
����������
�������

Citation: Shi, K.; Liu, X.;

Alrabeiah, M.; Guo, X.; Lin, J.; Liu, H.;

Chen, J. Image Retrieval via

Canonical Correlation Analysis and

Binary Hypothesis Testing.

Information 2022, 13, 106.

https://doi.org/10.3390/

info13030106

Academic Editor: Vincenzo Moscato

Received: 7 January 2022

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Image Retrieval via Canonical Correlation Analysis and Binary
Hypothesis Testing †

Kangdi Shi 1,* , Xiaohong Liu 1 , Muhammad Alrabeiah 1 , Xintong Guo 1, Jie Lin 2, Huan Liu 1

and Jun Chen 1

1 The Department of Electrical and Computer Engineering, McMaster University,
Hamilton, ON L8S 4S1, Canada; liux173@mcmaster.ca (X.L.); alrabm@mcmaster.ca (M.A.);
guox127@mcmaster.ca (X.G.); liuh127@mcmaster.ca (H.L.); chenjun@mcmaster.ca (J.C.)

2 The Institute for Infocomm Research, A-STAR, Singapore 138632, Singapore; lin-j@i2r.a-star.edu.sg
* Correspondence: shik9@mcmaster.ca
† This paper is an extended version of our presentation at the 16th Canadian Workshop on Information Theory,

Hamilton, ON, Canada, 2–5 June 2019.

Abstract: Canonical Correlation Analysis (CCA) is a classic multivariate statistical technique, which
can be used to find a projection pair that maximally captures the correlation between two sets of
random variables. The present paper introduces a CCA-based approach for image retrieval. It
capitalizes on feature maps induced by two images under comparison through a pre-trained Convolu-
tional Neural Network (CNN) and leverages basis vectors identified through CCA, together with an
element-wise selection method based on a Chernoff-information-related criterion, to produce compact
transformed image features; a binary hypothesis test regarding the joint distribution of transformed
feature pair is then employed to measure the similarity between two images. The proposed approach
is benchmarked against two alternative statistical methods, Linear Discriminant Analysis (LDA)
and Principal Component Analysis with whitening (PCAw). Our CCA-based approach is shown
to achieve highly competitive retrieval performances on standard datasets, which include, among
others, Oxford5k and Paris6k.

Keywords: canonical correlation analysis; chernoff information; hypothesis testing; image retrieval;
multivariate gaussian distribution

1. Introduction

The past two decades have witnessed an explosive growth of online image databases.
This growth paves the way for the development of visual-data-driven applications, but
at the same time poses a major challenge to the Content-Based Image Retrieval (CBIR)
technology [1].

Traditional approaches to CBIR mostly rely on the exploitation of handrafted scale- and
orientation-invariant image features [2–6], which have achieved varying degrees of success.
Recent advances [7,8] in Deep Learning (DL) for image classification and object detection
have generated significant interests in bringing Convolutional Neural Networks (CNNs) to
bear upon CBIR. Although CNN models are usually trained for purposes different from
CBIR, it is known [9] that features extracted from modern deep CNNs, commonly referred
to as DL features, have great potential in this respect as well. Retrieval methods utilizing DL
features can generally be divided into two categories: without/with fine-tuning the CNN
model [10]. The early application of CNN to CBIR almost exclusively resorts to methods in
the first category, which use Off-The-Shelf (OTS) CNNs (i.e., popular pre-trained CNNs)
for feature extraction (see, e.g., [11–14]). A main advantage of such methods is the low
implementation cost [15,16], which is largely attributed to the direct adoption of pre-trained
CNNs. Performance-wise, they are comparable to the state-of-the-art traditional methods
that rely on handcrafted features. In contrast, many recent methods, such as [17–19],
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belong to the second category, which take advantage of the fine-tuning gain to enhance
the discriminatory power of the extracted DL features. A top representative from this
category is the end-to-end learning framework proposed in [20]. It outperforms most
existing traditional and OTS-CNN-based methods on standard testing datasets; however,
this performance improvement comes at the cost of training a complex triple-branched
CNN using a large dataset, which might not always be affordable in practice.

Many preprocessing methods have been developed with the goal of better utilizing
DL features for image retrieval, among which Principal Component Analysis with whiten-
ing [21] (PCAw) and Linear Discriminant Analysis [22] (LDA) are arguably most well
known. Despite being extremely popular, PCA and LDA have their respective weaknesses:
the dimensionality reduction in PCA often leads to the elimination of critical principal
components with a small contribution rate while the performance of LDA tends to suffer
from decreasing differences between mismatched features. As such, there is great need for
a preprocessing method with improved robustness against dimensionality reduction and
enhanced sensitivity to feature mismatch. In this work, we aim to put forward a potential
solution with desired properties by bringing Canonical Correlation Analysis (CCA) [23]
into the picture.

CCA is a multivariate technique for elucidating the the associations among two sets of
variables. It can be used to identify a projection pair of a given dimension that maximally
captures the correlation between the two sets. The applications of CCA are too numerous
to list. In cross-modality matching/retrieval alone, extensive investigations have been
carried out as evidenced by a growing body of literature, from those based on handcrafted
features [24] to the more recent ones that make use of DL features [25–27]. There is also
some related development on the theoretical front (see, e.g., [28,29]).

Motivated by the consideration of computational efficiency and affordability as well
as the weaknesses inherent in the existing preprocessing methods, we develop and present
in this paper a new image retrieval method based on OTS deep CNNs. Our method is
built primarily upon CCA, but has several notable differences from the related works. For
the purpose of dimensionality reduction (i.e., feature compression), the proposed method
employs a basis-vector selection technique, which invokes a Chernoff-information-based
criterion to rank how discriminative the basis vectors are. Both the basis vectors and
their ranking are learned from a training set, which consists of features extracted from a
pre-trained CNN—the neural network itself is not retrained/finetuned in our work. Given
a new pair of features, the ranked basis vectors are used to perform transformation and
compression. This is followed by a binary hypothesis test on the joint distribution of pairs
of transformed features, which yields a matching score that can be leveraged to identify
top candidates for retrieval. We show via extensive experimental results that the proposed
CCA-based method is able to deliver highly competitive results on standard datasets,
which include, among others, Oxford5k and Parise6k.

This paper is organized as follows. The proposed CCA-based preprocessing method
along with the associated matching procedure is detailed in Section 2. Section 3 includes
the experimental results and the relevant discussions. We close the paper in Section 4 with
some concluding remarks.

2. Proposed Method

The proposed image retrieval method utilizes CCA in an essential way. It leverages
a training dataset of features extracted from a pre-trained CNN model (see Figure 1) to
learn a set of canonical vectors, which serve as the basis vectors of the feature space. These
vectors are used to project the features of a pair of images into a new space, in which a
Chernoff-information-based selection method is applied to identify the most discriminative
elements of the transformed features. Such elements then undergo a binary hypothesis test
to measure the similarity between the features and, consequently, the two images. This
process is expounded in the following four subsections (see also Figure 2).
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Figure 1. Modified VGG16 for feature extraction.

Feature vectors
from matching pairs:
X(M), Y(M)

Feature vectors from
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J(M) = UΛUT
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Figure 2. Block diagram of the proposed method.
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2.1. Image Pre-Processing and Feature Extraction

The CNN model adopted in this work for feature extraction is VGG16 [30]. It takes an
input image of maximum size 1024× 1024 and produces 512 feature maps of maximum
size 32× 32 from its very last pooling layer. A single feature element is extracted from each
feature map via pooling. A 512-dimensional vector, which resulted from the concatenation
of these elements, is converted, through centralization and normalization (here central-
ization is performed by subtracting the mean (computed based on the training set) while
normalization yields a unit-length vector), to a global feature vector, which serves as a
compact representation of the image.

2.2. Correlation Analysis and Canonical Vectors

At the heart of the proposed method lies so-called canonical vectors, which are learned
from a large training set of matching and non-matching image features in a manner inspired
by CCA. The learning process consists of the following steps.

Step 1 : Construct two raw matching matrices

X(RM) = [x1, x2, . . . , xL],

Y(RM) = [y1, y2, . . . , yL],

where L is the number of raw matching pairs, xl and yl for l ∈ {1, 2, ..., L} are a pair of global
feature vectors representing two matching images (here “matching images" means images
from the same class while “non-matching images" means images from different classes).

Using the raw matching pairs X(RM) and Y(RM), a pair of matching-feature matrices
is formed:

X(M) = [x1, y1, x2, y2, ...yL, xL],

Y(M) = [y1, x1, y2, x2, ..., xL, yL].

The total number of training pairs is 2L after feature order flipped. This is performed to
ensure that in Equation (1) below, the diagonal blocks are identical and symmetric, so are
the off-diagonal blocks. The size of both X(M) and Y(M) is 512× 2L. The training data
matrix of matching features H(M) is constructed by stacking X(M) on Y(M):

H(M) =

[
X(M)

Y(M)

]
(1024×2L)

.

The estimated covariance matrix of matching features is given by

Φ(M) =
1

2L− 1
H(M)(H(M))T

=
1

2L− 1

[
X(M)

Y(M)

][
X(M)

Y(M)

]T

=

[
Σ
(M)
XX Σ

(M)
XY

Σ
(M)
YX Σ

(M)
YY

]
, (1)

where

Σ
(M)
XX =

X(M)(X(M))T

2L− 1
, Σ

(M)
YY =

Y(M)(Y(M))T

2L− 1
,

Σ
(M)
XY = Σ

(M)
YX =

X(M)(Y(M))T

2L− 1
=

Y(M)(X(M))T

2L− 1
.

Step 2: Randomly permuting the columns of one of the raw feature matrices, say from
Y(RM) to Y(RN), yields two raw non-matching matrices. More specifically, we construct
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two raw non-matching matrices by successively associating each column of X(RM) with a
randomly selected (without replacement) non-matching column from Y(RM). For example,

X(RN) = [x1, x2, . . . , xL],

Y(RN) = [y3, y7, . . . , yL−4].

Based on these two raw non-matching matrices, the feature order flipping is performed
to generate X(N) and Y(N):

X(N) = [x1, y3, x2, y7, ..., xL, yL−4],

Y(N) = [y3, x1, y7, x2, ..., yL−4, xL].

With a procedure similar to that of step 1, we can estimate the covariance matrix Φ(N)

for non-matching features H(N):

Φ(N) =
1

2L− 1
H(N)(H(N))T

=
1

2L− 1

[
X(N)

Y(N)

][
X(N)

Y(N)

]T

=

[
Σ
(N)
XX Σ

(N)
XY

Σ
(N)
YX Σ

(N)
YY

]
. (2)

Note that
Σ
(N)
XX = Σ

(N)
YY = Σ

(M)
XX = Σ

(M)
YY = Σauto,

for they are the covariances of sets of random image features. As in Equation (1), the diagonal
blocks in Equation (2) are also identical and symmetric, so are the off-diagonal blocks.

Step 3: Since Σauto is positive definite, it follows that Θ−
1
2 is well defined, where

Θ =

[
Σauto 0

0 Σauto

]
.

We can multiply both covariance matrices, Φ(M) and Φ(N), on the left and right by Θ−
1
2 to

de-correlate their diagonal blocks:

Φ̂(M) = Θ−
1
2 Φ(M)Θ−

1
2 =

[
I J(M)

J(M) I

]
,

Φ̂(N) = Θ−
1
2 Φ(N)Θ−

1
2 =

[
I J(N)

J(N) I

]
,

where

J(M) = Σ
− 1

2
autoΣ

(M)
XY Σ

− 1
2

auto = Σ
− 1

2
autoΣ

(M)
YX Σ

− 1
2

auto,

J(N) = Σ
− 1

2
autoΣ

(N)
XY Σ

− 1
2

auto = Σ
− 1

2
autoΣ

(N)
YX Σ

− 1
2

auto.

Step 4: Apply eigen-decomposition [31] on J(M):

J(M) = UΛUT ,

where U is a unitary matrix, and Λ is a diagonal matrix with the diagonal entries being the
eigenvalues of J(M). The columns of U are exactly the sought-after canonical vectors. The
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blockwise left- and right-multiplication of both Φ̂(M) and Φ̂(N) by UT and U, respectively,
gives the following pair of matrices:[

UTU UTJ(M)U
UTJ(M)U UTU

]
=

[
I Λ
Λ I

]
, (3)[

UTU UTJ(N)U
UTJ(N)U UTU

]
=

[
I Π
Π I

]
, (4)

where Π = UTJ(N)U. The off-diagonal block Λ in Equation (3) is a diagonal matrix whereas
Π in Equation (4) is not necessarily so. Nevertheless, it will be seen that in practice Π is
often close to a zero matrix (as two non-matching image features tend to be uncorrelated)
and thus is approximately diagonal as well.

2.3. Chernoff Information for Canonical Vector Selection

Note that the learned canonical vectors of matching image features form an orthonor-
mal basis of R512. These vectors are not necessarily equally useful for the purpose of
measuring the similarity between two feature vectors of an unknown pair of images; there-
fore, it is of considerable interest to quantify how discriminative each canonical vector is. To
this end, the off-diagonal blocks of the covariance matrix of non-matching image features
can be brought into play. Evaluating Chernoff information (CI) [32,33] with respect to the
diagonal elements of both Λ and Π yields a ranking of the most different diagonal element
pairs, which can be used to guide the selection of canonical vectors.

Define the following set of 2× 2 matrices

S(M)
t =

[
1 c(M)

t
c(M)

t 1

]
,

S(N)
t =

[
1 c(N)

t
c(N)

t 1

]
,

using matching coefficient c(M)
t = [Λ]tt and non-matching coefficient c(N)

t = [Π]tt, t ∈
{1, 2, . . . , 512}, determined by the diagonal elements of Λ and Π:

Λ =


c(M)

1 0 . . . 0
0 c(M)

2 . . . 0
...

...
. . .

...
0 0 . . . c(M)

512

,

Π =


c(N)

1 π1,2 . . . π1,512

π2,1 c(N)
2 . . . π2,512

...
...

. . .
...

π512,1 π512,2 . . . c(N)
512

.

Now let S(λt)
t = (λt(S

(M)
t )−1 + (1− λt)(S

(N)
t )−1)−1, λt ∈ [0, 1] and define

D(S(λt)
t ||S(M)

t ) =
1
2

loge
|S(M)

t |
|S(λt)

t |
+

1
2

tr((S(M)
t )−1S(λt)

t )− 1,

D(S(λt)
t ||S(N)

t ) =
1
2

loge
|S(N)

t |
|S(λt)

t |
+

1
2

tr((S(N)
t )−1S(λt)

t )− 1,
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where tr(·) is the trace operator. Let λt = λ∗t be the solution of D(S(λt)
t ||S(M)

t ) = D(S(λt)
t ||

S(N)
t ). The Chernoff information CI(S(M)

t ||S(N)
t ) is defined as

CI(S(M)
t ||S(N)

t ) = D(S(λ∗t )
t ||S(M)

t ) = D(S(λ∗t )
t ||S(N)

t ).

An expression for individual λ∗t is derived in Appendix A.
Given λ∗t , CI of all pairs (S(M)

t , S(N)
t ) can be evaluated, leading to a ranking (greater CI

corresponds to higher rank) of the most different pairs of diagonal elements (c(M)
t , c(N)

t ) and,
consequently, the most discriminative canonical vectors of U. Let the k most discriminative
vectors serve as the columns of the new canonical vector matrix Ũ. Moreover, select the
top k different pairs of diagonal elements (c̃(M)

i , c̃(N)
i ) and the corresponding (S̃(M)

i , S̃(N)
i ),

where i ∈ {1, 2, . . . , k}.

2.4. Similarity Measurement

The selected canonical vectors can be leveraged to measure the similarity between
an arbitrary pair of images through a binary hypothesis test. Let (xr, yc) be an arbitrary
pair of global feature vectors. The exact joint distribution of (xr, yc) likely varies from
one dataset to another and does not admit an explicit characterization. Here we make the
simplifying assumption that xr and yc are jointly Gaussian. Specifically, we assume that
(xr, yc) ∼ N (0, Φ(M)) if they come from two matching images, and (xr, yc) ∼ N (0, Φ(N))
otherwise, where N (0, Σ) denotes a multivariate Gaussian distribution [34] with mean 0
and covariance matrix Σ. Given (xr, yc), the transformed feature vectors are computed
as follows:

w = [w1, w2, . . . , wk]
T = ŨTΣ

− 1
2

autoxr,

v = [v1, v2, . . . , vk]
T = ŨTΣ

− 1
2

autoyc.

Since Λ is a diagonal matrix, it follows that (w1, v1), (w2, v2), . . . , (wk, vk) are mutually
independent with (wi, vi) ∼ N (0, S̃(M)

i ) for i ∈ {1, 2, . . . , k} in the case where (xr, yc) is a
matching pair. We shall further assume that Π is also a diagonal matrix, which is justified
by the fact that in practice Π is often very close to a zero matrix (see Figure 3 and 4 for
some empirical evidences). As a consequence, (w1, v1), (w2, v2), . . . , (wk, vk) are mutually
independent with (wi, vi) ∼ N (0, S̃(N)

i ) for i ∈ {1, 2, . . . , k} in the case where (xr, yc) is a
non-matching pair. To check whether the given two images match or not, one can perform
a binary hypothesis test regarding the underlying distribution of (w, v): ⊗k

i=1N (0, S̃(M)
i )

vs. ⊗k
i=1N (0, S̃(N)

i ).

Note that N (0, S̃(M)
i ) has probability density

PM(wi, vi) =
e
− 1

2 [wi vi]

 1 c̃(M)
i

c̃(M)
i 1

−1[wi
vi

]
√√√√(2π)2

∣∣∣∣∣ 1 c̃(M)
i

c̃(M)
i 1

∣∣∣∣∣
(5)

while N (0, S̃(N)
i ) has probability density
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PN(wi, vi) =
e
− 1

2 [wi vi]

 1 c̃(N)
i

c̃(N)
i 1

−1[wi
vi

]
√√√√(2π)2

∣∣∣∣∣ 1 c̃(N)
i

c̃(N)
i 1

∣∣∣∣∣
. (6)

We are now in a position to conduct a binary hypothesis test based on the confidence
score given below:

scoreG = log
⊗n

i=1PM(wi, vi)

⊗n
i=1PN(wi, vi)

=
k

∑
i=1

log
PM(wi, vi)

PN(wi, vi)
. (7)

Substituting Equations (5) and (6) into Equation (7) gives

scoreG =
k

∑
i=1

(log PM(wi, vi)− log PN(wi, vi))

=
k

∑
i=1

(
−

w2
i − 2wivi c̃

(M)
i + v2

i

2π

√
(1− (c̃(M)

i )2)
+

w2
i − 2wivi c̃

(N)
i + v2

i

2π

√
(1− (c̃(N)

i )2)
+ log

√
1− (c̃(N)

i )2√
1− (c̃(M)

i )2

)
,

which is equivalent to

k

∑
i=1

(
−

w2
i − 2wivi c̃

(M)
i + v2

i√
(1− (c̃(M)

i )2)
+

w2
i − 2wivi c̃

(N)
i + v2

i√
(1− (c̃(N)

i )2)

)
(8)

as the log term and the scalar 2π have no effect on rankings. This confidence score reflects
the degree of similarity between the two given images. The higher the score is, the more
likely the images match each other.

3. Experimental Results
3.1. Training Datasets

We resort to two datasets for training, namely, 120k-Structure from Motion (120k-
SfM) and 30k-Structure from Motion (30k-SfM) [35]. Both are preprocessed to eliminate
overlaps with the evaluation datasets. A succinct description of these two datasets can be
found below:

3.1.1. 120k-Structure from Motion

120k-Structure from Motion (120k-SfM) dataset is constructed from the one used in
the work of Schonberger et al. [36], which contains 713 3D models with nearly 120k
images. The maximum size of each image is 1024× 1024. The original dataset includes all
image from Oxford5k and Paris6k. Those images are removed to avoid overlaps (in total
98 clusters are eliminated).

3.1.2. 30k-Structure from Motion

30k-Structure from Motion (30k-SfM) dataset is a subset of 120k-SfM, which contains
approximately 30k images and 551 classes. The maximum size of images are resized to
362× 362.

Each dataset serves its own purpose; 30k-SfM is a small dataset while 120k-SfM is a
big one. This enables us to investigate the pros and cons of different datasets in terms of
their sizes. Compared to 30k-SfM, 120k-SfM supplies richer features to be explored by the
methods being tested.
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3.2. Training Details

Using each dataset, two lists of matching and non-matching pairs of images are created
for training—feature space analysis not CNN training. Table 1 shows some examples of
matching and non-matching pairs. Specifically, we randomly select 10,960 raw pairs from
30k-SfM and 58,502 raw pairs from 120k-SfM. We double the number matching and non-
matching pairs by simultaneously using each raw pair and its flipped version to ensure
that the diagonal/off-diagonal blocks of the data covariances in Equations (1) and (2) are
identical and symmetric. This could also be seen from Table 1: each pair is used twice but
with its image order flipped.

Table 1. Examples of matching/non-matching pairs.

Matching Pair

Non-Matching Pair

The feature vector of a given image is extracted from the very last pooling layer of a
pre-trained VGG16 via one of the following three pooling strategies: Global Max (MAC)
pooling, Global Average (AVE) pooling, and global Standard Deviation (SD) pooling (global
Max (MAC) pooling, Global Average (AVE) pooling, and global Standard Deviation (SD)
pooling compute, respectively, the maximum value, the average value, and the standard
deviation of the feature map in each channel). We conducted separate training for each of
these strategies in order to compare performances.

For benchmarking, the proposed method (G-CCA) and its variant (S-CCA) were
trained along with three alternative feature-space analysis methods, i.e., PCAw [21], Super-
vised PCA (SPCA) [37] and Multiclass LDA (MLDA) [38]. G-CCA is depicted in Figure 2
while S-CCA is the same as G-CCA except that in the final step the scalar similarity measure
is used instead (namely, in the last block of Figure 2, scoreG is replaced with scoreS = wT ·v).
PCAw infers a basis matrix of the feature space from the covariance matrix of the training
image features. This basis matrix is used to whiten and compress new image features,
which are then leveraged to make a matching/non-matching decision based on the scalar
similarity measure. See [12] for a detailed description of the PCAw method and its perfor-
mance. Furthermore, we compared the proposed method with SPCA, which is a weighted
PCA method. It uses a Laplacian matrix to characterize the relationship among the classes
in the dataset. We implement SPCA by following the steps in [39]. As to LDA [40], its
application to image retrieval has also been thoroughly investigated [41], which is hardly
surprising given its popularity in statistical analysis. Here we use its variant MLDA [38] as
a competing feature-space analysis method. MLDA is trained using the classes provided
by both training datasets. It derives a set of projection vectors that offer the best linear
separation of the classes (full separation is achievable if the classes are linearly separable,
otherwise, MLDA produces some overlaps between the classes). These projection vectors
are employed to transform and compress (in the sense of dimensionality reduction) new
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feature vectors. Scalar similarity is then evaluated for the transformed features to determine
whether or not they match.

3.3. Implementation Details

In the experiment, we compare G-CCA, S-CCA with PCAw, SPCA, and MLDA. The
G-CCA and S-CCA are presented in this paper while the PCAw, SPCA, and MLDA are
implemented by following procedures in [21,38,39]. Here, we discuss some detailed issues
in the implementation.

Firstly, S-CCA, PCAw, SPCA, and MLDA use scalar similarity score to calculate the
confidence score while G-CCA uses the proposed score in Equation (8). Secondly, for
all these methods, the feature vectors are obtained via MAC, AVE, and SD pooling, and
centralization and normalization are performed. Thirdly, the performance comparisons are
conducted for eight dimensions: 512, 450, 400, 300, 200, 100, 50, and 25. Lastly, we calculate
the scores between the query image and each image in the test dataset, and obtain the image
retrieval results by ranking scores from high to low. All the methods are evaluated by the
mean Average Precision (mAP) (we calculatethe mAP without enforcing the monotonicity
for Precision (Recall) relationship). which can be formulated as follows:

mAP =
∑m

i=1 APi

m
with APi =

n

∑
k=1

P(k)∆r(k),

where APi is the average precision for the i-th query image, m is the total number of query
images, and n is the total number of images in the testing dataset, P(k) is the precision of
top k results, and ∆r(k) = R(k)− R(k− 1) with R(k) being the recall of top k results. For
calculating the precision P(K) and recall R(k), the positive labels for each query image are
provided by the test datasets.

Figure 3. Profile of the diagonal elements of Λ and Π (i.e., c(M)
t and c(N)

t , where t ∈ {1, 2, . . . , 512})
using AVE features. The CCA training was performed on the 120k-SfM dataset.

Figure 4. Profile of sorted diagonal elements of Λ and Π (i.e., c̃(M)
t and c̃(N)

t , where t ∈ {1, 2, . . . , 512})
using AVE features. The CCA training was performed on the 120k-SfM dataset.
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3.4. Evaluation Datasets and Details

Four datasets, namely, Oxford5k [42], Paris6k [43], ROxford [44], and RParis [44],
are used to assess the performance of each retrieval method. As the first two datasets are
contained in the large raw 120k-SfM dataset, they are excluded from the training dataset
via preprocessing. The last two datasets contain new annotations and more difficult query
images, and consequently create more challenges for image retrieval; therefore, they can
help test the reliability of our approach. A short description of each dataset is given below.

3.4.1. Oxford5k

Oxford5k dataset contains 5063 images and 55 query images for 11 different buildings.
It is annotated with bounding boxes for the main objects.

3.4.2. ROxford

ROxford dataset contains 4993 images and 70 query images for 11 different buildings.
Query images are excluded from the retrieval images. Same as Oxford5k, it is annotated
with bounding boxes for the main objects.

3.4.3. Paris6k

Paris6k dataset contains 6412 images and 55 query images for 11 different buildings.
It is also annotated with bounding boxes.

3.4.4. RParis

RParis dataset contains 6322 images and 70 query images for 11 different buildings.
Query images are excluded from the retrieval images. Same as Paris6k, it is annotated with
bounding boxes.

The performance of each retrieval method is evaluated using mean Average Precision
(mAP) [42]. The positive labels of each query image are provided by the datasets. The
standard evaluation protocol is followed for Oxford5k and Paris6k. As for the ROxford
and RParis datasets, the medium protocol setups in [44] are adopted. We crop all the
query images with the provided bounding boxes before feeding them to VGG16. Each
method undergoes training and evaluation twice. The first training used the small dataset,
30k-SfM, followed by evaluation. Then it was trained with the large dataset, 120k-SfM,
before evaluation. This enables us to study the effect of dataset size and diversity on the
methods under comparison.

3.5. Performance Evaluation and Analysis

Before getting into the performance evaluation of the proposed method, it is useful to
have some insights about how discriminative the canonical vectors are. Figures 5 and 6
show the profile of the diagonal elements of the off-diagonal blocks in Equations (3) and (4).
It can be seen that the values of c(N)

t fluctuate around zero whereas those of c(M)
t range

between −0.1 and 0.9. This observation suggests that there exists a set of canonical vectors
that can effectively tell apart matching from non-matching pairs of images. This is shown
in the rest of this subsection.

Table 2 reports the baseline performances of MAC, AVE, and SD without dimension-
ality reduction. Specifically, for these baselines, we directly calculate the scalar similarity
between the pooling features (after centralization and normalization) of the query im-
age and each image in the testing dataset. In the evaluation, we consider the proposed
method (G-CCA) and its variant with Gaussian-distribution-based hypothesis testing re-
placed by scalar similarity (S-CCA). From Table 2, we observe that G-CCA achieves better
performance than S-CCA in most cases except for Paris6k and AVE onRParis.
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Figure 5. A 2D visualization of matrix Π.

Figure 6. A 3D visualization of matrix Π.

Table 2. Performance comparison of the baseline, S-CCA, and G-CCA on Oxford5k,ROxford, Paris6k,
andRParis without dimension reduction.

Method Oxford5k ROxford Paris6k RParis
MAC 0.5296 0.3295 0.7455 0.5122
S-CCA + MAC 0.5800 0.3575 0.7726 0.5408
G-CCA + MAC 0.6275 0.3996 0.7455 0.5939
AVE 0.5312 0.2884 0.6467 0.4653
S-CCA + AVE 0.6845 0.4303 0.7845 0.5936
G-CCA + AVE 0.7146 0.4444 0.7507 0.5812
SD 0.6095 0.3834 0.7355 0.5311
S-CCA + SD 0.6943 0.4503 0.8191 0.6199
G-CCA + SD 0.7419 0.4806 0.8164 0.6403

1. The evaluation results are based on 120k-SfM. 2. For the same type of features, the best performances are
highlighted in bold.

By considering three different pooling strategies, three image retrieval methods are
trained on the 30k-SfM dataset and evaluated on all four test sets. Table 3 provides
a comprehensive depiction of the experimental results for each retrieval method with
different pooling strategies and feature dimensionality choices (compression levels). The
results for MLDA are not reported there, for MLDA cannot be trained on the 30k-SfM
dataset, which is a consequence of the fact that the difference between classes is too small as
far as MLDA training is concerned. From Table 3, four observations can be made. The first
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is regarding the effect of the pooling strategy. Specifically, SD pooling appears to result in
the most competitive performance for all methods at every choice of feature dimensionality
while MAC renders G-CCA superior to SPCA and PCAw at low dimensions over all
test sets. The second observation is that for MAC, AVE, and SD pooling strategies, the
proposed method outperforms PCAw at low feature dimensionality. As such, the proposed
method is a better choice for producing compact features than PCAw regardless of the
pooling strategy. The last observation is that G-CCA is more robust against dimensionality
reduction than S-CCA.

The performance of the proposed method can be improved by replacing 30k-SfM with
120k-SfM, which is a larger training set. Table 4 shows the corresponding evaluation results
for all the methods with different pooling strategies and dimensionality choices (the only
exception is SPCA for which the training on 120k-SfM is computationally infeasible as its
Laplacian matrix is too large to be stored on our computer). It is clear that the increased-size
training set leads to an improved mAP performance on all test sets and for all pooling
strategies. It is also interesting to note that the proposed method outperforms all others
on Oxford5k. This uniform superiority across all dimensions is only attained on Paris6k
using SD pooling. Although AVE and MAC improve mAP, they cause G-CCA to lose its
edge at high dimensions on Paris6k. In contrast, with SD pooling, the proposed method
retains its dominating performance at all feature dimensions. OnROxford andRParis, the
performance of G-CCA is better than MLDA at almost all dimensions with MAC. G-CCA
almost outperforms PCAw in every dimensions with all three pooling strategies.

Based on Tables 3 and 4, there are three notable advantages of G-CCA over MLDA,
PCAw, and SPCA. The first is that the CCA-based methods can be trained using datasets
with small differences between classes whereas MLDA cannot be trained on such datasets.
The second advantage is that G-CCA typically shows a more graceful performance degra-
dation than PCAw after dimensionality reduction. The last is that SPCA can not be trained
on large datasets as compared with G-CCA.

Tables 5–7 present some retrieval results for visual illustration. In Table 5, a query
image from the Oxford5k set is presented to PCAw, SPCA, and G-CCA, trained on the
30k-SfM set, while in Tables 6 and 7, a query image from the Oxford5k set is presented to
PCAw, MLDA, and G-CCA, trained on the 120k-SfM set. We list top 10 matches for each
method with each list ranked using the matching score associated with the corresponding
method. Tables 5 and 6 show the top 10 retrieved images for different methods with SD
pooling while Table 7 gives examples for G-CCA with different pooling strategies.
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Table 3. Evaluation results from 30k-SfM on Oxford5k,ROxford, Paris6k, andRParis.

Oxford5k

Dim
MAC AVE SD

SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.3589 0.3555 0.2431 0.3873 0.4474 0.4443 0.3091 0.4873 0.4757 0.4838 0.3439 0.4979

50 0.4412 0.4258 0.3174 0.4487 0.4930 0.4933 0.3782 0.5127 0.5086 0.5074 0.4403 0.5690

100 0.5016 0.5027 0.4122 0.5043 0.5599 0.5697 0.5447 0.6034 0.6002 0.6041 0.5191 0.6164

200 0.5628 0.5583 0.4818 0.5501 0.6083 0.6086 0.6157 0.6445 0.6635 0.6619 0.6280 0.6772

300 0.5723 0.5672 0.5280 0.5379 0.6416 0.6307 0.6428 0.6552 0.6753 0.6736 0.6513 0.6830

400 0.5728 0.5715 0.5505 0.5405 0.6517 0.6385 0.6373 0.6525 0.6811 0.6811 0.6703 0.6745

450 0.5670 0.5654 0.5609 0.5364 0.6544 0.6422 0.6393 0.6538 0.6839 0.6849 0.6740 0.6746

512 0.5615 0.5601 0.5580 0.5363 0.6506 0.6388 0.6493 0.6537 0.6766 0.6763 0.6764 0.6743

ROxford

Dim
MAC AVE SD

SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.2070 0.2226 0.1495 0.2276 0.2702 0.2709 0.1939 0.2590 0.2883 0.2856 0.2116 0.3031

50 0.2823 0.2771 0.1886 0.2914 0.2731 0.2757 0.2206 0.2876 0.3117 0.3123 0.2590 0.3485

100 0.3259 0.3281 0.2484 0.3282 0.3304 0.3197 0.3083 0.3372 0.3885 0.3795 0.3007 0.3848

200 0.3462 0.3545 0.3071 0.3569 0.3569 0.3531 0.3759 0.4002 0.4399 0.4368 0.4021 0.4417

300 0.3595 0.3593 0.3290 0.3413 0.3901 0.3771 0.3911 0.4057 0.4507 0.4420 0.4173 0.4484

400 0.3576 0.3568 0.3424 0.3400 0.3905 0.3796 0.3798 0.4065 0.4526 0.4381 0.4454 0.4538

450 0.3551 0.3544 0.3466 0.3398 0.4002 0.3772 0.3876 0.4052 0.4498 0.4382 0.4435 0.4499

512 0.3442 0.3469 0.3444 0.3396 0.4042 0.3767 0.3963 0.4077 0.4417 0.4383 0.4412 0.4419

Paris

Dim
MAC AVE SD

SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.4878 0.5084 0.4133 0.5464 0.4944 0.4330 0.4182 0.4990 0.5633 0.5858 0.4758 0.5969

50 0.6027 0.6208 0.5391 0.6347 0.5692 0.5893 0.5898 0.6153 0.6415 0.6555 0.6084 0.6746

100 0.6691 0.6750 0.5848 0.6808 0.6441 0.6736 0.6559 0.6790 0.7290 0.7267 0.6988 0.7426

200 0.7035 0.6942 0.6384 0.7166 0.6931 0.6994 0.7049 0.7106 0.7719 0.7620 0.7501 0.7811

300 0.7004 0.6980 0.6701 0.7067 0.7109 0.7328 0.7297 0.7118 0.7834 0.7819 0.7739 0.7892

400 0.7076 0.7057 0.6893 0.7052 0.7375 0.7586 0.7418 0.7120 0.8010 0.7970 0.7885 0.7867

450 0.7091 0.7073 0.6964 0.7027 0.7482 0.7679 0.7472 0.7130 0.8067 0.8066 0.7969 0.7871

512 0.7032 0.7060 0.7039 0.7029 0.7508 0.7732 0.7520 0.7133 0.8020 0.8031 0.8036 0.7874
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Table 3. Cont.

RParis

Dim
MAC AVE SD

SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.3966 0.3944 0.3225 0.4212 0.3877 0.3981 0.3085 0.4212 0.4361 0.4410 0.3602 0.4433

50 0.4725 0.4738 0.4063 0.4781 0.4354 0.4442 0.4385 0.4538 0.5006 0.5015 0.4524 0.5056

100 0.5007 0.5021 0.4311 0.5106 0.4820 0.4886 0.4946 0.5082 0.5457 0.5501 0.5258 0.5653

200 0.5183 0.5182 0.4668 0.5370 0.5118 0.5129 0.5302 0.5355 0.5822 0.5827 0.5635 0.5985

300 0.5206 0.5200 0.4894 0.5285 0.5281 0.5306 0.5507 0.5377 0.5966 0.5964 0.5829 0.6045

400 0.5224 0.5219 0.5040 0.5272 0.5504 0.5507 0.5577 0.5379 0.6064 0.6070 0.5958 0.6024

450 0.5222 0.5200 0.5109 0.5255 0.5587 0.5590 0.5620 0.5383 0.6119 0.6121 0.6013 0.6027

512 0.5169 0.5168 0.5154 0.5256 0.5579 0.5588 0.5646 0.5384 0.6051 0.6067 0.6048 0.6028

1. The best performances in each dimension are highlighted in bold.

Table 4. Evaluation results from 120k-SfM on Oxford5k,ROxford, Paris6k, andRParis.

Oxford5k

Dim
MAC AVE SD

MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.3603 0.3906 0.2677 0.4019 0.4758 0.4266 0.2644 0.4821 0.4759 0.4790 0.3400 0.5212

50 0.4760 0.4319 0.3802 0.4987 0.5612 0.5033 0.4293 0.5572 0.5375 0.5355 0.4667 0.5956

100 0.5157 0.5275 0.4537 0.5481 0.6017 0.5756 0.5529 0.6402 0.6429 0.6240 0.5593 0.6688

200 0.5887 0.5453 0.5562 0.6231 0.6571 0.6437 0.6498 0.6964 0.6861 0.6410 0.6620 0.7244

300 0.6028 0.5669 0.5697 0.6306 0.6643 0.6474 0.6658 0.7102 0.7030 0.6711 0.6754 0.7382

400 0.5974 0.5810 0.5768 0.6275 0.6688 0.6681 0.6758 0.7139 0.7020 0.6970 0.6864 0.7422

450 0.5939 0.5840 0.5820 0.6279 0.6678 0.6728 0.6781 0.7144 0.6972 0.6986 0.6939 0.7412

512 0.5868 0.5799 0.5800 0.6275 0.6613 0.6711 0.6845 0.7146 0.6958 0.6946 0.6943 0.7419
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Table 4. Cont.

ROxford

Dim
MAC AVE SD

MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.2330 0.2503 0.1543 0.2459 0.2712 0.2533 0.1422 0.2441 0.2666 0.3037 0.1782 0.2853
50 0.2989 0.2664 0.2366 0.3025 0.3522 0.2802 0.2337 0.3366 0.3418 0.3357 0.2636 0.3254

100 0.3470 0.3521 0.2724 0.3437 0.3981 0.3318 0.3412 0.4290 0.4002 0.4075 0.3269 0.4073

200 0.3924 0.3510 0.3482 0.3991 0.4324 0.3911 0.3913 0.4411 0.4497 0.4192 0.4085 0.4622

300 0.4006 0.3557 0.3497 0.3986 0.4404 0.3920 0.4056 0.4430 0.4645 0.4454 0.4335 0.4796

400 0.3964 0.3625 0.3526 0.4001 0.4412 0.4106 0.4215 0.4462 0.4673 0.4609 0.4429 0.4812

450 0.3941 0.3613 0.3587 0.3998 0.4363 0.4159 0.4215 0.4443 0.4624 0.4604 0.4394 0.4807

512 0.3881 0.3570 0.3575 0.3996 0.4267 0.4136 0.4303 0.4444 0.4597 0.4501 0.4503 0.4806

Paris6k

Dim
MAC AVE SD

MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.5781 0.4878 0.5109 0.6270 0.5553 0.5013 0.4442 0.5693 0.6204 0.5543 0.5269 0.6611

50 0.6384 0.6153 0.5416 0.6679 0.6362 0.5893 0.5467 0.6314 0.6900 0.6575 0.5935 0.6968

100 0.6916 0.6788 0.6226 0.7339 0.6994 0.6736 0.6657 0.6910 0.7502 0.7313 0.7105 0.7641

200 0.7244 0.7124 0.6765 0.7674 0.7162 0.6994 0.7220 0.7491 0.7845 0.7842 0.7760 0.8043

300 0.7493 0.7214 0.6900 0.7719 0.7299 0.7328 0.7538 0.7491 0.8030 00.8046 0.7973 0.8160

400 0.7548 0.7230 0.7146 0.7729 0.7247 0.7586 0.7729 0.7507 0.8042 0.8143 0.8067 0.8164

450 0.7540 0.7222 0.7729 0.7455 0.7197 0.7679 0.7775 0.7508 0.8003 0.8144 0.8096 0.8161

512 0.7549 0.7288 0.7726 0.7455 0.7111 0.7732 0.7845 0.7507 0.7971 0.8159 0.8164 0.8191

RParis

Dim
MAC AVE SD

MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.4321 0.3728 0.3956 0.4787 0.4524 0.3745 0.3607 0.4455 0.4817 0.4136 0.4075 0.5032

50 0.4910 0.4685 0.4214 0.5156 0.4944 0.4495 0.4229 0.4877 0.5373 0.4998 0.4611 0.5415

100 0.5339 0.5096 0.4681 0.5631 0.5003 0.5101 0.5052 0.5340 0.5796 0.5596 0.5472 0.5970

200 0.5526 0.5346 0.5066 0.5910 0.5656 0.5310 0.5437 0.5678 0.6066 0.6002 0.5928 0.6317

300 0.5520 0.5425 0.5124 0.5942 0.5809 0.5566 0.5639 0.5799 0.6195 0.6156 0.6021 0.6408

400 0.5437 0.5406 0.5282 0.5941 0.5843 0.5738 0.5824 0.5857 0.6165 0.6228 0.6072 0.6401

450 0.5399 0.5369 0.5313 0.5941 0.5829 0.5796 0.5844 0.5813 0.6136 0.6187 0.6118 0.6401

512 0.5333 0.5387 0.5408 0.5939 0.5830 0.5828 0.5936 0.5812 0.6093 0.6178 0.6199 0.6403

1. The best performances in each dimension are highlighted in bold.
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Table 5. Image retrieval comparison of PCAw, SPCA, and G-CCA.

Query TOP 10 Retrieved Images

A

B

C

1. Top 10 retrieved images from Oxford5k. (A) SD + PCAw. (B) SD + SPCA (C) SD + G-CCA. 2. Correct images
are bounded with green boxes, wrong images are bounded with red boxes.

Table 6. Image retrieval comparison of PCAw, MLDA, and G-CCA.

Query TOP 10 Retrieved Images

A

B

C

1. Top 10 retrieved images from Oxford5k. (A) SD + PCAw. (B) SD + MLDA (C) SD + G-CCA. 2. Correct images
are bounded with green boxes, wrong images are bounded with red boxes.

Table 7. Image retrieval comparison of G-CCA with MAC, AVE, and SD feature.

Query TOP 10 Retrieval Images

A

B

C

1. top 10 retrieved images from Oxford5k. (A) MAC + G-CCA. (B) AVE + G-CCA (C) SD + G-CCA. 2. Correct
images are bounded with green box, wrong images are bounded with red box.

4. Conclusions

In view of the success of DL in image classification, a CCA-based method is proposed
to exploit DL features for image retrieval applications. By adopting an OTS CNN without
fine-tuning, it achieves good retrieval accuracy with a minimal computational overhead. As
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shown by the experimental results on standard evaluation datasets, the proposed method
is performance-wise competitive against traditional and other OTS-CNN-based methods.
Moreover, it exhibits improved robustness against dimensionality reduction and enhanced
sensitivity to feature mismatch.
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Appendix A. Chernoff Information between Two 2-Dimensional
Gaussian Distributions

For notational simplicity, we suppress subscript t in the following derivation. Consider

S(M) =

[
1 c(M)

c(M) 1

]
, S(N) =

[
1 c(N)

c(N) 1

]
,

where c(M) and c(N) are two corresponding coefficients. Let S(λ) = (λ(S(M))−1 + (1− λ)
(S(N))−1)−1, λ ∈ [0, 1]. Now we proceed to find the solution λ = λ∗ of the equation
D(S(λ)||S(M)) = D(S(λ)||S(N)).

Note that

D(S(λ)||S(M)) = D(S(λ)||S(N))

⇔ loge
|S(M)|
|S(N)|

= tr(((S(N))−1 − (S(M))−1)S(λ)).

We have

((S(N))−1 − (S(M))−1)S(λ)

=
1
λ
((λ(S(M))−1S(N) + (1− λ)I)−1 − I).

It can be verified that

(λ(S(M))−1S(N) + (1− λ)I)−1

=
1
θ

 λ(1−c(M)c(N))

1−(c(M))2 + 1− λ
λ(c(M)−c(N))

1−(cM)2

λ(c(M)−c(N))

1−(c(M))2
λ(1−c(M)c(N))

1−(c(M))2 + 1− λ

,

where

θ = − (c(N) − c(M))2

1− (c(M))2
λ2 +

2c(M)(c(M) − c(N))

1− (c(M))2
λ + 1.

As a consequence,

https://github.com/ShiKangdi/Image-Retrieval-via-Canonical-Correlation-Analysis-and-Binary-Hypothesis-Testing
https://github.com/ShiKangdi/Image-Retrieval-via-Canonical-Correlation-Analysis-and-Binary-Hypothesis-Testing
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tr(((S(N))−1 − (S(M))−1)S(λ))

=
2
θ

( (c(N) − c(M))2

1− (c(M))2
λ +

c(M)(c(N) − c(M))

1− (c(M))2

)
.

Therefore, λ = λ∗ is a root in [0, 1] of the following quadratic equation:

αλ2 + βλ + γ = 0, (A1)

where

α =
(c(N) − c(M))2

1− (c(M))2
loge
|S(M)|
|S(N)|

,

β =
2(c(N) − c(M))2

1− (c(M))2
− 2c(M)(c(M) − c(N))

1− (c(M))2
loge
|S(M)|
|S(N)|

,

γ =
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

|S(M)|
|S(N)|

.

We shall show that Equation (A1) has a unique root in [0, 1], which is given by

λ∗ =
−β +

√
β2 − 4αγ

2α
. (A2)

Clearly, Equation (A1) must have a root in [0, 1] since D(S(λ)||S(M))|λ=0 > 0,
D(S(λ)||S(N))|λ=1 > 0, and D(S(λ)||S(M))|λ=1 = D(S(λ)||S(N))|λ=0 = 0. So it remains
to prove the uniqueness of this root.

First consider the case (c(N))2 > (c(M))2. It is clear that α > 0 and

γ =
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

|S(M)|
|S(N)|

=
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

1− (c(M))2

1− (c(N))2

≤ 2c(M)(c(N) − c(M))

1− (c(M))2
− (c(N))2 − (c(M))2

1− (c(M))2

= − (c(N) − c(M))2

1− (c(M))2

< 0,

where the first inequality is due to loge x ≥ x−1
x . Therefore, the two roots of Equation (A1)

must be of different signs, which implies that there exists a unique root in [0, 1] with the
expression given by Equation (A2).

Next consider the case (c(N))2 < (c(M))2. Define λ = 1− λ. Equation (A1) can be
written equivalently as

α(1− λ)2 + β(1− λ) + γ = 0,

i.e.,

αλ
2 − (2α + β)λ + (α + β + γ) = 0. (A3)

Note that
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2α + β

=
2(c(N) − c(M))2

1− (c(M))2
− 2c(N)(c(M) − c(N))

1− (c(M))2
loge
|S(M)|
|S(N)|

and

α + β + γ

=
2c(N)(c(N) − c(M))

1− (c(M))2
− 1− (c(N))2

1− (c(M))2
loge
|S(M)|
|S(N)|

.

Therefore, Equation (A3) can be rewritten as

αλ
2
+ βλ + γ = 0, (A4)

where

α =
(c(M) − c(N))2

1− (c(N))2
loge

|S(N)|
|S(M)|

,

β =
2(c(M) − c(N))2

1− (c(N))2
− 2c(N)(c(N) − c(M))

1− (c(N))2
loge

|S(N)|
|S(M)|

,

γ =
2c(N)(c(M) − c(N))

1− (c(N))2
− loge

|S(N)|
|S(M)|

.

A similar argument to that for the case (c(N))2 > (c(M))2 can be used to prove that
Equation (A4) has one root in [0, 1] and the other root in (−∞, 0). This implies that
Equation (A1) must have one root in [0, 1] and the other root in (1, ∞); the one in [0, 1] must
be given by Equation (A2) (note that α < 0 when (c(N))2 < (c(M))2).
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19. Radenović, F.; Tolias, G.; Chum, O. CNN image retrieval learns from bow: Unsupervised fine-tuning with hard examples. In
European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–20.

20. Gordo, A.; Almazan, J.; Revaud, J.; Larlus, D. End-to-end learning of deep visual representations for image retrieval. Int. J.
Comput. Vis. 2017, 124, 237–254. [CrossRef]

21. Hyvärinen, A.; Hurri, J.; Hoyer, P.O. Principal components and whitening. In Natural Image Statistics; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 93–130.

22. Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany,
2013; pp. 237–280.

23. Johnson, R.A.; Wichern, D.W. Canonical correlation analysis. In Applied Multivariate Statistical Analysis, 6th ed.; Pearson:
Upper Saddle River, NJ, USA, 2018; pp. 539–574.

24. Gong, Y.; Ke, Q.; Isard, M.; Lazebnik, S. A multi-view embedding space for modeling internet images, tags, and their semantics.
Int. J. Comput. Vis. 2014, 106, 210–233. [CrossRef]

25. Yan, F.; Mikolajczyk, K. Deep correlation for matching images and text. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3441–3450.

26. Dorfer, M.; Schlüter, J.; Vall, A.; Korzeniowski, F.; Widmer, G. End-to-end cross-modality retrieval with cca projections and
pairwise ranking loss. Int. J. Multimed. Inf. Retr. 2018, 7, 117–128. [CrossRef]

27. Yu, Y.; Tang, S.; Aizawa, K.; Aizawa, A. Category-based deep cca for fine-grained venue discovery from multimodal data. arXiv
2018, arXiv:1805.02997.

28. Lin, Z.; Peltonen, J. An information retrieval approach for finding dependent subspaces of multiple views. In International
Conference on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–16.

29. Yair, O.; Talmon, R. Local canonical correlation analysis for nonlinear common variables discovery. IEEE Trans. Signal Process.
2017, 65, 1101–1115. [CrossRef]

30. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, arXiv:1409.1556.
31. Abdi, H. The eigen-decomposition: eigenvalues and eigenvectors. In Encyclopedia of Measurement and Statistics; SAGE Publications, Inc.:

Thousand Oaks, CA, USA 2007; pp. 304–308.
32. Nielsen, F. An information-geometric characterization of chernoff information. IEEE Signal Process. Lett. 2013, 20, 269–272.

[CrossRef]
33. Nielsen, F. Chernoff information of exponential families. arXiv 2011, arXiv:1102.2684.
34. Prince, S.J. Common probability distribution. In Computer Vision: Models, Learning and Inference; Cambridge University Press:

Cambridge, England, 2012; pp. 35–42.
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