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Abstract: A graph is a tool for designing a system’s required interconnection network. The topology
of such networks determines their compatibility. For the first time, in this work we construct
subdivided ηζ network S(ηζ Γ) and discussed their topology. In graph theory, there are a variety
of invariants to study the topology of a network, but topological indices are designed in such a
way that these may transform the graph into a numeric value. In this work, we study S(ηζ Γ) via
Zagreb connection indices. Due to their predictive potential for enthalpy, entropy, and acentric factor,
these indices gain value in the field of chemical graph theory in a very short time. ηζ Γ formed by ζ

time repeated process which consists ηζ copies of graph Γ along with (η
2)|V(Γ)|ζηζ−1 edges which

used to join these ηζ copies of Γ. The free hand to choose the initial graph Γ for desired network
S(ηζ Γ) and its relation with chemical networks along with the repute of Zagreb connection indices
enhance the worth of this study. These computations are theoretically innovative and aid topological
characterization of S(ηζ Γ).

Keywords: Zagreb connection indices; mk graphs; topological index; network; subdivided graph;
transformed graph

1. Introduction

Graph theory may use to design desired interconnection networks and provides
its topology. Furthermore, interlink computer science, chemistry and mathematics for
practical usage. This area of study has their worth as a separate field named Chem-
informatics, a combination of chemistry, information science, and mathematics. In this
discipline QSAR/QSPR relationship, bioactivity, and classification of chemical compounds
are examined.

It is a new area of research that has captivated the interest of researchers. It creates a
relationship between the structure of organic compounds and their physio-chemical prop-
erties using several helpful graph invariants and chemical graph of underlying compound.
A chemical graph is a representation of a chemical compound’s structural formula using
graph theory, consists vertices in place of atoms and edges for chemical bonds.

The theoretical analysis of underlying substance molecular graphs via graph invariants
might assist in the QSPR/QSAR investigations. The use of topological descriptors of
chemical structure in the study of structure-property interactions is common now a days,
particularly in QSPR/QSAR investigations. There are many graph invariants which used to
characterize interconnection networks for desired investigations in computer science and
chemistry. However, in the QSPR/QSAR analysis, topological indices play an important
role as they depict chemical substances’ physio-chemical properties. Topological indices are
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the graph invariants which may used to reduce the practical work at some extent through
prediction of desired property of related structure via topology of the graph [1,2]. Harry
Winner was the first who used the topology of chemical graph for prediction of bolling
point in 1947 [3]. Later on, in 1972 and 1975, Gutman with their collaborator introduces

M1(Γ) = ∑
uv∈E(Γ)

(du + dv), M2(Γ) = ∑
uv∈E(Γ)

(du × dv)

indices in there work of π−electron energy of hydrocarbons [4,5]. In [6], another version of
Zagreb indices named Hyper Zagreb index introduced as

HM(Γ) = ∑
uv∈E(Γ)

(du + dv)
2.

Recently, Ali and Trinajstic [7] used modified version of Zagreb indices named first
Zagreb connection index which based on connection numbers τu associated with the
vertices of graph as

ZC1(Γ) = ∑
s∈V(Γ)

τ2
u .

The connection numbers τu is the total of distinct vertices which are at distance two
from the fixed vertex u ∈ Γ. In [8], modified first Zagreb connection index studied which is
defined as

ZC∗1 (Γ) = ∑
s∈V(Γ)

(duτu) = ∑
uv∈E(Γ)

(τu + τv).

The second Zagreb connection index is

ZC2(Γ) = ∑
uv∈E(Γ)

τu × τv.

Refs. [7,9–12] justify the applicability of these indices through correlation with entropy
and acentric factor. For the first time in this work we construct subdivided network as
S(ηζ Γ) and discussed its topology. One can extend applications of these networks by using
fuzzy graphs techniques as used in [13–15]. Furthermore, We determined closed form
formulas for ZC1, ZC2 and ZC∗1 of S(ηζ Γ) when ηζΓ generated by the single vertex graph
Γ and extend our finding up to a large class generated by any graph Γ. As applications, we
computed ZC1(S(ηζ Γ)), ZC2(S(ηζ Γ)) and ZC∗1 (S(η

ζΓ)) when Γ represents a specific family
of graphs. The research work [16–24] on Zagreb connection indices and the correlation of
these indices with acentric factor, enthalpy and entropy along with the formation of with
chemical networks by ηζ Γ assure applicability of this work.

2. Material and Method

We adopted techniques as used in [25–30] for edges and vertex partition. We admits
subdivision technique for the desired network S(ηζ Γ). We used notation for graph, edge set,
vetex set, order, size and degree of vertex s ∈ Γ as Γ, V(Γ), E(Γ), |V(Γ)| = nΓ, |E(Γ)| = eΓ
and ds, respectively.

ηζ Network

ηζ Γ network formed by ζ time repeated process using Cartesian product. It consists
ηζ copies of graph Γ along with (η

2)|V(Γ)|ζηζ−1 edges which used to join these ηζ copies
of Γ as ηζ(Γ) = η(ηζ−1Γ) = η(η(ηζ−2Γ)) = η(η(η((ηζ−3Γ)))), ..., η(η(η( ...(η︸ ︷︷ ︸

(ζ − 1) times

(ηΓ))...))),

η(η(η( ...(η︸ ︷︷ ︸
(ζ) times

(Γ))...))). The new edges which join these copies joined corresponding vertices

of all the copies. The total vertices and edges are |V(ηζ Γ)| = ηζnΓ and |E(ηζ Γ)| = ηζeΓ +
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(η
2)nΓζηζ−1, respectively. The ηζ Γ for η = 2 and ζ = 0, 3, 4 when Γ is a single vertex graph

shown in Figure 1.

G 2 G
4

2 G
3

Figure 1. ηζ Γ for η = 2 and ζ = 0, 3, 4 when Γ is a single vertex graph.

3. Molecular Networks Identical with ηζΓ

The importance of ηζ Γ may estimates by its relation with chemical networks as shown
in Figure 2.
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Figure 2. ηζ Γ as organic compounds.

Carbon Nanotube TUC4(m, 3) as 3Pn

Carbon nanotube TUC4(m, 3) is identical with the graph formed by Pt as 3Pt, shown
in Figure 3.

Pt

3P=TUC (n,3)t
 

4

Figure 3. 3Pt as carbon nanotube TUC4(n, 3).
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Cyclo-butane is also identical with 2P2.

4. Subdivided Network S(ηζΓ) When Γ Consist Only One Vertex

Subdivided graph obtained by inserting new vertex at each edge, i.e., let uv ∈ Γ and
x be the new vertex and replace each edge uv ∈ Γ with two edges ux and xv to form
subdivided graph S(Γ). In a similar way, we obtain S(ηζ Γ) shown in Figure 4 for η = 2
and ζ = 2, 3 when Γ is a single vertex graph. There are |V(S(ηζΓ))| = (η

2)ζηζ−1 + ηζ and
|E(S(ηζΓ))| = 2(η

2)ζηζ−1 vertices and edges of S(ηζ Γ), respectively.

G 2 G
3

2 G
4

S(S( ) )

Figure 4. S(ηζ Γ) for ζ = 2, 3 when Γ is a single vertex graph.

Theorem 1. Let Γ be the graph with nΓ = 1. Then ZC1, ZC2 and ZC∗1 of S(ηζ Γ) are

ZC1(S(ηζ Γ)) = ηζ−1η2(ζ + 1)2(η + 4
(

η

2

)
ζ)

ZC2(S(ηζ Γ)) = 2η2
(

η

2

)
ζηζ−1(ζ + 1)2

ZC∗1 (S(η
ζ Γ)) = 6η

(
ζ

2

)
ηζ−1(ζ + 1).

Proof. Let nΓ = 1, |V(ηζ Γ)| = ηζ , |E(ηζΓ)| = (η
2)ζηζ−1, |V(S(ηζ Γ))| = (η

2)ζηζ−1 + ηζ and
|E(S(ηζΓ))| = 2(η

2)ζηζ−1. The construction of S(ηζ Γ) implies dS(ηζ Γ)(v) ∈ {2, η(ζ + 1)}
and connection numbers τS(ηζ Γ)(v) ∈ {η(ζ + 1), 2η(ζ + 1)} of v ∈ S(ηζ Γ). These findings
enabled us to find ZC1(S(ηζ Γ),

ZC1(S(ηζ Γ)) = ∑
v∈V(S(ηζ Γ))

(τS(ηζ Γ)(v))
2

ZC1(S(ηζΓ)) = ∑
v∈V(ηζ Γ)

(η(ζ + 1))2 + ∑
u∈V(S(ηζ Γ)\V(ηζ Γ))

(2η(ζ + 1))2

In case nΓ = 1 the total number of vertices of ηζ Γ are ηζ , i.e., |V(ηζ Γ)| = ηζ and
|V(S(ηζ Γ))\V(ηζ Γ)| = (η

2)ζηζ−1.

ZC1(S(ηζ Γ)) = ηζ η2(ζ + 1)2 + 4η2
(

η

2

)
ζηζ−1(ζ + 1)2

ZC1(S(ηζ Γ)) = ηζ−1η2(ζ + 1)2(η + 4
(

η

2

)
ζ) (1)

Now for ZC2(S(ηζΓ)),

ZC2(S(ηζ Γ)) = ∑
uv∈E(S(ηζ Γ))

τS(ηζ Γ)(u)τS(ηζ Γ)(v).

For each edge uv ∈ E(S(ηζΓ)) the end vertex connection number is (τS(ηζ Γ)(u),
τS(ηζ Γ)(v)) = (η(ζ + 1), 2η(ζ + 1)) and |E(S(ηζ Γ))| = 2(η

2)ζηζ−1. So,
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ZC2(S(ηζ Γ)) = ∑
uv∈E(S(ηζ Γ))

(η(ζ + 1))(2η(ζ + 1))

ZC2(S(ηζ Γ)) = 2
(

η

2

)
ζηζ−12η2(ζ + 1)2

ZC2(S(ηζ Γ)) = 2η2
(

η

2

)
ζηζ−1(ζ + 1)2. (2)

Now for ZC∗1 (S(η
ζΓ)),

ZC∗1 (S(η
ζΓ)) = ∑

uv∈E(S(ηζ Γ))

(τS(ηζ Γ)(u) + τS(ηζ Γ)(v))

Now again, for each edge uv ∈ S(ηζ Γ) the end vertex connection number (τS(ηζ Γ)(u),
τS(ηζ Γ)(v)) = (η(ζ + 1), 2η(ζ + 1)) and |E(S(ηζ Γ))| = 2(η

2)ζηζ−1. So,

ZC∗1 (S(η
ζ Γ)) = ∑

uv∈E(S(ηζ Γ))

(η(ζ + 1) + 2η(ζ + 1))

ZC∗1 (S(η
ζ Γ)) = 2

(
ζ

2

)
ζηζ−1(3η(ζ + 1))

ZC∗1 (S(η
ζ Γ)) = 6m

(
ζ

2

)
ηζ−1(ζ + 1). (3)

Equation (1) completes the proof.

5. S(ηζΓ) When Γ Is Any nΓ-Vertex Simple Connected Graph

There are |V(ηζ Γ)| = ηζ |V(Γ)| vertices and |E(ηζ Γ)| = ηζ |E(Γ)| + (η
2)|V(Γ)|ζηζ−1

edges of ηζΓ for any graph Γ. The degree of each vertex u ∈ Γ is du + η(ζ + 2) [31]. In this
section we defined subdivided graph S(ηζ Γ) and computed ZC1, ZC2 and ZC∗1 of S(ηζ Γ).
The S(ηζ Γ) for Γ = C6, η = 2 and ζ = 2 shown in Figure 5.

C6 2 C6

2

Figure 5. S(ηζ Γ) for Γ = C6, η = 2 and ζ = 2.

Theorem 2. The ZC1(S(ηζ Γ)) for any graph Γ is

ZC1(S(ηζ Γ)) = ηζ nΓ[M1(Γ) + η2(ζ + 1)2nΓ + 4η(ζ + 1)eΓ] + (ηζ eΓ +

(
η

2

)
nΓζη(ζ−1))

[HM(Γ) + 4η2(ζ + 1)2eΓ + 4η(ζ + 1)M1(Γ)].
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Proof. The connection number of vertices v ∈ Γ is τS(ηζ Γ)(v), |V(S(ηζΓ))| = ηζnΓ + ηζeΓ +

(η
2)nΓζη(ζ−1) and |E(S(ηζ Γ))| = 2ηζeΓ + 2(η

2)nΓζη(ζ−1). The ZC1(S(ηζΓ)) is

ZC1(S(ηζ Γ)) = ∑
v∈V(S(ηζ Γ))

(τS(ηζ Γ)(v))
2

ZC1(S(ηζΓ)) = ηζ nΓ ∑
v∈V(Γ)

(dv + η(ζ + 1))2

+ (ηζ eΓ +

(
η

2

)
nΓζη(ζ−1)) ∑

uv∈E(Γ)
(du + η(ζ + 1)

+ dv + η(ζ + 1))2

ZC1(S(ηζ Γ)) = ηζnΓ ∑
v∈V(Γ)

[d2
v + η2(ζ + 1)2 + 2dvη(ζ + 1)] + (ηζ eΓ +

(
η

2

)
nΓζη(ζ−1))

∑
uv∈E(Γ)

[(du + dv)
2 + 4η2(ζ + 1)2 + 4(du + dv)η(ζ + 1)]

ZC1(S(ηζ Γ)) = ηζnΓ[ ∑
v∈V(Γ)

d2
v + η2(ζ + 1)2 ∑

v∈V(Γ)
1

+ 2η(ζ + 1) ∑
v∈V(Γ)

dv] + (ηζeΓ +

(
η

2

)
nΓζη(ζ−1))

[ ∑
uv∈E(Γ)

(du + dv)
2 + 4η2(ζ + 1)2 ∑

uv∈E(Γ)
1 + 4η(ζ + 1) ∑

uv∈E(Γ)
(du + dv)]

ZC1(S(ηζ Γ)) = ηζnΓ[M1(Γ) + η2(ζ + 1)2nΓ + 4η(ζ + 1)eΓ] + (ηζeΓ +

(
η

2

)
nΓζη(ζ−1))

[HM(Γ) + 4η2(ζ + 1)2eΓ + 4η(ζ + 1)M1(Γ)].

Theorem 3. Let Γ be the simple connected graph with |V(Γ)| = nΓ ≥ 2. Then

ZC2(S(ηζΓ)) = [ηζeΓ +

(
η

2

)
nΓζη(ζ−1)][HM(Γ) + 4η(ζ + 1)M1(G) + 4η2(ζ + 1)2eΓ].

Proof. Let S(ηζ Γ) be the sub divided graph of ηζ Γ for any graph Γ. The |V(S(ηζ Γ))| =
ηζnΓ + ηζ eΓ + (η

2)nΓζη(ζ−1) and |E(S(ηζΓ))| = 2ηζ eΓ + 2(η
2)nΓζη(ζ−1).

ZC2(S(ηζ Γ)) = ∑
uv∈E(S(ηζ Γ))

τS(ηζ Γ)(u)τS(ηζ Γ)(v)

ZC2(S(ηζΓ)) = (ηζ eΓ +

(
η

2

)
nΓζη(ζ−1)) ∑

uv∈E(Γ)
[(du + η(ζ + 1))(du + dv + 2η(ζ + 1))

+ (dv + η(ζ + 1))(du + dv + 2η(ζ + 1))]

ZC2(S(ηζ Γ)) = (ηζ eΓ +

(
η

2

)
nΓζη(ζ−1))

∑
uv∈E(Γ)

[(du + dv)
2 + 4η(ζ + 1)(du + dv) + 4η2(ζ + 1)2]

ZC2(S(ηζΓ)) = [ηζeΓ +

(
η

2

)
nΓζη(ζ−1)][ ∑

uv∈E(Γ)
(du + dv)

2 + 4η(ζ + 1) ∑
uv∈E(Γ)

(du + dv)

+ 4η2(ζ + 1)2 ∑
uv∈E(Γ)

1]
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ZC2(S(ηζΓ)) = [ηζeΓ +

(
η

2

)
nΓζη(ζ−1)][HM(Γ) + 4η(ζ + 1)M1(G) + 4η2(ζ + 1)2eΓ].

Theorem 4. For any graph Γ

ZC∗1 (S(η
ζ Γ)) = [ηζ eΓ +

(
η

2

)
nΓζη(ζ−1)][3M1(Γ) + 6η(ζ + 1)eΓ].

Proof. Let S(ηζ Γ) be the sub divided graph of ηζ Γ for any graph Γ. The |V(S(ηζ Γ))| =
ηζnΓ + ηζ eΓ + (η

2)nΓζη(ζ−1) and |E(S(ηζΓ))| = 2ηζ eΓ + 2(η
2)nΓζη(ζ−1).

ZC∗1 (S(η
ζΓ)) = ∑

uv∈E(S(ηζ Γ))

(τS(ηζ Γ)(u) + τS(ηζ Γ)(v))

ZC∗1 (S(η
ζ Γ)) = (ηζeΓ +

(
η

2

)
nΓζη(ζ−1))

∑
uv∈E(Γ)

[(du + η(ζ + 1)) + (du + dv + 2η(ζ + 1))

+ (dv + η(ζ + 1)) + (du + dv + 2η(ζ + 1))]

ZC∗1 (S(η
ζΓ)) = [ηζeΓ +

(
η

2

)
nΓζη(ζ−1)] ∑

uv∈E(Γ)
[3(du + dv) + 6η(ζ + 1)]

ZC∗1 (S(η
ζ Γ)) = [ηζeΓ +

(
η

2

)
nΓζη(ζ−1)][3M1(Γ) + 6η(ζ + 1)eΓ].

6. Applications of Computed Results as Zagreb Connection Indices of S(ηζCn)

and S(ηζkm)

Corollary 1. The ZC1(S(ηζCn)) is

ZC1(S(ηζ Γ)) = n2η(ζ−1)[2 + η(ζ + 1)]2[5η + 4
(

η

2

)
ζ].

Proof. Let Γ = Cn of order n and size m, n = m. Replacing M1(Cn) = 4n and
HM(Cn) = 16n in Theorem 2 we get,

ZC1(S(ηζΓ)) = ηζ n[4n + η2(ζ + 1)2n + 4η(ζ + 1)n] + (ηζ n +

(
η

2

)
nζη(ζ−1))

[16n + 4η2(ζ + 1)2n + 16η(ζ + 1)n]

ZC1(S(ηζ Γ)) = n2[4 + η2(ζ + 1)2 + 4η(ζ + 1)][5ηζ + 4
(

η

2

)
ζη(ζ−1)]

ZC1(S(ηζ Γ)) = n2η(ζ−1)[2 + η(ζ + 1)]2[5η + 4
(

η

2

)
ζ].

Corollary 2. The ZC2(S(ηζCn)) is

ZC2(S(ηζCn)) = 4n2[ηζ +

(
η

2

)
ζη(ζ−1)][4 + 4η(ζ + 1) + η2(ζ + 1)2].

Proof. Replacing M1(Cn) = 4n and HM(Cn) = 16n in Theorem 3 we get,
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ZC2(S(ηζCn)) = 4n2[ηζ +

(
η

2

)
ζη(ζ−1)][4 + 4η(ζ + 1) + η2(ζ + 1)2].

Corollary 3. The ZC∗1 (S(η
ζCn)) is

ZC∗1 (S(η
ζCn)) = 6n2η(ζ−1)[η +

(
η

2

)
ζ][2 + η(ζ + 1)].

Proof. Replacing M1(Cn) = 4n in Theorem 3 we get,

ZC∗1 (S(η
ζCn)) = 6n2η(ζ−1)[η +

(
η

2

)
ζ][2 + η(ζ + 1)].

Corollary 4. Let Γ = km a complete graph of order m. Then

ZC1(S(ηζ Γ)) = mηζ [
m(m− 1)3

2
+ mη2(ζ + 1)2 + 2m(m− 1)η(ζ + 1)]

+ (
m(m− 1)ηζ

2
+

(
η

2

)
mζη(ζ−1))

[2m(m− 1)3 + 2m(m− 1)η2(ζ + 1)2 + 2m(m− 1)3η(ζ + 1)]

ZC2(S(ηζ Γ)) = [
m(m− 1)

2
ηζ +

(
η

2

)
mζη(ζ−1)][2m(m− 1)3 + 2m(m− 1)3η(ζ + 1)

+ 2m(m− 1)η2(ζ + 1)2]

ZC∗1 (S(η
ζ Γ)) = [

m(m− 1)
2

ηζ +

(
η

2

)
mζη(ζ−1)][

3m(m− 1)3

2
+ 3η(ζ + 1)m(m− 1)].

Proof. Let complete graph Γ = km of order m. Replacing M1(km) =
m(m−1)3

2 and HM(Γ) =
2m(m− 1)3 in the Theorem 2, we get required result as,

ZC1(S(ηζΓ)) = mηζ [
m(m− 1)3

2
+ mη2(ζ + 1)2 + 2m(m− 1)η(ζ + 1)] (4)

+ (
m(m− 1)ηζ

2
+

(
η

2

)
mζη(ζ−1))

[2m(m− 1)3 + 2m(m− 1)η2(ζ + 1)2 + 2m(m− 1)3η(ζ + 1)].

Now using Theorem 3 and values of M1(km) and HM(Γ) we get the following result,

ZC2(S(ηζ Γ)) = [
m(m− 1)

2
ηζ +

(
η

2

)
mζη(ζ−1)][2m(m− 1)3 + 2m(m− 1)3η(ζ + 1)

+ 2m(m− 1)η2(ζ + 1)2]. (5)

From Theorem 4 and values of M1(km) and HM(Γ), we get,

ZC∗1 (S(η
ζ Γ)) = [

m(m− 1)
2

ηζ +

(
η

2

)
mζη(ζ−1)][

3m(m− 1)3

2
+ 3η(ζ + 1)m(m− 1)]. (6)

Equations (4)–(6) completes the proof.
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7. Future Work

In future, the study of S(ηζΓ) can be done via the following methods:

• Study of S(ηζ Γ) via degree based topological indices.
• Study of S(ηζ Γ) via eccentricity based topological indices.
• Study of S(ηζ Γ) via distance based topological indices.
• One can compute the energies of S(ηζ Γ).

8. Conclusions

For the first time in this work we construct subdivided graph of ηζΓ network as S(ηζΓ).
We also discussed its topology and find closed form formulas for total number of edges
and vertices. In Theorem 1, we determined ZC1(S(ηζΓ)), ZC2(S(ηζ Γ)) and ZC∗1 (S(η

ζ Γ))
for single vertex graph Γ. In Theorems 2–4 we extend our work for S(ηζΓ) when Γ is any
graph. In Corollaries 1–4 we compute result for uni-cyclic graph Cn and complete graph
Km as an application of our computed results. Finally, we proposed some open problems
for future work on S(ηζ Γ).
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