
scheduling strategy can effectively reduce the task completion time and, thus, improve
the real-time effectiveness of power information system network security. In addition,
it can improve the utilization rate of virtual security components and reduce operating
costs. Therefore, meeting the complex task-scheduling requirements under a variety of
constraints is key to ensuring cloud security.

Because task scheduling for a secure cloud is an NP problem [2], it is not feasible
to calculate all possible task-scheduling policies and select the best one. The complexity
of this approach increases exponentially with the number of tasks and the number of
virtual security resources. A heuristic algorithm can obtain a suboptimal solution that is
infinitesimally close to the optimal solution through improvement and iteration. Therefore,
a heuristic algorithm is one of the better methods for this type of problem [3].

In recent years, the artificial fish swarm algorithm [4] (AFSA) has been more and
more widely used in path planning [5], parameter optimization for a proportional–integral–
derivative controller [6], and optimization of the multi-stage ladder logistics in a transporta-
tion system [7]. AFSA has the advantages of fast convergence, good robustness, parallel
processing, and global optimization. It was a breakthrough in combinatorial optimization.
Scheduling tasks in a secure cloud is a combinatorial optimization problem, and all the
virtual security resource nodes run in parallel. Therefore, AFSA has good advantages in
constructing a task-scheduling and allocation strategy for a secure cloud.

In this paper, our main contributions of this work are as follows:

• We build a secure cloud task-scheduling model that combined with the power infor-
mation system, which defines the relevant attributes of the scheduling model, the risk
level of business traffic and the objective function of task scheduling.

• We combine the AFSA with the secure cloud task-scheduling model and propose
a Multi-objective optimal scheduling algorithm MOOAFSA. During algorithm opti-
mization, multi-objective optimization is carried out with execution time, cost and
load balance as evaluation indexes so as to obtain the relatively optimal secure cloud
task-scheduling strategy under current conditions.

• At the same time, we test some classical heuristic algorithms to build task-scheduling
strategies in a secure cloud environment, evaluating our proposed strategy model in
terms of convergence speed, task completion time, execution cost, and load balancing.

In summary, this paper proposes a multi-objective optimization task-scheduling algo-
rithm for a secure cloud, and it uses AFSA to construct a task-scheduling strategy for the
secure cloud environment. The rest of the paper is organized as follows. Section 2 discusses
related works, Section 3 describes the scheduling model, Section 4 describes the proposed
algorithms, Section 5 validates the model, and Section 6 concludes the paper.

2. Related Work

Secure clouds are an important part of cloud computing, and the task-scheduling
policies adopted for a cloud environment can also be applied to a secure cloud. Table 1
shows the related works regarding the task-scheduling problems.
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Table 1. Related works regarding task scheduling.

Reference Year Algorithm Indicator Advantage

[8] 2017 AMS Makespan
Load balancing

AWS can obtain good task completion time and
achieve load balancing in cloud computing network.

[9] 2017 SLA-MCT
SLA-Min-Min

Makespan
Resource Utilization

Cost

The proposed algorithm achieves a proper balance
between manufacturing time and service gain cost.

[10] 2019 Decima Makespan

Decima can help improve resource utilization by
automatically learning highly efficient,

workload-specific scheduling policies. Decima’s
policies are particularly effective during periods of

high cluster load.

[11] 2019 LB-RC
Makespan

Execution cost
Load balancing

LB-RC algorithm can reduce the execution time and
completion time of tasks while meeting deadlines,

and maintain the load balance of resources.

[12] 2020 Gavel

Makespan
Throughput

Average job completion time
Fairness

Gavel uses a decoupled round-based scheduling
mechanism to ensure that the computed optimal

allocation is realized. Gavel’s heterogeneity-aware
policies improve end objectives both on a physical

and simulated cluster.

[13] 2020 QEEC Average response time
Energy consumption

Maximizing the service capability of each virtual
machine can effectively reduce the energy
consumption in the cloud environment.

[14] 2020 FIMPSO

Makespan
Load balancing

Throughput
Resource Utilization

FIMPSO achieved effective average load for making
and enhanced the essential measures like proper

resource usage and response time of the tasks.

[15] 2020 LABC
Makespan

Fitness value
Average calculation time

LABC algorithm has strong development ability and
local search ability.

[16] 2020 HYBRID
Bio-Inspired

Makespan
Load balancing
Response time

Resource Utilization

HYBRID Bio-Inspired algorithm realizes resource
load balancing, reduces execution time and improves

resource utilization.

[17] 2021 TVW-RL
Resource Utilization

Resource Fragmentation
Resource Overshoot

TVW-RL improves resource utilization, reduces
resource fragments and the number of

machines used.

[18] 2021 HADS Monetary costs
HADS can minimize the monetary costs of

bag-of-tasks, respecting the application’s deadline
and avoiding temporal failures.

[19] 2021 MALO
Makespan

Load balancing
Response time

For large search space, MALO has faster convergence
speed and is suitable for large-scale

scheduling problems.

In order to deal with massive tasks, reasonably allocate tasks to the server in the
shortest completion time and realize the load balance of the server, Chiang et al. [8]
proposed a novel dispatching algorithm, called Advanced MaxSufferage algorithm (AMS),
which can improve the dispatching efficiency in the cloud computing network.

Aiming at heterogeneous multi-cloud environment, Panda et al. [9] proposed two
task-scheduling algorithms based on general SLA: service-level agreement-minimum com-
pletion time (SLA-MCT) and service-level agreement-min-min (SLA-Min-Min). The pro-
posed algorithms support three levels of SLA determined by the customers and achieve an
appropriate balance between manufacturing time and service gain cost.

Mao et al. [10] proposed Decima, a general-purpose scheduling service for data pro-
cessing jobs with dependent stages. Decima learns scheduling policies through experience
using modern reinforcement learning (RL) and neural network. The experimental results
show that Decima improves average job completion time by at least 21% over hand-tuned
scheduling heuristics, achieving up to 2× improvement during periods of high cluster load.
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To improve server load balancing, Adhikari et al. [11] propose a new load balancing
mechanism for a long-term process referred as load balancing resource clustering (LB-RC).
The meta-heuristic Bat-algorithm is applied to obtain optimal resource clustering and their
cluster centers for faster convergence. They also propose a new dynamic task assignment
policy to achieve the minimum makespan and execution cost within the given constraints.

Narayanan et al. [12] proposed Gavel, a new cluster scheduler designed for DNN
training in both on-premise and cloud deployments, that effectively incorporates hetero-
geneity in both hardware accelerators and workloads to generalize a wide range of existing
scheduling policies. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to
sustain higher input load, and improve end objectives such as makespan and average job
completion time by 1.4× and 3.5× compared to heterogeneity-agnostic policies.

In Ref. [13], a Q-learning-based task-scheduling system for energy-proficient cloud
computing (QEEC) is proposed to handle the issue of energy utilization in both scheduling
and assignment planning. It was shown that the applying of M/M/S lining model can
yield a more limited errand reaction time, which prompts improved energy effectiveness.

Devaraj et al. [14] proposed a new load balancing algorithm, which is a hybrid of
firefly and Improved Multi-Objective Particle Swarm Optimization (FIMPSO) technique.
FIMPSO algorithm achieved an effective average load for making and enhanced the essen-
tial measures like proper resource usage and response time of the tasks.

In order to solve the flexible task-scheduling problem in the cloud system, Li and
Han [15] proposed a new task-scheduling algorithm (LABC) based on the artificial bee
colony technique. The LABC algorithm defines three types of artificial bees (i.e., the
employed bee, the onlooker bee, and the scout bee). Then, it models each solution as an
integer string. In addition, various types of perturbation structures are considered during
the task-scheduling problem to balance the exploitation and exploration ability.

Domanal et al. [16] proposed a novel HYBRID Bio-Inspired algorithm for task schedul-
ing and resource management. The algorithm is a combination of improved particle
swarm optimization algorithm and improved cat swarm optimization algorithm, which
can effectively allocate cloud resources to perform customer tasks.

Mondal et al. [17] proposed time-varying-workload-Reinforcement Learning (TVW-
RL), which is a Deep Reinforcement Learning (DRL)-based approach. TVW-RL exploit
various temporal resource usage patterns of time-varying workloads as well as a technique
for creating equivalence classes among a large number of production workloads to improve
scalability of the method. The experimental results show that TVW-RL can significantly
improve metrics for operational excellence for a cluster compared to the baselines.

Teylo et al. [18] proposed the Hibernation-Aware Dynamic Scheduler (HADS) that
schedules Bag-of-Tasks (BoT) applications with deadline constraints in both hibernation
prone spots VMs and on-demand VMs. HADS aims at minimizing the monetary costs of
executing BoT applications on clouds ensuring that their deadlines are respected even in
the presence of multiple hibernations.

Abualigah et al. [19] introduced a novel antlion algorithm (MALO) for taking care of
multi-objective task-scheduling issues in cloud computing conditions. In the proposed tech-
nique, the multi-target nature of the issue goes from the same time limit as the makespan
while boosting asset use. The proposed algorithm was upgraded by using elite-based
differential advancement as a neighborhood search strategy to improve its misuse capacity
and to try not to become caught in nearby optima.

To sum up, it can be found that the existing research has made great progress in the
task scheduling of cloud computing, especially in the optimization of important indicators
such as task completion time, execution cost, and load balancing. However, the power
information system deployed on the secure cloud will face different types of business
traffic, and each business traffic has different risk levels. The above research work has not
conducted in-depth research on this. Therefore, we built a secure cloud task-scheduling
model that combined with the power information system, which defines the risk level of
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business traffic and the objective function of task scheduling. On this basis, we use the
MOOAFSA to achieve task scheduling on the secure cloud.

3. Scheduling Models

In this paper, combined with the power information system, we build a task-scheduling
model for a secure cloud, as shown in Figure 1. In this scheduling model, the service traffic
management module receives service traffic tasks (STTs) submitted by users and classifies
and detects them. It separates the abnormal STTs and forwards it to the scheduling center
along with the parameters. Then the traffic information system determines the type and
demand of the STTs and produces a scheduling scheme sets. Next, the multi-objective
optimization process is run for scheduling scheme sets, which are then sent to the schedule
evaluation module. The optimal schedule scheme is selected according to the evaluation
metrics. Finally, each STT is allocated to the VSCRs in each security component resource
pool according to the optimal schedule scheme. The security component resource pool
contains security component services such as Intrusion Detection System (IDS) [20] and
Penetration Test [21].
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Figure 1. STT scheduling model for a secure cloud.

3.1. Model Definition

The STT scheduling model in the secure cloud environment is defined as follows.
Table 2 describes the abbreviations used for each model definition.

Definition 1. Power information system will face different types of abnormal STTs. According to
Ref. [22], we divide these abnormal STTs into the following four types of network attacks. As shown
in Table 3.
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Table 2. Description of acronyms used in the proposed model definition.

Symbol Description Symbol Description

flength The length of the STT f f ileSize The size of the STT before execution
foutputSize The size of the STT after execution ftype The type of the STT

flevel The risk level of the STT rmips The computing capacity of the VSCR
rbw The bandwidth of the VSCR rram The running memory of the VSCR

rpesNumber The number of CPUs of the VSCR rsize The storage size of the VSCR

exeij
Time consumed by VSCR rj to

execute STT fi
sij

Assignment relation between STT fi and
VSCR rj

transij Transfer time of STT fi on VSCR rj cij
Time consumed by VSCR rj to complete

STT fi
rUnitMipsCost Unit computation cost rUnitBwCost Unit bandwidth cost
rUnitRamCost Unit memory cost rUnitSizeCost Unit storage cost
rPer f ormancej Performance of VSCR rj rLoadj Load on VSCR rj

avgLoad Average load on all VSCRs loadEvaluation System load evaluation metrics
rtype The category of the VSCR

Table 3. Attack type of abnormal STTs.

Type Harm

Traditional network attacks [22]

For example, distributed denial of service attack (DDoS). It can make use of some
defects of network protocol and operating system to carry out network attack, fill the
server with a large number of information to be replied, consume network bandwidth
or system resources, and cause the network or system to be overloaded and paralyzed

to stop providing normal network services.

Invisible penetration and scanning [22]

This kind of attack means that the attacker initiates an intrusion from outside the
target network in order to steal or destroy important assets in the target network.

During this period, the attacker continues to use several vulnerabilities in the target
network to invade and finally complete a series of attacks on the target.

Hide disguised communications [22]

It is a kind of antagonism network attack, using the hidden means of invasion, and its
network communication is disguised as or concealed in the normal legal network data
flow to avoid terminal level and network level of safety inspection in order to reside

for a long time and can control the victim host or device, achieve the goal of
continuing to steal information or long-term control using.

Attack aimed at application layer
vulnerabilities [22]

Hackers send disguised data requests to users for loopholes in the application layer so
as to achieve the purpose of illegal data theft, illegal data tampering, system paralysis

and other attacks.

To sum up, we define the flevel as follows: The risk level is divided into four levels.
Level 1 Risk: Abnormal STTs contains one of the attack types listed in Table 3. Level 2 Risk:
Abnormal STTs contains both of the attack types listed in Table 3. Level 3 Risk: Abnormal
STTs contains three of the attack types listed in Table 3. Level 4 Risk: Abnormal STTs
contains all of the attack types listed in Table 3 at once. Note: the risk level of normal STTs
is 0.

Definition 2. Set of STTs F = { f1, f2, . . . , fi, . . . , fm}, where fi is the ith STT, i ∈
{1, 2, 3, . . . , m} and m is the number of STTs. The attributes are as follows: fi = { flength, f f ileSize,
foutputSize, ftype, flevel}.

Definition 3. Set of VSCRs R = {r1 , r2, . . . , ri, . . . , rn}, where ri is the ith VSCR, i ∈
{1, 2, 3, . . . , n} and n is the number of VSCRs. The attributes are as follows: ri = {rmips, rbw, rram,
rpesNumber, rsize, rtype}.

Definition 4. The execution time of a STT on a VSCR is
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exeij =


fi−length

rj−mips×rj−pesNumber
× sij, VSCR is abnormal f low detection

fi−length
rj−mips×rj−pesNumber

× sij × flevel , Others
(1)

Thus, the execution time is related not only to the length of the STT but also to the risk level of
the STT.

Definition 5. The transmission time of a STT on a VSCR is

transij =
fi− f ileSize + fi−outputSize

rj−bw
× sij (2)

Definition 6. The time consumed by a VSCR to process a STT is the sum of the transfer time and
execution time:

c ij = exeij + transij (3)

Definition 7. In power business, the VSCR can only process one STT at a time, and only after the
current STT is finished can the next STT be processed. So multiple STTs assigned to VSCRs are
processed serially, the completion time of a single VSCR is

rCompletej =
m

∑
i=1

cij (4)

Multiple VSCRs run in parallel, and the STT completion time is

totalTime = max
(
rCompletej

)
(5)

Definition 8. The processing cost of a STT includes the sum of computing cost, bandwidth cost,
memory cost (n power business, the memory size is the peak memory during the run), and storage
cost on the VSCR. A secure cloud environment is heterogenous, so the VSCRs have different levels
of performance. Therefore, unit costs are used. The total cost is

totalCost =
m

∑
i=1

n

∑
j=1

(
exeCostij + transCostij + ramCostij + sizeCostij

)
(6)

where
exeCostij = exeij × rj−mips × rj−pesNumber × rUnitMipsCost (7)

transCostij = transij × rj−bw × rUnitBwCost (8)

ramCostij = cij × rj−ram × rUnitRamCost (9)

sizeCostij = cij × rj−size × rUnitSizeCost (10)

Definition 9. The load on a VSCR takes into account not only the length of the STTs assigned to it
but also its performance level. The load on a VSCR is expressed as follows:

rLoadj =
∑m

i=1 fi × sij

rPer f ormancej
=

∑m
i=1 fi × sij

η1 × rj−mips × rj−pesNumber + η2 × rj−bw
(11)

where η1 and η2 are the weight coefficients of the computing capacity and bandwidth of the VSCRs,
respectively. Thus, the average load is

avgLoad =
1
n

n

∑
j=1

rLoadj (12)
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The metric for the load balance is then

loadEvaluation =

√
1
n

n

∑
i=1

(
rLoadj − avgLoad

)2 (13)

A smaller loadEvaluation indicates that the overall load is better balanced over the VSCRs.

3.2. Objective Function

The metrics used to evaluate a schedule are the STT completion time, cost, and load
balance. They have different numbers of dimensions and different units so that they can be
compared to each other. They are normalized:

fload =
loadEvaluation

max
(
rLoadj − avgLoad

) (14)

fcost =
totalCost− totalCostmin

totalCostmax − totalCostmin
(15)

fload =
loadEvaluation

max
(
rLoadj − avgLoad

) (16)

The methods most commonly used to transform multiple objectives into a single
objective are linear weighting, constraints, and linear programming. Considering the
heterogeneity and dynamics of a secure cloud environment, a linear strategy is used to
allocate the weights of the three metrics dynamically:

F = λ1 × ftime + λ2 × fcost + λ3 × fload
λ1 + λ2 + λ3 = 1

λ1 = 0.5× itermax−itercur
itermax

+ 0.4
λ2 = λ3 = 0.5× (1− λ1)

(17)

where λ1, λ2, and λ3 are the preference degree of the algorithm to STT completion time,
execution cost, and load balancing, respectively. itermax and itercur are the maximum
iteration time and current iteration time for the artificial fish swarm, respectively. The
smaller the value of the target function F, the more reasonable the allocation scheme is.

4. Proposed Algorithms

AFSA is an optimization algorithm based on the self-organizing behavior of animals
or swarm intelligence. Inspired by the collective behavior of fish, it was proposed by Dr.
Xiaolei Li [4]. The characteristics of the two main parameters of the algorithm are listed in
Table 4. The algorithm was improved by combining it with the STT scheduling model for a
secure cloud. Moreover, the algorithm was enhanced to minimize the value of the target
function F.
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Table 4. Main parameter characteristics of AFSA.

Parameter Value Advantages Disadvantages

Step size Too high There are fewer iterations and
convergence is faster.

Optimization accuracy is not high, and
oscillations can occur outside a certain range (the

number of iterations increases, and the
convergence is slower).

Too low Optimization accuracy is improved. There are more iterations, convergence is slow,
and it may easily fall into a local optimum.

Field of view Too wide Global search capability is enhanced
and the convergence is faster. Optimization accuracy is low.

Too narrow Local search ability is enhanced and
optimization accuracy is improved. Convergence is slow.

4.1. Enhanced Chaotic Tent Mapping

AFSA often uses randomly generated data for its initial population when solving
optimization problems. This can lead to an uneven population distribution. It can be
difficult to retain the diversity of the population, and it easily falls into a local optimum.
Thus, the search result of the algorithm is poor. Therefore, we introduced a chaotic mapping
mechanism when initializing each artificial fish.

Chaos is common in nonlinear systems, and a chaotic variable has the characteristics of
randomness, ergodicity, and regularity within a certain range [23]. According to previous
studies, tent mapping can perform better than other mappings [24]. Therefore, due to the
characteristics of AFSA, a tent map with good ergodicity and fast convergence was adopted
in this paper to generate chaotic sequences. It is expressed as follows:

xl+1 =

{
2xl , 0 ≤ xl < 0.5
2(1− xl), 0.5 ≤ xl ≤ 1

(18)

The expression for a chaotic tent map after a Bernoulli shift transformation is

xl+1 = (2xl) mod 1 (19)

In a chaotic tent sequence, there are small periods and unstable periodic points. To
avoid a chaotic tent sequence falling into small periodic points or unstable periodic points
during an iteration, a random variable is introduced into the original chaotic tent map:

xl+1 =

{
2xl + rand(0, 1)× 1

N , 0 ≤ xl < 0.5
2(1− xl) + rand(0, 1)× 1

N , 0.5 ≤ xl ≤ 1
(20)

Then, after the transformation, Equation (19) is expressed as follows:

xl+1 = (2xl) mod 1 + rand(0, 1)× 1
N

(21)

where N is the number of artificial fish. The introduction of random variables not only
keeps the randomness, ergodicity, and regularity of the chaotic tent map but can also
effectively avoid an iteration falling into small periodic points and unstable periodic points.

Based on the above enhanced tent mapping, the features of an AFSA in a secure cloud
environment are added so that Equation (21) is adjusted as follows:

si+1
j = (2si

j) mod 1 + rand(0, 1)× 1
N

(22)

where i is the serial number of the artificial fish and j is the serial number of the STTs.
The specific steps for initializing an artificial fish swarm using a tent mapping are in

the Algorithm 1:
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Algorithm 1. Enhanced chaotic mapping initializes artificial fish

Input: an m-dimensional vector, si =
(

si
1, si

2, . . . , si
m

)
.

Output: the initial population X.
Process:

Step 1: Iterate si according to Equation (22) to generate a chaotic sequence S.
Step 2: Map chaotic components in chaotic sequence S back to the original space:

xi
j = aj + si

j ×
(

bj − aj

)
(23)

where aj and bj are the value range of the jth dimension variable, that is, the range
of the VSCRs.
Step 3: From these chaotic sequences, the initial population X mapped by si through the tent
can be obtained.

4.2. Enhanced Step Size and View

According to the analysis in Table 2, the artificial fish should have a large field of view
and step length in the early iterations so that the algorithm converges fast and can jump
out of a local optimum. In the later stages, the artificial fish should have a smaller field
of view and step size so that the algorithm can search more precisely and to improve the
overall accuracy. Therefore, the field of view and step size in AFSA have similar trends.
Thus, adopting a dynamic step size and field of view is best for searching:

Stepd = Step× Sigmoidd (24)

Viewd = View× Sigmoidd (25)

where Step is the step length and View is the visual field of the artificial fish. Here, we used
a deformed sigmoid function:

Sigmoidd =
1

4√2−3

(
2− 2

1 + e−iter+itermax

) 1
4

(26)

where iter is the current iteration number and itermax is the maximum number of iterations.
In this paper, we set itermax = 100. The deformed sigmoid function is shown in Figure 2.

Information 2022, 13, x FOR PEER REVIEW 11 of 25 
 

 

Algorithm 1. Enhanced chaotic mapping initializes artificial fish  
Input: an m-dimensional vector, 𝑠 = 𝑠 , 𝑠 , . . . , 𝑠 . 
Output: the initial population 𝑋. 
Process: 

Step 1: Iterate 𝑠  according to Equation (22) to generate a chaotic sequence 𝑆. 
Step 2: Map chaotic components in chaotic sequence 𝑆 back to the original  

space: 𝑥 = 𝑎 + 𝑠 × 𝑏 − 𝑎  (23) 
where 𝑎  and 𝑏  are the value range of the 𝑗th dimension variable, that 
is, the range of the VSCRs. 

Step 3: From these chaotic sequences, the initial population 𝑋 mapped by 𝑠   
 through the tent can be obtained. 

4.2. Enhanced Step Size and View 
According to the analysis in Table 2, the artificial fish should have a large field of 

view and step length in the early iterations so that the algorithm converges fast and can 
jump out of a local optimum. In the later stages, the artificial fish should have a smaller 
field of view and step size so that the algorithm can search more precisely and to improve 
the overall accuracy. Therefore, the field of view and step size in AFSA have similar 
trends. Thus, adopting a dynamic step size and field of view is best for searching: 𝑆𝑡𝑒𝑝 = 𝑆𝑡𝑒𝑝 × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑  (24)𝑉𝑖𝑒𝑤 = 𝑉𝑖𝑒𝑤 × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑  (25)

where 𝑆𝑡𝑒𝑝 is the step length and 𝑉𝑖𝑒𝑤 is the visual field of the artificial fish. Here, we 
used a deformed sigmoid function: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =  1√2 2 − 21 + 𝑒    (26)

where 𝑖𝑡𝑒𝑟 is the current iteration number and 𝑖𝑡𝑒𝑟  is the maximum number of itera-
tions. In this paper, we set 𝑖𝑡𝑒𝑟  = 100. The deformed sigmoid function is shown in 
Figure 2. 

 
Figure 2. Deformed sigmoid function (𝑖𝑡𝑒𝑟  = 100). Figure 2. Deformed sigmoid function (itermax = 100).



Information 2022, 13, 92 11 of 23

In the initial stages, the artificial fish’s field of view and step size are larger, which is
conducive to speeding up the convergence and jumping out of a local optimum. The initial
decay rate of the deformed sigmoid function is relatively slow, so the artificial fish has
enough time to identify the optimal space with its larger field of view and can jump out of
a local optimum to the global optimum with its larger step size. In the later stages, the field
of view and step size are smaller, but the artificial fish has enough time for a refined search
in the neighborhood of the global optimum to improve the accuracy of the solution found.

4.3. Adaptive Weight Factor

As can be seen from Section 4.2, the artificial fish can use a dynamic step size and
field of view, which improves the convergence speed and optimization accuracy of the
algorithm. However, when the artificial fish is moving from one local optimum, it may
reach another local optimum beyond the global optimum because the dynamic step size
cannot be adjusted according to the real-time artificial fish state. Alternatively, it may linger
near the global optimum and converge to the global optimum only when the step size
is small enough, which reduces the convergence speed. Thus, we propose an adaptive
weight factor:

µ =

∣∣∣∣∣1− F
(
Xj
)

F(Xi)

∣∣∣∣∣ (27)

For an artificial fish with current state Xi =
(

xi
1, xi

2, . . . , xi
n
)
, it explores the next state

Xj =
(

xj
1, xj

2, . . . , xj
n

)
where

xj
k = xi

k + Viewd, k = 1, 2, . . . , n (28)

Xnext = µ×
Xj − Xi

‖ Xj − Xi ‖
× Stepd (29)

When the artificial fish moves from state Xi to state Xj, if F(Xi) � F
(
Xj
)
, then the

current position of the artificial fish is far from the global optimum, so the step size needs
to be as large as possible to accelerate the convergence. Moreover, if F(Xi) is close to F

(
Xj
)
,

then the artificial fish is currently in a good neighborhood. Therefore, a smaller step size
is better for refining the search to adjacent areas, which can improve the optimization
accuracy of the algorithm.

4.4. Crossover and Mutation

Because AFSA may easily fall into a local optimum in the late stages, a crossover
or mutation is applied. This approach gives it a stronger ability to jump out of a local
optimum, thus improving the possibility of reaching the global optimum.

The prerequisites for performing crossover and mutation operations are as follows.
Set a threshold t. If the current optimum does not change after t successive iterations,
crossover and mutation operations will be carried out. Algorithm 2 is the specific step of
crossover operation. Algorithm 3 is the specific step of mutation operation. Figure 3 is
a schematic diagram of the crossover operation. Figure 4 is a schematic diagram of the
mutation operation.

Crossover operation swaps components in one state Xi =
(
xi

1, xi
2, . . . , xi

n
)

with those

in another state Xj = (xj
1, xj

2, . . . , xj
n):

Cross
(
Xi, Xj, p

)
=

{
Xnew1 : (xi

1, xi
2, . . . , xi

p, xj
p+1, . . . , xj

n)

Xnew2 : (xj
1, xj

2, . . . , xj
p, xi

p+1, . . . , xi
n)

, p = Rand(m) (30)

Mutation operation: This randomly changes a value in the state Xi =
(
xi

1, xi
2, . . . , xi

n
)
:

Mutation(Xi, p, q) =
(

si
1, si

2, . . . , si
p−1, q, si

p+1, . . . , si
n

)
, p = Rand(m), q

= Rand(n)
(31)
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Algorithm 2. Crossover operation

Input: the current population X and p.
Output: the new population X1.
Process:

Step 1: All the solution sets X for the current iteration are sorted from best (Xbest to worst
Xworst). The second best is a suboptimal solution (XsubBest).
Step 2: The optimal solution Xbest and the suboptimal solution XsubBest are crossed with
each other to generate new states Xnew1 and Xnew2.
Step 3: Calculate F(Xnew1) and (Xnew2) Then F(Xnew) is the minimum of both.
Step 4: If F(Xnew) < F(Xworst), add the state Xnew to the solution set and remove the state
Xworst.
Step 5: Otherwise, the solution set remains the same.
Step 6: Output the new population X1
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Algorithm 3. Mutation operation

Input: the new population X1, p and q.
Output: the new population X2.
Process:

Step 1: Obtain the current optimal solution Xbest from population X1
Step 2: The Mutation(Xbest, p, q) is mutated to generate a new state Xnew.
Step 3: If F(Xnew) < F(Xworst), the new state Xnew is added to the solution set and the
worst state Xworst is deleted.
Step 4: Otherwise, the solution set remains the same.
Step 5: Output the new population X2

4.5. Coding

Coding is used to map a problem into a model, as this can be more convenient and
intuitive for finding a solution. In the design of AFSA, the selection of appropriate code
directly affects the convergence speed and optimization accuracy of the algorithm.

At present, common coding methods include group coding, binary coding, and multi-
value coding. For the STT scheduling problem in a secure cloud environment described in
this paper, the group coding method can use multiple codes to represent the same allocation
scheme, which is obviously not conducive for optimizing the search. In contrast, although the
binary encoding method is unique, it is not conducive for visually displaying the allocation
results. Moreover, suppose that the number of STTs is m and the number of VSCRs is n,
then the search space for binary encoding is 2n×m, while the search space for multi-value
encoding is nm, which leads to a significantly better search efficiency. Moreover, the decoding
of a multi-value encoding is simple, and the possibility of producing illegal solutions (a
distribution scheme that is not unique) is eliminated when the artificial fish swims. Therefore,
in this paper, we adopt multi-value coding for STT scheduling in a secure cloud environment.

Assume that the task-scheduling problem has m STTs and n VSCRs. It uses an
assignment array, Distribution[m] = (x1, x2, . . . , xm), where xi is the ith assignment
(i = 1, 2, . . . , m). For example, Distribution[4] = (2, 1, 3, 1) indicates that the first STT is
processed on the second VSCR, the second and fourth STTs are processed on the first VSCR,
and the third STT is processed on the third VSCR.

4.6. Algorithm Process

A flowchart for MOOAFSA is shown in Figure 5. The main steps are in the Algorithm 4.

Algorithm 4. MOOAFSA

Input: randomly generate a random vector of size m, si =
(

si
1, si

2, . . . , si
m

)
.

Output: the optimal scheduling scheme.
Process:

Step 1: Initialize various parameters: total number of artificial fish Sum, maximum step
length Step, field of view View, number of attempts Attempt, crowding factor δ, maximum
number of iterations itermax, threshold t, etc.
Step 2: Iterate si according to Equation (22) to generate a chaotic sequence S. Map the
chaotic sequence S to the original space according to Equation (23) to generate the initial
population X.
Step 3: Calculate the fitness of each artificial fish and record the state of the artificial fish
with the optimal objective function on the bulletin board.
Step 4: Perform the clustering and tail-chasing behaviors of each artificial fish if the conditions
are met, and the behavior with low F value is selected to update the state of the artificial fish;
otherwise, the foraging behavior is performed to update the status of the artificial fish.
Step 5: If the maximum number of iterations has been reached, go to step 8.
Step 6: Get the current optimal solution. If the conditions for crossover and mutation
operations are not met, go to step 3.
Step 7: Perform crossover and mutation operations. Then go to step 3.
Step 8: Output the optimal scheduling scheme.
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5. Performance Validation

In this paper, we use the cloud simulator CloudSim [25], which is an extensible and
universal simulation framework, to simulate the STT scheduling experiment.

5.1. Experimental Environment and Parameter Setting

The experiments were carried out with an Intel Xeon E5-2680 processor with 64 GB of
memory running the Linux 64-bit operating system. The language used was Java.

During the experiment, we conducted the following two groups of experiments
respectively, as shown in Table 5. Among them, the number of STTs started at 50 and was
incremented by 50 until the maximum of 500 was reached.
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Table 5. Experimental environment.

Experiment Object Number

Experiment 1 VSCR 15
Abnormal STTs 50–500

Experiment 2 VSCR 15
Normal STTs 50–500

To better simulate a real secure cloud platform, a reasonable and effective task-
scheduling model was constructed. The ranges for the parameter values for the VSCRs and
STTs are listed in Table 6. When creating VSCRs and STTs, the experimental parameters
were randomly selected from the range but with uniform allocation in order to simulate
computing resources with different levels of performance and STTs with different lengths.

Table 6. Parameters for the secure cloud model.

Object Parameter Value

VSCR

Processing speed (MIPS): rmips 200–500
Bandwidth (Mb/s): rbw 50–200

Memory (GB): rram 2–16
Number of CPU cores: rpesNumber 2–8

Storage capacity (GB): rsize 50–200
Category: rtype 1–8

STT

Length of the STT (MI): flength 2000–6000
Pre-execution size (MB): f f ileSize 200–300

Post-execution size (MB): foutputSize 200–300
Category: ftype 1–8
Risk level: flevel 1–4

In the experiments, different algorithms were compared. Because the algorithm
parameters have a significant influence on the performance of the model, parameters
common to more than one algorithm were set to the same value. At the same time, in order
to ensure the fairness of the experiment, our experiment adopts the following methods:
according to Refs. [26,27], we obtain the parameter recommended values of ant colony
algorithm (ACO) and particle swarm optimization (PSO) algorithm, respectively. On this
basis, we debug and optimize the algorithm parameters in combination with the simulation
environment of this experiment and obtain the optimal value of the current algorithm as a
comparative experiment. The specific parameters are shown in Table 7.

Table 7. Parameters for the algorithms.

Algorithm Parameter Value

AFSA, MOOAFSA

Number of attempts: Attempt 3
Step length: Step 2.5

Field of vision: View 3.5
Crowding factor: δ 2

Threshold: t 5

MOOAFSA
Computing power weight: η1 0.75

Bandwidth size weight: η2 0.25

ACO

Information heuristic factor: α 2.5
Expectation heuristic factor: β 5.5
Information volatile factor: ρ 0.35

Pheromone increment: Q 100

PSO
Learning factor 1: c1 1.5
Learning factor 2: c2 2

Inertial factor: ω 0.9

ACO, PSO, AFSA, MOOAFSA Number of iterations: iter 100
Population size: Scale 40
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The pricing of virtual resources, such as CPU cores, memory, and bandwidth, is based
on the values in Refs. [28,29], as listed in Table 8.

Table 8. Unit prices for the VSCR.

Resource Type Unit Pricing Unit Price

CPU CNY per core per hour 0.46
RAM CNY per GB per hour 0.04

Bandwidth CNY per Mbps per hour 0.03
Disk CNY per GB per hour 0.008

5.2. Experimental Results

To assess the performance of the STT scheduling strategy proposed in this paper,
MOOAFSA was experimentally compared with ACO, PSO, and AFSA. The metrics used
to evaluate the performance were the convergence speed, STT completion time, load
balancing, and execution cost.

5.2.1. Rate of Convergence

The convergence of the algorithms was compared for 500 abnormal STTs and normal
500 STTs for 100 iterations. The experimental results are shown in Figures 6 and 7.
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As can be seen from the figures, compared with the other three algorithms, MOOAFSA
converged fastest and had the highest convergence accuracy, for 500 abnormal STTs or
500 normal STTs. For ACO, the convergence rate was too slow in the early stages due
to the low pheromone concentration. At the later stages, the accumulated pheromone
concentration was too high, so it easily fell into a local optimum. For PSO, the initial
convergence rate was fast. However, in the later stages, the loss of diversity in the search
space led to a slow convergence rate and an inability to jump out of a local extreme value,
resulting in premature convergence. AFSA had a fast convergence speed in the early
stages, but in the later stages, due to the large step size and field of view, it could not
converge to the optimal solution, resulting in oscillations and low optimization accuracy.
MOOAFSA had the best convergence because chaotic tent mapping was used to initialize
the artificial fish swarm, which effectively maintained the diversity of the population,
inhibited the algorithm from falling into a local optimum, and improved the global search
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ability. Moreover, in MOOAFSA, the step size of the artificial fish were both optimized by
using an adaptive weight factor. The algorithm dynamically adjusted the field of view and
step size of the artificial fish during the iterations to accelerate the global convergence and
improve the optimization accuracy. Finally, MOOAFSA applied crossovers and mutations
to improve its ability to jump out of a local optimum.
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5.2.2. Completion Time

According to the experimental results shown in Figures 8 and 9, we can see that
MOOAFSA had an obviously lower completion time compared with the other three algo-
rithms for different numbers of STTs. The completion times for ACO and PSO were initially
very similar, but with an increase in the number of STTs, the completion times for ACO
were significantly higher than for PSO. This is because the heuristic function of the ant
colony algorithm is the reciprocal of the expected execution time of the STT on a virtual
security resource. When the number of STTs to be scheduled was small, there were enough
VSCRs and there was little resource competition among the STTs. As the number of STTs
increased, ACO tended to allocate a large number of STTs to virtual security resource nodes
with better performance, which made the overall completion time too long. Both PSO and
AFSA tended to fall into a local optimum in the late stages, which increased the completion
time. As the number of STTs increased, MOOAFSA had significantly lower completion
times. Therefore, MOOAFSA performed best at scheduling a large number of STTs in a
secure cloud.

As can be seen from Table 9, compared with ACO, AFSA, and PSO, the STT comple-
tion times (abnormal STTs) for MOOAFSA was reduced by an average of 15.62–28.69%,
and the STT completion times (normal STTs) for MOOAFSA was reduced by an average
of 10.84–17.44%. These results demonstrate the superiority of MOOAFSA in terms of
completion time.
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5.2.3. Load Balancing

As can be seen from Figures 10 and 11, the load balancing performance of ACO,
PSO, and AFSA gradually deteriorated with an increase in the number of STTs, whereas
MOOAFSA balanced the load well. The metric for load balancing was lower for MOOAFSA
than for the other three algorithms. With an increase in the number of STTs, for MOOAFSA,
the metric for load balancing remained stable. This is because MOOAFSA quantified the
load on different virtual security resources in a secure cloud environment and applied
a dynamic load balancing strategy. MOOAFSA ensured that the load on the virtual se-
cure resources was balanced, and this advantage became more obvious as the number of
STTs increased.

Information 2022, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 10. Comparison of load balancing for different numbers of abnormal STTs. 

 
Figure 11. Comparison of load balancing for different numbers of normal STTs. 

As can be seen from Table 10, compared with ACO, AFSA, and PSO, the load balance 
degree (abnormal STTs) for MOOAFSA was reduced by an average of 66.91%–75.62%, 
and the load balance degree (normal STTs) for MOOAFSA was reduced by an average of 
74.26%–78.58%. These results demonstrate the superiority of MOOAFSA in terms of load 
balance degree. 

  

Figure 10. Comparison of load balancing for different numbers of abnormal STTs.

Information 2022, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 10. Comparison of load balancing for different numbers of abnormal STTs. 

 
Figure 11. Comparison of load balancing for different numbers of normal STTs. 

As can be seen from Table 10, compared with ACO, AFSA, and PSO, the load balance 
degree (abnormal STTs) for MOOAFSA was reduced by an average of 66.91%–75.62%, 
and the load balance degree (normal STTs) for MOOAFSA was reduced by an average of 
74.26%–78.58%. These results demonstrate the superiority of MOOAFSA in terms of load 
balance degree. 

  

Figure 11. Comparison of load balancing for different numbers of normal STTs.

As can be seen from Table 10, compared with ACO, AFSA, and PSO, the load balance
degree (abnormal STTs) for MOOAFSA was reduced by an average of 66.91–75.62%, and
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the load balance degree (normal STTs) for MOOAFSA was reduced by an average of
74.26–78.58%. These results demonstrate the superiority of MOOAFSA in terms of load
balance degree.

Table 10. Comparison of load balancing for different numbers of STTs.

Number
of VSCRs

Number
of STTs

Load Balance Degree

Abnormal Normal

ACO AFSA PSO MOOAFSA ACO AFSA PSO MOOAFSA

15

50 3.12 3.53 4.51 1.04 2.73 2.97 3.15 0.81
100 3.65 3.31 4.48 1.95 3.06 3.16 3.46 0.94
150 4.24 3.62 5.17 1.72 3.57 3.32 3.89 1.16
200 5.31 3.98 5.83 1.84 3.85 3.51 4.25 1.07
250 5.88 4.11 5.92 1.73 4.03 3.67 4.61 1.01
300 6.67 4.56 5.98 1.32 4.19 3.82 4.79 0.93
350 7.49 5.23 6.89 1.23 4.52 4.01 5.01 0.97
400 8.02 5.99 7.53 1.30 4.89 4.17 5.37 0.91
450 8.87 6.83 8.60 1.21 5.17 4.33 5.72 0.85
500 10.26 7.95 9.89 1.18 5.88 4.77 6.01 0.83

5.2.4. Execution Cost

Figures 12 and 13 clearly shows that the overall execution costs for MOOAFSA were
significantly lower than those for the other three algorithms. Further observation shows
that as the number of STTs to be scheduled increased, the rate of increase of the execution
costs for ACO, PSO, and AFSA was higher. This is because, for a large number of STTs, the
competition for virtual security resources became intensified. ACO, PSO, and AFSA also
consider the STT completion time when scheduling, so it was inevitable that some STTs
were assigned to virtual security resource nodes with a relatively high execution cost, thus
increasing the overall execution cost. In contrast, MOOAFSA considers the execution cost
when scheduling STTs. Under the same conditions, MOOAFSA always tended to assign
STTs to virtual secure resource nodes with a relatively low execution cost, which reduced
the overall execution cost to some extent.
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As can be seen from Table 11, compared with ACO, AFSA, and PSO, the execution
cost (abnormal STTs) for MOOAFSA was reduced by an average of 32.3–41.31%, and the
execution cost (normal STTs) for MOOAFSA was reduced by an average of 23.91–25.25%.
These results demonstrate the superiority of MOOAFSA in terms of execution cost.

Table 11. Comparison of execution cost for different numbers of STTs.

Number
of VSCRs

Number
of STTs

Execution Cost (¥)

Abnormal Normal

ACO AFSA PSO MOOAFSA ACO AFSA PSO MOOAFSA

15

50 24.01 18.96 16.98 11.10 2.31 2.05 1.96 1.85
100 36.12 38.04 33.02 17.01 4.87 5.19 4.26 3.78
150 76.22 61.42 67.21 34.13 7.23 8.36 7.81 6.03
200 85.88 78.12 87.16 49.79 10.12 10.51 11.16 8.24
250 122.14 98.93 110.20 60.32 14.15 13.44 15.23 10.87
300 150.67 113.42 131.12 89.27 17.88 17.03 18.09 12.42
350 178.20 148.96 157.63 114.56 21.02 20.31 20.76 15.06
400 219.21 200.16 239.64 168.23 23.78 24.26 24.09 17.24
450 282.42 264.33 273.15 203.17 28.67 26.87 27.64 19.66
500 344.25 312.56 325.47 238.17 32.54 29.84 30.06 21.48

In conclusion, MOOAFSA performed better than ACO, AFSA, or PSO in terms of
convergence speed, STT completion time, load balancing, and execution cost. Therefore,
the STT scheduling strategy proposed in this paper is feasible.

6. Conclusions

In order to improve the STT scheduling of power business deployed on secure cloud,
we build a secure cloud task-scheduling model that combined with the power information
system. On this basis, we proposed MOOAFSA. MOOAFSA initializes the fish population
through chaotic mapping, which improves the global optimization capability. Moreover,
MOOAFSA uses a dynamic step size and field of view, as well as the introduction of
adaptive weight factor, which accelerates the convergence and improves optimization
accuracy. Finally, MOOAFSA applies crossovers and mutations, which make it easier to
jump out of a local optimum. Our experimental results show that compared with ACO,
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PSO, and AFSA, the proposed algorithm had better convergence speed, STT completion
time, load balancing, and execution cost. Moreover, as the number of the STTs increased,
the advantages of MOOAFSA became more significant. Therefore, MOOAFSA is suitable
for STT scheduling in a secure cloud environment.

In future work, we will study fault tolerance in a secure cloud environment and
consider how to combine fault tolerance with the algorithm proposed in this paper to
enhance the reliability of STT scheduling for a secure cloud.
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