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Abstract: To estimate the pose of satellites in space, the docking ring component has strong rigid
body characteristics and can provide a fixed circular feature, which is an important object. However,
due to the need for additional constraints to estimate a single spatial circle pose on the docking ring,
practical applications are greatly limited. In response to the above problems, this paper proposes a
pose solution method based on a single spatial circle. First, the spatial circle is discretized into a set
of 3D asymmetric specific sparse points, eliminating the strict central symmetry of the circle. Then,
a two-stage pose estimation network, Hvnet, based on Hough voting is proposed to locate the 2D
sparse points on the image. Finally, the position and orientation of the spatial circle are obtained
by the Perspective-n-Point (PnP) algorithm. The effectiveness of the proposed method was verified
through experiments, and the method was found to achieve good solution accuracy under a complex
lighting environment.

Keywords: pose estimation; docking ring; spatial circle

1. Introduction

As a result of the rapid development of space technology, an increasing number of
spacecraft have been launched into space, occupying limited orbital resources. Some
malfunctioning or invalid satellites cannot autonomously provide effective orbital attitude
parameters, nor can they provide effective cooperative markers. To achieve the sustainable
development of space activities, the need for on-orbit services, such as acquisition and
maintenance of these satellites, is becoming increasingly urgent. Estimating the relative
position and orientation between the satellite and the service spacecraft is a prerequisite
and the key to realizing the abovementioned on-orbit service mission.

The authors of previous literature [1–10] studied the use of geometric features, such as
solar panels, windsurfing boards, and communication antennas, and proposed a solution
method based on point features and straight-line features to solve the issue of the target
pose. However, the strength of the above components is not strong enough to be captured by
space robots. In the actual space environment, because the target satellite state is unknown,
it is difficult to distinguish the position of the extracted point features or linear features on
the satellite, and it is difficult to obtain the corresponding relationship. Most satellites have
docking ring components that are used to mechanically connect with the rocket during
launch. The docking ring assembly can provide a typical circular feature for the pose
solution and has a strong gripping rigidity. NASA’s OSAM-1 on-orbit service mission plan
captures an on-orbit satellite by grabbing the docking ring for fuel replenishment to extend
its lifespan. Additionally, it passed ground verification in 2020 [11]. The deorbit plan
proposed by the German OHB company is expected to be launched in 2023 to rescue the
Envisat satellite, and the target is also the docking ring [12]. Therefore, using the docking
ring target to estimate the relative pose has great practical value. The concept of measuring
and grasping the docking ring is shown in the Figure 1.
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Figure 1. The concept of measuring and grasping the docking ring.

Miao and Zhu et al. calculated two solutions of the spatial circle pose based on the
projection of the spatial circle on the docking ring on the image. They used the distance
from a reference point outside the docking ring plane to the center of the circle, which
remained unchanged as a constraint to eliminate false solutions and obtain the pose of the
docking ring [13]. Cai and Li et al. proposed a pose solution method based on circular
features and straight-line features to solve the roll angle and eliminate the ambiguity of the
solution [14]. Liu and Zhao et al. proposed a method for deriving pitch, roll, and yaw angles
based on circular features. This method required accurate diameter features to calculate
the orientation angle [15]. Liu and Xie et al. proposed a method for estimating circular
feature poses based on binocular stereo vision. Although this method did not require
other constraints, it had high requirements for the matching results of image features in
two different cameras. Thus, the accuracy was easily affected by the matching result [16].
Wang and Zhang proposed an ellipse feature extraction method through texture boundary
detection, which provided a new idea for detecting elliptical features on the docking ring,
but it still needed to introduce other constraints to solve the pose [17]. Li and Hao et al.
proposed a method for solving the position and orientation of the docking ring based on
line structured light. By introducing a line structured light device, the relative position
and orientation of the docking ring were calculated using the feature of the intersection
formed by the actively projected line structured light and the docking ring [18]. To solve the
ambiguity of the pose solution caused by the imaging characteristics of the single spatial
circle, the above methods required additional external image features, accurate image
matching results, or the introduction of other auxiliary measurement devices, in addition
to the maintenance of accurate calibration relationships, which are likely to introduce
additional measurement errors. Therefore, the above methods have certain limitations in
practical applications.

In the actual space environment, the qualitative difference between the image features
of the docking ring on the satellite and the background is small, and because the satellite
itself is covered with a heat-controlled coating material, the material has a strong reflective
effect, and thus, there are more interference features when reflecting light. The lighting
conditions in space vary greatly, and the contrast between the target and the background
changes with changes in lighting conditions. Second, because the target satellite’s orbital
motion state is unknown, it may be three-axis stable or spinning irregularly, which may
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cause the original docking ring circular feature to be degraded and missing to varying
degrees, making it difficult to extract.

In response to the above problems, first, the imaging characteristics of a single spatial
circle in the camera model and the reasons for the ambiguity are analyzed. The spatial
circle position and orientation are then derived and modeled to recover the pose of the
target object from a single RGB image.

This paper proposes a specific discrete point selection method, which discretizes the
spatial circle into a set of 3D specific sparse points, eliminates the strict central symmetry of
the circle, and then handles the high fusion of the foreground and the background in the
image under complex lighting conditions caused by many interference features. Traditional
methods have difficulty extracting the 2D sparse points of the feature circle obtained by
spatial circle projection. A two-stage pose solving neural network, Hvnet, based on Hough
voting, is proposed to extract the features and determine the pose parameters. The first
stage of the network learns the direction vector field of each pixel in the docking ring area
in the image pointing to the sparse point of the feature circle in the image. The second stage
learns the Gaussian heatmap of the sparse point position of the feature circle in the image,
and then uses the obtained sparse point direction information and position information
to vote pixel-by-pixel to obtain the coordinates of each sparse point of the feature circle.
Finally, the spatial circle pose parameters are obtained by the EPnP algorithm [19]. The
experimental results show the effectiveness of the method and that it has strong robustness
in complex lighting conditions.

2. Definition of Coordinate Frame and Ambiguity Elimination
2.1. Coordinate Frame Definition

To facilitate the analysis, the camera coordinate frame Oc − XCYcZc as shown in the
Figure 2 is established. The docking ring plane coordinate frame OD − XDYDZD is defined
at the center of the spatial circle. Image coordinate frame u− v and image plane coordinate
frame o− xy can also be defined. OC is the camera center point, Q is the spatial circle with
radius R on the target of the docking ring, OD is its center, and q is the Q projection on the
image coordinate frame. The position and orientation of the spatial circle are derived in the
camera coordinate frame.

Figure 2. Coordinate frame definition.
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With the exception of extreme cases (the spatial circle is depicted as a straight line),
the projection of the spatial circle on the image plane is a circle or an ellipse. When the
projection of the spatial circle on the image plane q is an ellipse, the optical center of the
camera OC and the spatial circle Q form an elliptical cone г. Additionally, the elliptical
cone will also project an image through it. Determining the position and the orientation
of the spatial circle is equivalent to finding a cutting plane that cuts the elliptical cone in
space Thus, after the plane cuts the elliptical cone, it intersects the elliptical cone to form a
circle with a radius of R. Due to the imaging characteristics, the final solution results in two
spatial circles with different positions and orientations, one of which is a false solution.

According to the literature [13], the position of the center of the spatial circle and the
orientation of the spatial circle in the camera coordinate frame can be obtained as follows:

O′i = P

[
±R

√
|λ3|(|λ1| − |λ2|)
|λ1|(|λ1| − |λ3|)

, 0, R

√
|λ1|(|λ2| − |λ3|)
|λ3|(|λ1| − |λ3|)

]T

(1)

n′i = P

[
±

√
|λ1| − |λ2|
|λ1|+ |λ3|

, 0,−

√
|λ2|+ |λ3|
|λ1|+ |λ3|

]T

(2)

λ1, λ2, λ3 elliptical cone parameters are the elements of the diagonal matrix of the
matrix formed by the parameters of the elliptic general equation. P is the orthogonal matrix
of the matrix formed by the parameters of the elliptic general equation, i = 1, 2. From
the above equation, when the spatial circle is depicted as an ellipse, there are two sets of
feasible solutions for the position and orientation of the spatial circle, and they are only
related to their own projection characteristics. Therefore, when using a single spatial circle
to derive poses, the traditional method cannot directly obtain the true solution and needs
additional constraints.

In the image coordinate frame, the two spatial circles are depicted as ellipses with the
same shape and size. However, when the spatial circle is in the plane of the docking ring,
there is only one set of correspondences between the position of the ellipse in the image
coordinate frame and the position of the spatial circle in the docking ring plane coordinate
frame. The pose relationship of the spatial circle relative to the camera coordinate frame is
uniquely determined at this time. Therefore, determining the spatial circle pose restores
the target object pose from a single RGB image, and then the true solution can be directly
obtained from the image. In recent years, deep learning technology has developed rapidly.
For this problem, many current methods have two stages. First, the key points of the
target object are detected, and then the EPnP algorithm is used to derive the pose [19].
This two-stage method has achieved the most advanced results [20–25]. Inspired by these
methods, the spatial circle is first discretized into a set of asymmetric specific sparse points.

2.2. Sparse Point Selection

To avoid ambiguity between discrete points, it is necessary to obtain a set of discrete
points that do not have a symmetric relationship. In the polar coordinate system, the
following judgments are made. Symmetrical discrete points are equivalent to at least a
pair of equal central angles. Therefore, any two central angles that are not equal must be
asymmetric. To prove this below, we suppose there are k discrete points.

First, the axis of symmetry is the vertical bisector of two points on the circle, and thus,
it must pass through the center of the circle. Then, all k points are connected to the center of
the circle, and the central angle is considered. Next, the symmetry proves to be equivalent
to the existence of at least a pair of equal central angles.

(1) Symmetry can be obtained if the central angles are equal

In case 1, the two angles have a common edge, as shown in the Figure 3 below. The
angle α and the angle β are equal, and points A, B, and C are symmetrical regarding the
symmetry axis passing through point B.
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Figure 3. Two angles have a common edge.

In case 2, the two angles do not have a common edge; as shown in the Figure 4 below,
angle α and angle β are equal, and points A, B, C, and D are symmetrical regarding the
vertical bisector of BD.

Figure 4. Two angles do not have a common edge.

(2) At least one pair of equal central angles can be obtained if there is symmetry

In case 1, the three points are symmetrical. As shown in the Figure 5 below, points A,
B, C, and the axis of symmetry must pass through a point. The angles formed by this point
and the remaining two points are equal; the angle α and the angle β in the Figure are equal.

Figure 5. Three points are symmetrical.
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In case 2, the four points are symmetrical, and points A, B, C, and D are shown in the
Figure below. There are two situations as follows. In the first case, the axis of symmetry
passes through the point itself, as shown in Figure 6. The angle α and the angle β are equal,
and the angle θ and the angle γ are equal. In the second case, the axis of symmetry does
not pass through the point itself, as shown in Figure 7. The same can be obtained where
the angle α and the angle β are equal and the angle θ and the angle γ are equal.

Figure 6. Four points are symmetrical (case 1).

Figure 7. Four points are symmetrical (case 2).

In case 3, if more than five points are symmetrical, there must be more than two sym-
metric point groups. As shown in Figure 8 below, points A, B, C, D, and E are symmetrical.
Points A, C and D, E are symmetrical point groups, and then there are angles α and β,
which are equal. As shown in Figure 9 below, points A, B, C, D, E, and F are symmetrical.
Points A, D and E, F are symmetrical point groups, and also angles α and β are equal to
each other.

Figure 8. Five points are symmetrical.
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Figure 9. Six points are symmetrical.

From Case (1) and (2), point symmetry is equivalent to at least a pair of equal central
angles. With this equivalence, the definition of symmetry here refers to any point of axis
symmetry with more than two points. In addition, to avoid making the sum of two angles
equal to the sum of the other two angles, resulting in partial point symmetry, all included
angles less than 180◦ need to be considered. k points have C2

k angles, and do not consider
angles greater than 180◦ because, in a circle, there cannot be two angles greater than 180◦

that will be equal. Thus, there are C2
k angles, not only k angles. This is the proof of the k

points. Then, the ones that are not equal are selected and are arranged by the angle value.
The angle selection method in this paper shows that in the polar coordinate frame,

the initial angle α is set first, in addition to the initial central angle value β. Then α plus
β enables us to obtain the next angle. We let β continue to increase, and the increment is
obtained from the arithmetic sequence, such as {1:2:3: . . . :n}. If the increment obtained at a
certain time does not meet the condition, the next position of the arithmetic sequence is
continued to be used as the increment. Through experiments k = 8, α = 60◦, and β = 32◦, we
can make the sparse points uniformly distributed on the circle and achieve the best perfor-
mance. Finally, the angle value of the sparse point is {60,92,125,160,198,240,287,342}, and the
distribution of the point cloud model in the docking ring is shown in the Figure 10 below.

Figure 10. Sparse point distribution.
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3. Pose Estimation Network, Hvnet, Based on Hough Voting

At present, the mainstream methods for locating key points are divided into two types.
One type is directly based on the heatmap to return the key point position coordinates; this
requires a deep feature extraction network, which has difficulty meeting the requirements
of lightweight networks [26–28]. The other type of method involves learning the vector
field representation of the pixels of the target area pointing to the key points. Thus, the
direction of each pixel can be predicted to the key points of the target, and finally, the key
point position coordinates are obtained through the intersection point assumption, which
can meet the needs of lightweight networks, although the final solution accuracy is not
high [29–31]. The early work used direct regression to predict key points; however, directly
letting the network output two-dimensional coordinates for optimization learning is an
extremely nonlinear process, the loss function has weak constraints on weights, and the
model has poor generalization ability. The advantage of this method is that the output is
the coordinate point, the training and forward speed can be very fast, and it is end-to-end
full differential training [32,33].

Based on the vector field representation method, the key points are located by the
assumption of the intersection point, which is actually a method of using the rigid body
characteristics of the object to return to the key point coordinates. Each key point is
solved independently, and the mutual positional relationship between the key points
is missing. Therefore, the accuracy of the solution is limited, and the method based
on the heatmap can not only learn the mutual positional relationship between the key
points but can also suppress the response of the non-key points. Aiming at the task of
estimating the pose of the docking ring target on the satellite, this paper describes using
the method based on the heatmap to improve the previous method based on vector field
representation. A lightweight 6D pose solution framework, Hvnet, is also proposed. By
inputting an RGB image, we can detect the target in real time and solve its 6D pose at the
same time. The 6D pose(R; t) is transformed from the docking ring coordinate frame to
the camera coordinate frame. R represents three-dimensional rotation and t represents
three-dimensional translation.

The overall framework of the network is shown in the Figure 11 below, which consists
of the backbone feature extraction network in the first stage and the heatmap regression
network in the second stage. The backbone feature extraction network learns the direction
information of the sparse points on the image, and the heatmap regression network learns
the probability distribution of the sparse point position. Finally, by the vote method based
on Hough voting, the 2D position coordinates of the sparse points of the spatial circle
projected into the image coordinate frame are obtained [34]. The method described in this
paper uses a pixel-level voting network to detect 2D sparse points in a traversal manner.
This method maintains the dense detection of sparse point positioning. It combines the
advantages of the two methods and is a dense detection method based on key points that
can achieve higher solution accuracy.

3.1. Backbone Feature Extraction Network

As shown in the Figure above, the backbone feature extraction network performs two
tasks: predicting the semantic segmentation mask and the direction vector field [29]. The
input size of the network is H×W× 3, the output size of the vector field is H×W× (2× k),
and the output size of semantic segmentation is H×W× 1. For each pixel of the image,
the semantic label belonging to the docking ring target is output and the direction vector
pointing to the 2D sparse point is xk. In this paper, k = 9, including 8 sparse points and the
center of the spatial circle, H = 480, W = 640. The direction vector is defined as follows [29]:

vk(p) =
xk − p
‖xk − p‖2

(3)

Due to the high real-time requirements of the pose estimation task and the memory lim-
itation of the onboard computer, such as the Beckhoff C6015-0010 industrial computer com-
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monly found on commercial satellites, this paper does not use the HRnet high-resolution
network, which is currently the most advanced feature extraction network [35]. The back-
bone feature extraction network uses ResNet18 as the encoding structure. In the encoding
stage, a series of convolution and pooling operations are carried out to reduce the feature
spatial dimension. When the size of the feature map of the network is equal to 1/8(H, W),
the feature map is no longer processed and downsampled.

Figure 11. The network structure Figure.

In the decoding stage, the target details are gradually restored through three upsam-
pling operations and multiple feature fusions. Additionally, residual blocks are embedded
to prevent network overfitting. Skip connection between the main network coding layer and
the decoding layer is used to realize the fusion of the deep and shallow features of the net-
work, reducing the loss of positioning information and improving the positioning accuracy.

The loss function of the direction vector is as follows:

Lv f = ∑
k∈K

∑
p∈M

l1
(
‖v∗k (p)− vk(p)‖1

)
(4)

The loss function of semantic segmentation is as follows:

Lsg = ∑
p
‖predict(p)− label(p)‖ (5)

3.2. Heatmap Regression Network

In the second stage, a heatmap regression network, confidence net, is introduced. The
confidence net network structure is shown in Figure 11 above. It is a symmetric encoder-
decoder structure. The input size is H ×W × (2 × k + 1) and the output size is H ×W × k.
Three downsampling operations are performed to make the feature map become the
original 1/8(H,W). After two residual blocks, three upsampling operations are performed
until the output is H × W, and skip connection is introduced. This structure is more
convenient for feature fusion of the same resolution and fusion of more low-level features.
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The heatmap label is generated using a Gaussian filter, where the response value of
each point represents the probability that the point is a sparse point, and the maximum
probability value point represents the sparse point predicted by the network. To facili-
tate the calculation of the loss, Gaussian filtering is used on the true value to obtain the
heatmap [26]:

Hk
∗(p) = exp(− (p− xi)

2

σ2 ) (6)

where k represents the k-th sparse point, H∗k (p) represents the probability that the k-th
sparse point in the heatmap of the true value is at the position of the pixel point p, the
probability of the pixel on the sparse point is 1, and the surrounding pixels spread according
to the distance in Gaussian distribution—the farther the distance, the lower the probability;
the closer the distance, the higher the probability.

xk represents the real coordinates of sparse point k, and σ is the standard deviation
of the Gaussian filter, which is a fixed parameter used to adjust the width of the Gaussian
function. In this study, we conducted the experiment with σ = 0.3.

This study used the L2 loss function. The losses of all sparse points are calculated for
a certain prediction result. The equation for calculation is as follows:

Lhm =
K

∑
k=1

∑
p

λk · ‖Hk(p)− Hk
∗(p)‖ (7)

where Hk(p) represents the probability of sparse point k at position p, H∗k (p) is the heatmap
generated by the true value, and the λk value is 0 or 1. If the sparse point is not visible, then
λk = 0, which does not participate in the calculation of the loss. The heatmap generated by
the real label value is shown in the Figure 12, which displays the heatmap of three sparse
points, and the position of the largest response value in the heatmap corresponds to the
position of the sparse point.

Figure 12. Position response heatmap.

The total loss function of Hvnet is as follows. During training, the Adam optimizer
was used to set the initial learning rate to 0.001, which was halved every 20 epochs, and a
total of 300 epochs were trained [36].

Ltotal = lv f + lsg + lhm (8)

3.3. Voting Strategy

To obtain the coordinates of the center of the docking ring in the image and the position
coordinates of the sparse points in the image, a Hough voting layer was designed and
integrated into the network. The voting score of each position in the image is calculated,
and the voting score indicates the probability that the corresponding image position is a
sparse point. Voting process is shown in the Figure 13 below. Specifically,



Information 2022, 13, 95 11 of 18

Figure 13. Voting process.

Step 1: In the image docking ring area, the farthest distributed seed point set B is
obtained according to the farthest point sampling, B = {p1, p2, p3, . . . , pn}, n = 10;

Step 2: For a sparse point xk, we first calculate the direction vector set U = {u1, u2, u3, . . . , un}
of each point of the seed point set pointing to pixel xi of the docking ring area. Then, we
calculate the cosine similarity between the vector set U and the predicted direction vector set
V = {v1, v2, v3, . . . , vn} of the seed point pointing to sparse point xk as the first part of the voting
score. Higher scores indicate alignment with more directions.

Step 3: The voting result of each position in the previous step is weighted by the
position probability output by the confidence net, and after each pixel of the docking ring
area is processed, the final voting score of all image positions is obtained. Then, we choose
the sparse point xk with the highest score.

The voting score is as follows:

score(p) = ∑
k∈K

n

∑
i=1

ui · vi
‖ui‖2‖vi‖2

· Hk (p) (9)

4. Experiment

To verify the effectiveness and feasibility of the proposed method, a pose measurement
platform based on the docking ring component was built. The experimental platform
mainly includes the docking ring model, spacecraft surface wrapping materials, RGB-D
camera, laser tracker, high-power halogen lamp, and electric translation stage, as shown in
the Figure 14 below. The docking ring model is a satellite backup part of a certain series,
and the model diameter is 469 mm. The camera is Intel’s D435i camera, which is used
to collect pictures and generate a pose estimation dataset. The resolution is 1920 × 1280,
the size is 90 mm × 25 mm × 25 mm, the effective working range of the depth camera
is 0.1 to 10 m, and the camera was accurately calibrated in advance [37]. The movement
accuracy of the translation stage is 0.1 mm, and the maximum movement distance is
1000 mm. The wrapping material is covered around the docking ring to simulate the
external environment of the satellite where the docking ring target is located. A halogen
lamp is used as the light source to simulate the lighting conditions of the docking ring
target in the space environment.

The above experimental platform is used to simulate the actual high reflection and
many interference space lighting environments of the docking ring target. At different
angles and distances, approximately 12,000 images of the docking ring with different poses
were collected to generate the docking ring pose estimation dataset. The generation method
refers to the LINEMOD dataset [38–40]. This dataset was used for training, and some
pictures of the dataset are shown in the Figure 15 below.
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Figure 14. Pose measurement platform.

Figure 15. Part of the image of the dataset.

4.1. Measurement Parameters

Since the docking ring coordinate frame is defined at the center of the spatial circle,
the position and orientation of the spatial circle is the relative position and orientation
relationship between the docking ring coordinate frame OD − XDYDZD and the camera
coordinate frame Oc − XCYcZc. The specific equation is expressed as follows:

PC = pose(R; t)PD (10)

In general, when the target coordinate frame is the center coordinate frame of the
docking ring, since the circle is strictly centrally symmetric, the roll angle cannot be obtained
when deriving the pose, but in this study the spatial circle is discretized into a set of 3D
asymmetric sparse points. The strict central symmetry of the circle is eliminated. Therefore,
when the docking ring model is not an ideal circle model (when rotating at any angle
around the z-axis, there is no difference in the image feature), the roll angle can be obtained,
and thus, a total of six pose parameters can be obtained. However, when the docking ring
model is an ideal circle model, the roll angle cannot be obtained.

For pose(R; t), the physical meaning of the definition is that the coordinate frame of the
docking ring first rotates around three coordinate axes, and then the translation coincides
with the camera coordinate frame. The rotation sequence is around the X axis, Y axis, and
Z axis.

Pc = RzRyRxPd+t =

 cos β cos γ sin α cos γ sin β− cos α sin γ sin α sin γ + cos α cos γ sin β
cos β sin γ sin α sin β sin γ + cos γ cos α cos α sin β sin γ− sin α cos γ
− sin β sin α cos β cos α cos β

Pd + t (11)
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The relative pose involved in this article includes the position amount and orientation
angle. The orientation angle is defined as the rotation around X, Y, and Z. The position
amount refers to the translation from the origin of the camera coordinate frame to the origin
of the docking ring coordinate frame.

4.2. Analysis of the Results

In the experiment, the camera was installed and fixed on the translation stage. The
halogen lamp was set to the maximum power of 2000 watts for irradiation, the camera
was simulated in a high light intensity, high reflection working environment in space, and
then the translation stage was controlled to move the camera forward along the camera
coordinate frame ZC, each time moving 10 mm. It moved a total of 40 positions, bringing
the camera closer to the docking ring. Because the camera was controlled to move along
the Z axis of its coordinate frame, there was no relative rotation, only relative translation.
Therefore, the direction of the docking ring relative to the camera remained unchanged,
and the direction change should be zero. Finally, the relative movement of the docking ring
in the camera coordinate frame was compared with the actual movement of the camera in
the translation stage, and the position error and the orientation error of the docking ring
could be obtained.

4.2.1. Analysis of the Experimental Results of the Position Error

We adopted the method based on the vector field to locate the key points and the Hvnet
method proposed in this paper to determine the pose. Considering the practical application
scenario of the method in this paper, the network model needs to be lightweight, the
memory footprint must be small, and the pose should be estimated in real-time. At present,
the use of a single RGB image input can meet the above requirements, and PVNet is the
most advanced method. The vector field method uses the most advanced lightweight pose
estimation network, PVNet, under the same single RGB image input for comparison [29].
The calculated translation components in pose(R; t) are compared with the relative position
components of the camera on the translation stage relative to the initial position, and the
position error curve is obtained as shown in the Figure 16 below.

The relevant position error experimental data are as follows: ∆ = |∆Treal − ∆Tm|
represents the absolute translation error, δ = ∆/∆Treal ∗ 100% represents the relative error,
∆Treal is the distance that the translation stage moves relative to the initial position, and
∆Tm is the distance that the docking ring moves relative to the initial position in the camera
coordinate frame obtained according to the model.

First, in the X-axis direction, observing the position error curve and Table 1, it can
be seen that although the values are relatively close, the results predicted by Hvnet are
smoother than those predicted by PVNet. It can also be seen in the Y-axis direction that
Hvnet performs better. In the Z-axis direction of the real movement, there is not much
difference between the mean value of the absolute translation error and the standard
deviation of the absolute translation error, but the maximum absolute translation error of
PVNet is 4.8 mm larger than that of Hvnet. The relative error performance is more obvious;
the maximum relative error of PVNet is 28% larger than that of Hvnet. Reflecting the
error curve, the prediction results of PVNet show obvious fluctuations, whereas Hvnet is
relatively stable. From the above, Hvnet is better than PVNet when estimating the position.

4.2.2. Analysis of Experimental Results of the Rotation Angle Error

Based on the calculated rotation matrix in pose(R; t), according to Equation (11), the
error curves of the rotation angles of the docking ring around the three axes of the camera
coordinate frames X, Y, and Z were calculated, as shown in the Figure 17 below.
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Figure 16. Position error Figure. (a) Error curve of X-axis direction. (b) Error curve of Y-axis direction.
(c) Error curve of Z-axis direction.

Table 1. Position error data.

No. ∆ max ∆ mean ∆ std δ max δ mean δ std

Unit (mm) (mm) (mm) (%) (%) (%)

pvnet (x) 16.7 8.9 4.9 - - -
pvnet (y) 35.7 16.3 10.1 - - -
pvnet (z) 15.1 8.1 3.8 46 5.3 7.2
hvnet (x) 16.5 8.7 4.8 - - -
hvnet (y) 34.6 16.2 9.9 - - -
hvnet (z) 10.3 6.9 2.5 18 4.2 2.7

The relevant angle error experimental data are as follows: ∆ = |θi − θ0| represents
the absolute value between the corresponding rotation angle of the i-th position and the
starting position, and represents the amount of angular error change during the movement.
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Figure 17. Rotation angle error Figure. (a) Pitch angle error curve. (b) Yaw angle error curve. (c) Roll
angle error curve.

First, at the pitch angle, observing the error curve and Table 2, it can be seen that the
Hvnet solution error variation range is small, the solution accuracy is higher, the maximum
angle error is 3.4◦, and the average value is 1.5◦. The PVNet solution error variation range
is larger. The solution accuracy is low, the maximum angle error is 18.6◦, and the average
value is only 6.6◦. In the yaw angle, the difference between the two error values is small,
and the maximum error, the mean error, and the standard deviation error are relatively
close, but Hvnet is considerably more stable. Regarding the roll angle, Hvnet performs
better in terms of solution accuracy and solution stability.

Table 2. Angle error data.

No. ∆ max ∆ mean ∆ std

Unit (◦) (◦) (◦)

pvnet (pitch) 18.6 6.6 4.8
pvnet (yaw) 5.8 2.4 1.5
pvnet (roll) 17.9 6.6 4.7

hvnet (pitch) 3.4 1.5 0.8
hvnet (yaw) 5.2 2.2 1.6
hvnet (roll) 3.4 1.3 0.9
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Similar to the case of estimating the position quantity, Hvnet is also considerably
better than PVNet when estimating the angle quantity. Based on the above analysis,
using the heatmap regression network to learn the relationship between the key points
is very effective for improving the location of the vector field key points result, and the
stability and prediction accuracy of the key points prediction is improved under complex
lighting environments.

5. Conclusions

Aiming at docking rings that are common in space satellite pose estimation tasks, a
pose estimation method based on a single spatial circle is proposed. The spatial circle is first
discretized into a set of specific sparse points, and then, when locating 2D sparse points
in the image, a two-stage pose estimation network based on Hough voting is proposed
to solve the pose parameters. This method does not need to introduce other additional
constraints to estimate the pose of the docking ring. Experiments were conducted to verify
the effectiveness of the proposed method and achieve good solution accuracy in complex
lighting environments. The method proposed in this paper not only realizes the pose
solution of the docking ring target but also provides a new idea for estimating the pose of
spacecraft, which can provide fixed circular features or symmetrical objects. The improve-
ment in the solution accuracy mainly relates to the neural network model, which enables
improving the feature learning ability without significantly increasing the model’s size. In
the following step, we will attempt to use spatial and channel attention mechanisms.

Author Contributions: Conceptualization, W.Z. and P.X.; methodology, P.X.; validation, W.Z., P.X.
and J.L.; writing—original draft preparation, P.X.; writing—review and editing, W.Z., P.X. and J.L.;
project administration, W.Z. and J.L.; funding acquisition, W.Z. and J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: The work was supported by the Strategic Priority Research Program on Space Science,
the Chinese Academy of Science (Grant No. XDA1502030505), the Foundation of State Key Labo-
ratory of Robotics (Grant No.2019-Z06), and Liao Ning Revitalization Talents Program (Grant No.
XLYC1807167).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request to the author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Renato, V.; Marco, S.; Palmerini, G.B. Pose and Shape Reconstruction of a Noncooperative Spacecraft Using Camera and Range

Measurements. Int. J. Aerosp. Eng. 2017, 2017, 4535316.
2. Song, J.; Cao, C.; Pennock, G.R. Pose Self-Measurement of Noncooperative Spacecraft Based on Solar Panel Triangle Structure.

J. Robot. 2015, 2015, 472461. [CrossRef]
3. Arantes, G., Jr.; Rocco, E.M.; da Fonseca, I.M.; Theil, S. Far and proximity maneuvers of a constellation of service satellites and

autonomous pose estimation of customer satellite using machine vision. Acta Astronaut. 2010, 66, 1493–1505. [CrossRef]
4. Oumer, N.W.; Panin, G. Tracking and Pose Estimation of Non-Cooperative Satellite for on-Orbit Servicing. In Proceedings of the

i-SAIRAS 2012, Turin, Italy, 4–7 September 2012.
5. Zhang, H.; Jiang, Z.; Elgammal, A. Satellite recognition and pose estimation using homeomorphic manifold analysis. IEEE Trans.

Aerosp.Electron. Syst. 2015, 51, 785–792. [CrossRef]
6. Shu, A.; Pei, H.; Duan, H. Trinocular stereo vision measurement method for spatial non-cooperative targets. Acta Opt. Sin.

2021, 41, 163–171.
7. Zhang, Y. Research on Visual Measurement Method of Spatial Non-Cooperative Target Based on Straight Line Feature; National University

of Defense Technology: Hunan, China, 2016.
8. Martínez, H.G.; Giorgi, G.; Eissfeller, B. Pose estimation and tracking of non-cooperative rocket bodies using time-of-flight

cameras. Acta Astronaut. 2017, 139, 165–175. [CrossRef]
9. Huang, P.; Chen, L.; Zhang, B.; Meng, Z.; Liu, Z. Autonomous rendezvous and docking with nonfull field of view for tethered

space robot. Int. J. Aerosp. Eng. 2017, 2017, 3162349. [CrossRef]

http://doi.org/10.1155/2015/472461
http://doi.org/10.1016/j.actaastro.2009.11.022
http://doi.org/10.1109/TAES.2014.130744
http://doi.org/10.1016/j.actaastro.2017.07.002
http://doi.org/10.1155/2017/3162349


Information 2022, 13, 95 17 of 18

10. Du, X.; Liang, B.; Xu, W.; Qiu, Y. Pose measurement of large non-cooperative satellite based on collaborative cameras.
Acta Astronaut. 2011, 68, 2047–2065. [CrossRef]

11. Reed, B.B.; Smith, R.C.; Naasz, B.J.; Pellegrino, J.F.; Bacon, C.E. The Restore-L Servicing Mission. In Proceedings of the AIAA
SPACE, Long Beach, CA, USA, 13–16 September 2016.

12. Wieser, M.; Richard, H.; Hausmann, G.; Meyer, J.-C.; Jaekel, S.; Lavagna, M.; Biesbroek, R. E. Deorbit Mission: OHB Debris
Removal Concepts. In Proceedings of the ASTRA 2015—13th Symposium on Advanced Space Technologies in Robotics and
Automation, Noordwijk, The Netherlands, 11–13 May 2015.

13. Miao, X.; Zhu, F.; Ding, Q.; Hao, Y.; Wu, Q.; Xia, R. Monocular visual pose measurement method of aircraft based on star-arrow
docking ring components. Acta Opt. Sin. 2013, 33, 123–131.

14. Meng, C.; Li, Z.; Sun, H.; Yuan, D.; Bai, X.; Zhou, F. Satellite pose estimation via single perspective circle and line. IEEE Trans.
Aerosp. Electron. Syst. 2018, 54, 3084–3095. [CrossRef]

15. Liu, L.; Zhao, Z. A new approach for measurement of pitch, roll and yaw angles based on a circular feature. Trans. Inst.
Meas. Control 2013, 35, 384–397. [CrossRef]

16. Liu, Y.; Xie, Z.; Wang, B.; Liu, H. Pose Measurement of a Non-Cooperative Spacecraft Based on Circular Features. In Proceedings
of the 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016;
pp. 221–226.

17. Wang, S.; Zhang, S. Spacecraft ellipse feature extraction method based on texture boundary detection. J. Astronaut. 2018, 39, 76–82.
18. Li, Z.; Hao, Y.; Fu, S. The relative pose measurement method of star-arrow docking ring based on structured light.

Comput. Eng. Appl. 2019, 55, 205–212.
19. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
20. Chen, B.; Cao, J.; Parra, A.; Chin, T. Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–3 November 2019.
21. Sharma, S.; D’Amico, S. Neural Network-Based Pose Estimation for Noncooperative Spacecraft Rendezvous. IEEE Trans. Aerosp.

Electron. Syst. 2020, 56, 4638–4658. [CrossRef]
22. Harvard, A.; Capuano, V.; Shao, E.Y.; Chung, S.J. Spacecraft Pose Estimation from MonocularImages Using Neural Network Based

Keypoints and Visibility Maps. In Proceedings of the AIAA Scitech2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1874.
23. Sharma, S.; Ventura, J.; D’Amico, S. Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous.

J. Spacecr. Rocket. 2018, 55, 1414–1429. [CrossRef]
24. Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the European Conference

on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 483–499.
25. Rad, M.; Lepetit, V. Bb8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3d Poses of Challeng-

ing Objects without Using Depth. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 3828–3836.

26. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [CrossRef]

27. Oberweger, M.; Rad, M.; Lepetit, V. Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose Estimation. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 119–134.

28. Papandreou, G.; Zhu, T.; Chen, L.C.; Gidaris, S.; Tompson, J.; Murphy, K. Personlab: Person Pose Estimation and Instance
Segmentation with a Bottom-up, Part-Based, Geometric Embedding Model. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 269–286.

29. Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-Wise Voting Network for 6dof Pose Estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4561–4570.

30. He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. Pvn3d: A Deep Point-Wise 3D Keypoints Voting Network for 6Dof Pose
Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020;
pp. 11632–11641.

31. He, Y.; Huang, H.; Fan, H.; Chen, Q.; Sun, J. FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 3003–3013.

32. Toshev, A.; Szegedy, C. Deeppose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660.

33. Tekin, B.; Sinha, S.N.; Fua, P. Real-Time Seamless Single Shot 6D Object Pose Prediction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 292–301.

34. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. In Proceedings of the Robotics: Science and Systems (RSS), Pittsburgh, PA, USA, 26–30 June 2018.

35. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, D.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution
Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [CrossRef]

36. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference for Learning
Representations, San Diego, CA, USA, 7–9 May 2015.

37. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]

http://doi.org/10.1016/j.actaastro.2010.10.021
http://doi.org/10.1109/TAES.2018.2843578
http://doi.org/10.1177/0142331212451991
http://doi.org/10.1007/s11263-008-0152-6
http://doi.org/10.1109/TAES.2020.2999148
http://doi.org/10.2514/1.A34124
http://doi.org/10.1109/TPAMI.2019.2929257
http://doi.org/10.1109/TPAMI.2020.2983686
http://doi.org/10.1109/34.888718


Information 2022, 13, 95 18 of 18

38. Rennie, C.; Shome, R.; Bekris, K.E.; De Souza, A.F. A dataset for improved rgbd-based object detection and pose estimation for
warehouse pick-and-place. IEEE Robot. Automat. Lett. 2016, 1, 1179–1185. [CrossRef]

39. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model Based Training, Detection and Pose
Estimation of Texture-Less 3d Objects in Heavily Cluttered Scenes. In Proceedings of the ACCV, Deajeon, Korea, 5–9 November 2012.

40. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly
reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [CrossRef]

http://doi.org/10.1109/LRA.2016.2532924
http://doi.org/10.1016/j.patcog.2014.01.005

	Introduction 
	Definition of Coordinate Frame and Ambiguity Elimination 
	Coordinate Frame Definition 
	Sparse Point Selection 

	Pose Estimation Network, Hvnet, Based on Hough Voting 
	Backbone Feature Extraction Network 
	Heatmap Regression Network 
	Voting Strategy 

	Experiment 
	Measurement Parameters 
	Analysis of the Results 
	Analysis of the Experimental Results of the Position Error 
	Analysis of Experimental Results of the Rotation Angle Error 


	Conclusions 
	References

