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Abstract: Semantic segmentation is an important component in understanding the 3D point cloud
scene. Whether we can effectively obtain local and global contextual information from points is of
great significance in improving the performance of 3D point cloud semantic segmentation. In this
paper, we propose a self-attention feature extraction module: the local transformer structure. By
stacking the encoder layer composed of this structure, we can extract local features while preserving
global connectivity. The structure can automatically learn each point feature from its neighborhoods
and is invariant to different point orders. We designed two unique key matrices, each of which
focuses on the feature similarities and geometric structure relationships between the points to generate
attention weight matrices. Additionally, the cross-skip selection of neighbors is used to obtain larger
receptive fields for each point without increasing the number of calculations required, and can
therefore better deal with the junction between multiple objects. When the new network was verified
on the S3DIS, the mean intersection over union was 69.1%, and the segmentation accuracies on the
complex outdoor scene datasets Semantic3D and SemanticKITTI were 94.3% and 87.8%, respectively,
which demonstrate the effectiveness of the proposed methods.

Keywords: transformer; point clouds; semantic segmentation; self-attention; feature extraction

1. Introduction

The semantic segmentation of 3D point clouds is one of the key problems in the
perception of environments in the research on robotics [1] and automatic driving [2]. The
use of local and global geometric attributes of a point to generate an effective feature
description of the point, thereby improving the accuracy of semantic segmentation, has
always been the focus and challenge in this field.

Convolutional neural networks (CNNs) have achieved great success in 2D imaging,
with researchers considering how to use a mature CNN network to analyze 3D point
clouds. However, unlike 2D images, point clouds are unordered and irregular, which make
handling 3D point clouds using a convolutional neural network directly impossible. Some
methods [3–7] project the 3D point clouds onto the 2D plane, generating a bird’s eye view
(BEV) image, a range view (RV) image, and other intermediate regular representations, and
then use them in a convolutional neural network. This kind of method depends on the
choice of projection angle, which cannot make full use of accurate spatial and structural
information and causes a loss of geometric information in the projection process. The
method based on discretization converts the point clouds into a discretized representation,
such as a voxel or lattice, and then processes it using a three-dimensional convolution
network. However, it is sensitive to voxel size. When the voxel is large, it causes information
loss and affects the segmentation accuracy. When the voxel is small, it leads to a sharp
increase in the number of calculations required and affects the real-time performance.
The point-based method extracts features directly from irregular point clouds without

Information 2022, 13, 198. https://doi.org/10.3390/info13040198 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13040198
https://doi.org/10.3390/info13040198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7657-9141
https://doi.org/10.3390/info13040198
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13040198?type=check_update&version=3


Information 2022, 13, 198 2 of 19

any preprocessing. It has gradually become the mainstream method used in point cloud
semantic segmentation. However, the point-based method also has some problems, such
as the poor scalability of the point sampling method to the scale of the point cloud, and the
inability to effectively learn local features.

With the successful application of a self-attention mechanism in the field of natural
language processing (NLP), some studies have considered the applications of the trans-
former structure to the fields of image and point cloud processing, etc. The input of a
transformer is usually a sequence, and position embedding information needs to be added.
For point cloud data, each point has a unique coordinate value, which can be directly used
as the position embedding information. Zhao et al. [8] proposed the point transformer and
proved that a network structure based entirely on self-attention can effectively solve a point
cloud task.

The transformer method has been broadly used for object-wise tasks, such as clas-
sification and partial segmentation. Inspired by these works, in this study, we use a
transformer network for point-wise large-scale point cloud segmentation. We propose a
novel multi-scale transformer network for both local and global feature extraction.

The network is based on an encoder–decoder structure. Each encoder layer consists
of two parallel local transformers. In the front of the encoder layers, local features can be
obtained because of the locality of the local transformer. After random down-sampling
of the points, the receptive field of each point becomes larger and every point contains
high-level features. Therefore, at the later encoder layers of the encoder, the global features
can be easily obtained by the local transformer structure, making full use of the transformer
having no inductive bias property.

In contrast to a previous transformer structure with one attention weight matrix, which
can find the similarities between point features, we propose two different key matrices
to obtain two attention weight matrices in the local transformer structure, which can not
only focus on the feature similarity between points but also focus on the local geometric
structure relationship. The results of the visualization show that better segmentation
results can be obtained between objects with very similar geometries. We also propose two
fusion strategies to make full use of the distribution diversity of these two attention weight
matrices.

In order to improve the segmentation performance at the semantic edges of multiple
objects, we propose a novel neighbor selection method called cross-skip selection, which
is very suitable for the parallel encoder layer, and can expand the receptive field of each
point without increasing the number of calculations required, and capture more abundant
geometric and semantic information.

We then verified our method on open datasets S3DIS and Semantics3D. The best mean
class-wise intersection over union (mIoU) on the S3DIS dataset was 69.1% and on the
Semantic3D dataset was 75.7%, which are better than those of most benchmark methods.

Our contributions can be summarized as follows:

1. We propose a novel multi-scale transformer network to learn local context information
and global features, which makes applying the transformer on more sophisticated
tasks from the large-scale point cloud datasets possible.

2. In order to obtain the feature similarity and local geometry relationship between
points, we propose two different key matrices to obtain two attention weight matrices
in the local transformer structure, and propose two different fusion strategies to fuse
them.

3. We also propose a novel neighbor selection method called cross-skip selection to
obtain more accurate results on the junction of multiple objects.

The rest of the paper is organized as follows. Section 2 presents related work on 3D
point cloud semantic segmentation. Section 3 presents our proposed approach, including
the network architecture (Section 3.1), neighbor embedding module (Section 3.2), feature
extraction module based on a transformer (Section 3.3), local transformer structure (Section 3.4),
parallel encoder layer with cross-skip selection (Section 3.5), and decoder layer (Section 3.6).
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Section 4 presents our experiments and analysis. Section 5 concludes our work and presents
some future work.

2. Related Work

According to the different forms of input point clouds, the semantic segmentation
methods of a point cloud can be divided into the projection-based method, the discretization-
based method, the point-based method, etc.

The projection-based method is used to project the 3D point cloud onto the 2D plane.
Rangenet + + [9] first converted the point cloud into a range image, then used the full convo-
lution network to deal with that, and then mapped the result of the semantic segmentation
to the original point cloud. Squeezeseg [10] converted the point cloud to the front view
through spherical projection, using the SqueezeNet network for semantic segmentation,
and then used a conditional random field (CRF) to refine the results. Liong et al. [11]
proposed a multi-view fusion network (AMVNet), which projected the point cloud onto
the range view (RV) image and bird’s eye view (BEV) image, and combined the advantages
of using two different views of RV and BEV.

VoxNet [12] is a typical discretization-based method. The network divided the point
cloud into regular voxels and then extracted the features of these voxels through a 3D
convolution operation. However, the point cloud is sparse, and the proportion of non-
empty voxels is very small. It is very inefficient to use a dense convolution neural network
on spatial sparse data. Graham et al. [13] improved this by proposing a new sparse
convolution operation that can process spatial sparse data more effectively.

PointNet [14] was the pioneer work that directly consumed point clouds, and could
obtain per-point features by concatenating features learned by the shared multilayer per-
ceptron (MLP) and global features learned by max pooling function. However, PointNet
cannot effectively obtain local features and ignores the local context information. The
PointNet + + [15] network made some improvements. It paid attention to the relationship
between the central point and its neighbors but ignored the relationship between each
neighbor pair. Wu et al. [16] proposed a new convolution operation, which defined the
convolution kernel as a nonlinear function composed of a weight function and a density
function. Zhao et al. [17] proposed a network called PointWeb, which can specify the
feature of each point based on the local region characteristics for better representing the
region. KPConv [18] defined an explicit convolution kernel, which is composed of fixed or
flexible core points. The different weights of influence for each neighbor point on the core
point adaptively depends on the distance between them. Hu et al. [19] used MLP to learn
the attention weight score of each point and then obtained the weighted local feature map.
Finally, the maximum pooling function was used to calculate the central point feature on
the weighted local feature map.

In addition, there are some other methods. For example, the dynamic graph convolu-
tional neural network (DGCNN) [20] uses graph networks to capture the local geometric
features of a point cloud and dynamically updates a graph to learn the different scale
features. Wang et al. [21] proposed a graph attention convolution (GAC), in which the
kernels can be dynamically carved into specific shapes to adapt to the structure of an object
and generate more accurate representations of local features of points.

Recently, the transformer network has already achieved tremendous success in the
language domain; thus, most researchers want to investigate whether it can be applied
to computer vision tasks. It is very encouraging that some methods [22] showed that a
pure transformer applied directly to sequences of image patches can perform very well
on image classification tasks. After that work was conducted, research on transformers in
computer vision became popular. The operator of the transformer network is invariant
to permutation, making it particularly appropriate for point clouds, since a point cloud is
permutation-invariant.

Some recent work considered how to effectively extract local and global features at
the same time. LocalViT [23] aimed to combine the local performance of a convolutional
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neural network and the global connectivity of a transformer structure. However, using
a transformer structure to learn the long-distance dependence between points requires
very high memory and expensive computing costs, which make it difficult to deal with
large-scale 3D point cloud data. In this paper, we propose a local transformer structure
and a novel neighborhood sampling method for local feature extraction; it can not only
effectively focus on local features, but also reduce the computational costs to adapt to the
semantic segmentation tasks of large-scale outdoor datasets.

3. Proposed Approach
3.1. Network Architecture

The overall network structure adopts the typical encoder–decoder structure [24]. The
encoder is composed of parallel encoder layers (Section 3.5), which consist of two local
transformer structures (Section 3.4). The local transformer structure is composed of a
neighbor embedding module (Section 3.2) and a feature extraction module based on a
transformer (Section 3.3). As shown in Figure 1, after each parallel encoder layer, random
down-sampling is used to reduce the number of points and then to stack parallel encoder
layers. As the encoder layers are stacked, the semantic features of each point become more
and more abstract and contain more contextual information. We set up a different number
of encoder layers for different datasets. Then, the number of points is recovered through
the decoder layers. In this paper, we use a distance-based weighted linear interpolation
up-sampling operation (Section 3.5) to propagate the features from a sparse point cloud
to a dense point cloud to predict point-wise labels. The whole network structure adopts a
residual connection.
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Figure 1. The proposed network architecture.

3.2. Neighbor Embedding Module

Point-wise local geometric properties, such as the normal vector (the normal vector
of each point is the normal direction of the plane fitted by it and its neighbors), are very
useful for discovering the similarity between points, since the normal vector of the surface
of an object changes continuously. Before the data are input into the network, we compute
the normal vector of S3DIS and combine it with their corresponding point coordinates as a
rich feature representation. We use principal components analysis (PCA) to compute the
normal of every point (as shown in Figure 2). For each point, we choose its M neighbors
P : {p1, p2, . . . pM} ∈ RM×3. We want to fit a plane using the M neighbors, and then, we
can calculate the normal vector of the point. The normal vector is solved by minimizing an
objective function as follows:

min
c,n,||n|| = 1

∑M
i = 1 ((pi − c)Tn)

2
, (1)

c =
1
M ∑M

i = 1 pi, (2)

where c is a coordinate of the center of all neighbor points and n is the normal vector to be
solved.
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Figure 2. The normal vector of every point (results of the visualization on two different chairs).

The input point cloud is represented as a coordinate matrix P : {p1, p2, . . . pN} ∈ RN×3

and its feature matrix F : { f1, f2, . . . fN} ∈ RN×D. N and D are the number of points and the
feature dimensions, respectively. The original input features of the points are concatenated
by the normalized x-y-z coordinates, raw RGB, and surface normal information.

First, we encode the local region in the neighbor embedding module, as shown in
Figure 3, similar to a reference point xi, and find its 2K neighbors, encoding each neighbor
point to obtain its position embedding G : {gi1, gi2, . . . gi∗2k} ∈ R2K×D′ , as shown in
Formula (3). gik is the position embedding of the k-th neighbor.

gik = (pi − pik)⊕ ||pi − pik||. (3)

where ⊕ stands for the concatenation of (pi − pik) and ||pi − pik|| on the feature dimension,
pi is the coordinate of the point xi, pik is the coordinate of the k-th neighbor, and ||·|| is the
l1 norm.
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Then, the local region feature matrix Iin : {Ii1, Ii2, . . . Ii∗2k} can be obtained by concate-
nating the positional embedding gik and per-point original features fik as follows:

Iik = MLP(gik)⊕MLP( fik). (4)

where MLP(·) is a multilayer perceptron applied to the positional embedding gik and
features fik.

3.3. Feature Extraction Module based on a Transformer
3.3.1. Naïve Transformer Structure

Using the neighbor embedding module, we can obtain the local region feature matrix:
Iin ∈ R2k×din (din is the dimension of the features). It is then input into a transformer
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structure to obtain the weighted features of the reference point. In the naïve transformer
structure, Q, K, V are obtained based on Iin, as shown in Formula (5).

Q = BN(MLP1(Iin)), K = BN(MLP2(Iin)), V = BN(MLP3(Iin)), Q, K, V ∈ Rk×d (5)

where BN(MLP(·)) stands for a batch normalization operation after a multilayer percep-
tron. The batch normalization normalizes the batch input on the feature dimension. It
can make the distribution of input data in each layer of the network relatively stable and
accelerates the learning speed of the model. d is the dimension of Q, K, V. We set the
dimensions of Q, K, V to be equal.

The attention score is computed as the inner product between Q and K. The attention
weight matrix can be written as follows:

W =
(
w̃ij
)
= Q·KT . (6)

Additionally, a scale and a normalization operation, which is able to obtain measure-
ments of the similarity between any two points in this local region, can be used:

wij =
w̃ij√

d
, (7)

wij = so f tmax
(
wij
)
=

exp
(
wij
)

∑k exp(wi,k)
. (8)

Next, the normalized attention weight matrix is applied on the value matrix V to
obtain a weighted local feature matrix, which can automatically assign more attention to
the useful features. The weighted local feature matrix can be written as follows:

Iw = W·V, IwεR2k×d. (9)

Then, we use batch normalization and non-linear activation on this weighted local
feature matrix. After that, we concatenate the activated features matrix and the original
input features matrix as follows:

I1 = LBR(Iw)⊕ Iin, I1 ∈ R2k×2din . (10)

where LBR is the normalization and non-linear activation operation and ⊕ is the concatena-
tion operation.

We use a symmetric operation such as max pooling to generate the reference point
features, which can represent this local region. It is formally defined as follows:

Iout = MLP(maxpooling(I1)), Iout ∈ R1×dout . (11)

Figure 4 provides an illustration of the naïve transformer structure. Through this
transformer, the updated features of each reference point adaptively aggregate the features
of its neighbor points.
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3.3.2. Improve Transformer Structure

We make some improvements to the naïve local transformer structure. Consider that,
during the beginning of the network, where each point has not learned enough features yet
to obtain the similarity between points, the geometric relationships between points become
more significant than the features. Therefore, we propose two different key matrices for
obtaining two attention weight matrices. The first key matrix is the same as the naïve
local transformer structure, which is obtained by the input feature matrix Iin, as shown in
Formula (12):

K1 = BN(MLP(Iin)), K1 ∈ R2K×d. (12)

The attention weight matrix can be written as Formula (13), which can obtain the
feature similarity between points:

W1 = (w1)ij = Q·KT
1 . (13)

The query matrix Q can be obtained by Formula (5).
The second key matrix, which is obtained by the neighbor position embedding matrix

G : {gi1, gi2, . . . gi∗4k} ∈ R2K×D′ , takes the local geometry relationship into account. The
second key matrix can be written as follows:

K2 = BN(MLP(Gin)), K2 ∈ R2K×d. (14)

The second attention weight matrix is as follows and can pay more attention to the
local geometry relationship between points than W1:

W2 = (w2)ij = Q·KT
2 . (15)

When the two attention weight matrices are obtained, the most intuitive method for
combining them is to add them, which can be shown as follows:

Wadd = W1 + W2. (16)

The next operations are the same as the naïve local transformer structure. Finally, we
can obtain the weighted local feature matrix.

Iw = Wadd·V, Iw ∈ R2K×d. (17)

where V is the key matrix, which can be obtained using Formula (5).
However, if we simply add the two attention weight matrices together, we cannot

make full use of the distribution diversity of the two attention weight matrices. We propose
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another fusion method at the feature level. Specifically, we multiply the two scaled and
normalized attention weight matrices with the value matrix, as shown in (18) and (19),
respectively, and then concatenate the weighted local feature matrices, as shown in (20).

Iw1 = W1·V, Iw1 ∈ R2K×d, (18)

Iw2 = W2·V, Iw2 ∈ R2K×d, (19)

Iw = Iw1 ⊕ Iw2, Iw ∈ R2K×2d. (20)

where V is the key matrix, which can be obtained using Formula (5).
By fusing at the feature level, we can obtain weighted feature matrices Iw1 and Iw2

with two different distributions, which can inherently capture the features and geometric
relationships between points.

The updated point feature Iout can finally be obtained using the operations in (10) and
(11) on Iw. The improved transformer structures are shown in Figure 5:
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Figure 5. Improved transformer structure. (Right): the two attention weight matrices added.
(Left): the two attention weight matrices fused at the feature level. The red line indicates the
difference between them.

We also visualized the attention weight matrices, presented in Appendix A. From
the results of the visualization, we can note that, at the first few layers, Wadd shows a
locality (the value of the diagonal is significantly different from the others) and, at the last
two layers, it shows a discretized distribution, which can be used to find points with key
semantic information. When we fuse the attention weight matrices at the feature level,
at every layer, W1 and W2 focus on the feature similarities and the geometry relationship
between points, respectively. Therefore, they have different distributions.

3.4. Local Transformer Structure

The local transformer structure is composed of a neighbor embedding module and a
transformer structure, which is shown in Figure 6.
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3.5. Parallel Encoder Layer with Cross-Skip Selection

The distance and feature similarities between each point and its neighbors are not
necessarily positively correlated, especially at the junction of multiple objects. Therefore,
points with similar semantic structures may have greater Euclidean distances and vice
versa. As shown in Figure 7, the distance between c1 and c′1 is greater than that between c1
and c2, while c1 and c′1 belong to class 1 and c2 belongs to class 2.
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Figure 7. Junction of multiple objects.

We propose a cross-skip selection method to obtain neighbors in the neighbor embed-
ding module. The method is as follows: find the nearest 4K neighbor points of each point
and divide them into four groups k1, k2, k3,k4 with the same number. Each group contains
K points. Concatenate the point feature in k1 and in k3, k2, and k4, and then encode the
two original point feature matrices in the neighbor embedding module to obtain the local
region feature matrices Iin1 and Iin2.

In order to adapt to the cross-skip selection method, we propose a parallel encoder
layer composed of two parallel local transformer structures, as shown in Figure 8. The
two input matrices of the same dimension Iin1 and Iin2 are composed of different neighbor
points selected based on cross-skip selection. This structure allows each point to obtain a
larger receptive field without increasing the dimension of the input matrices Iin1 and Iin2.
Concatenate the two update feature vectors Iout1 and Iout2 to obtain the final output Iout.

Iout = Iout1 ⊕ Iout2. (21)
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3.6. Decoder Layer

To finally obtain each original point feature, we simply adopt a distance-based
weighted linear interpolation up-sampling operation, shown in Figure 9. Let Pl−1 and Pl be
the coordinate set of the (l − 1)-th layer and (l)-th layer at the decoder block, respectively.
To obtain the feature of point pi at Pl , we search the nearest three neighbors (t = 3)
of pi in Pl−1. The coordinates of neighbors are pit = {pi1, pi2, pi3}, and we obtain the
influence of each neighbor point on pi based on the distance between the point pi and
pit = {pi1, pi2, pi3}, as follows:

Mij =
(
mij
)
= MLP

(∣∣∣∣pi − pij
∣∣∣∣). (22)

where Mij is the influence weight and pij is the coordinate of the j-th neighbor of the point
pi.

Finally, the feature of pi is as follows:

fi = ∑3
j = 1 mij pij. (23)

where mij is the weight of influence for each neighbor point obtained by Formula (22).
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4. Experiments and Analysis
4.1. Datasets

S3DIS [25]: the Stanford 3D Large-Scale Indoor Spaces (S3DIS) dataset addresses
semantic tasks with pixel-level semantic annotations developed by Stanford University. It
consists of six areas, each of which contains 13 categories such as ceiling, floor, and wall.
We evaluated our network using two methods: (1) six-fold cross-validation and (2) area
5 testing. Moreover, we used the mean class-wise intersection over union (mIoU), the mean
of class-wise accuracy (mAcc), and the overall point-wise accuracy (OA) as evaluation
metrics.

Semantic3D [26]: the Semantic3D dataset is composed of 30 non-overlapping outdoor
point cloud scenes, of which 15 scenes are used for training and other scenes are used
for online testing. The dataset contains eight categories. The scenes cover rural, urban,
and suburban areas, and each scene covers sizes of 160× 240× 30. In addition to 3D
coordinates, the dataset provides RGB values and intensity values. We used the mean
class-wise intersection over union (mIoU) and the overall point-wise accuracy (OA) as
evaluation metrics.

SemanticKITTI [27]: the SemanticKITTI dataset is composed of 21 sequences and
43,552 densely annotated laser scanning frames. Among these, sequences 00–07 and 09–10
are used for training, sequence 08 is used for verification, and sequences 11–21 are used for
online testing. The raw data contain the 3D coordinate information of the points. We used
the mean class-wise intersection over union (mIoU) as an evaluation metric.
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4.2. Implementation Details

When verifying the proposed model based on the S3DIS dataset, we first obtained the
normal vector of each point as the original feature. We set the number of encoder layers as 7.
After each layer extracts the characteristics of each point through the encoder layer, random
down-sampling is used to reduce the number of points. The random down-sampling is
more efficient than other down-sampling methods, which have a high calculation cost
and high GPU memory requirements. We set the sampling ratio to [2, 2, 4, 4, 4, 4, 4]
and the output dimension of each layer to [16, 64, 256, 256, 512, 512]. Through distance-
based weighted interpolation linear up-sampling, three nearest neighbors are selected to
restore the feature of the input points. Finally, three fully connected layers are stacked to
obtain the output with a category number dimension. When verifying the model on the
SemanticKITTI and Semantic3D datasets, because the number of points in each frame is
very large, calculating the normal vector of each point consumes a very large amount of
memory, so we only calculate the normal features in an indoor dataset.

In addition, we used a residual connection to retain more point feature information. In
this paper, the Adam optimizer and weighted cross entropy loss based on inverse frequency
were used for training. All experiments used Tensorflow as the platform and applied an
NVIDIA Corporation gp102 (Titan XP) GPU.

4.3. Evaluation Metrics

For the S3DIS dataset, the mean class-wise intersection over union (mIoU), mean class
Accuracy (mAcc), and Overall Accuracy (OA) of the total 13 classes were compared. For
Semantic 3D, the mIoU and OA were used as the evaluation metrics. For SemanticKITTI,
we used mIoU. The evaluation metrics can be defined as follows:

mIoU =
1

k + 1 ∑k
i = 0

pii

∑k
j = 0 pij + ∑k

j = 0 pji − pii
, (24)

OA =
1
N ∑k

i = 0 pii, (25)

mAcc =
1

k + 1 ∑k
i = 0,j 6=i

pii
pij

(26)

where k + 1 is the number of classes, i is the ground-truth label, j is the prediction label, pij
is the number of the samples that belong to i but are mistakenly predicted as j, pji is the
number of the samples that belong to j but are mistakenly predicted as i, pii is the number
of correctly predicted samples, and N is the total number of samples.

4.4. Experimental Results

We used area 5 of S3DIS for testing and the other areas for training. The results are
shown in Table 1. Table 2 shows the results with six-fold cross-validation. Tables 3 and 4
show the results on the Semantic3D and SemanticKITTI datasets, respectively. The results
show that the proposed method is better than most benchmark models. The results of the
visualization on S3DIS and SemanticKITTI are shown in Figures 10 and 11.

Table 1. Segmentation results on area 5 of S3DIS (add: the two attention weight matrices added; con:
the two attention weight matrices fused at the feature level).

Methods OA mAcc mIoU Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

TangentConv [28] - 62.2 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8
PointCNN [29] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SPG [30] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PointWeb [17] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21,1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
KPConv [18] - 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

BAAF-Net [31] 88.9 73.1 65.4 92.9 97.9 82.3 0.0 23.1 65.5 64.9 78.5 87.5 61.4 70.7 68.7 57.2
Ours(add) 87.6 71.9 64.1 92.8 97.4 79.9 0.0 22.6 59.4 52.7 77.0 87.6 73.3 70.4 66.8 53.1
Ours(con) 87.8 72.1 63.7 91.8 97.7 82.1 0.0 26.9 58.6 51.7 78.8 86.6 62.0 70.8 68.5 52.4
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Table 2. Quantitative results on the S3DIS dataset (six-fold cross validation) (add: the two attention
weight matrices added; con: the two attention weight matrices fused at the feature level).

Methods OA mAcc mIoU Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

SPG [30] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointWeb [17] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
KPConv [18] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 64.0 57.8 74.9 69.3 61.3 60.3

FKAConv [32] - - 68.4 94.5 98.0 82.9 41.0 46.0 57.8 74.1 71.7 77.7 60.3 65.0 55.0 65.5
SCF-Net [33] 88.4 82.7 71.6 93.3 96.4 80.9 64.9 47.4 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9

BAAF-Net [31] 88.9 83.1 72.2 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
Ours(add) 87.4 80.1 68.8 92.8 97.0 80.0 58.2 48.5 62.4 68.7 71.7 70.2 58.9 63.3 65.6 57.3
Ours(con) 87.7 80.1 69.1 93.2 96.8 80.4 56.5 48.0 63.4 69.8 71.5 69.4 63.0 64.0 64.0 58.7

Table 3. Quantitative results on the Semantic3D dataset (add: the two attention weight matrices
added; con: the two attention weight matrices fused at the feature level).

Methods mIoU OA Man-Made Natural. High Veg. Low veg. Buildings Hard Scape Scanning Art. Cars

ShellNet [34] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
KPConv [18] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7
RGNet [35] 74.7 94.5 97.5 93.0 88.1 48.1 94.6 36.2 72.0 68.0

RandLA-Net [19] 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 79.7
BAAF-Net [31] 75.4 94.9 97.9 95.0 70.6 63.1 94.2 41.6 50.2 90.3

RFCR [36] 77.8 94.3 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7
Ours(add) 74.4 94.0 96.7 92.4 85.6 50.5 93.5 31.4 63.8 81.2
Ours(con) 75.7 94.3 97.0 93.4 88.2 49.9 94.1 34.8 67.8 80.6

Table 4. Quantitative results on the SemanticKITTI dataset (add: the two attention weight matrices
added; con: the two attention weight matrices fused at the feature level).
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Figure 10. Results of the visualization on S3DIS. First row is the ground truth. Second row shows 

the prediction results, where an incorrect prediction is circled. (a–c) Three different scenarios in the 

S3DIS dataset. The figure shows the prediction results of nine different scenarios in total. 
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Figure 10. Results of the visualization on S3DIS. First row is the ground truth. Second row shows
the prediction results, where an incorrect prediction is circled. (a–c) Three different scenarios in the
S3DIS dataset. The figure shows the prediction results of nine different scenarios in total.
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4.5. Ablation Experiment 

4.5.1. Naïve Local Transformer Structure and Improved Local Transformer Structure 

Table 5 shows a comparison of the performances between the naïve local transformer 

structure and the improved local transformer structure on the S3DIS dataset. In the abla-

tion experiment, we fused the two attention weight matrices by adding them. The exper-

iment results proved the importance of adding the key matrix obtained by the position 

embedding matrix. Using the improved local transformer structure, OA improved by 

0.8%, mAcc improved by 1.6%, and mIoU improved by 1.5%. 

Table 5. Segmentation results on area 5 of S3DIS. (Naïve: naïve local transformer; Improved: im-

proved local transformer). 
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Naïve 86.8 70.3 62.6 

Without cross-skip selection 87.0 70.1 62.5 

Without normal 87.1 68.9 61.6 

Improved 87.6 71.9 64.1 

Figure 11. Results of the visualization on SemanticKITTI. First row is the ground truth. Second row
shows the prediction results, where an incorrect prediction is circled. (a–c) Two different scenarios in
the SemanticKITTI dataset. The figure shows the prediction results of six different scenarios in total.

4.5. Ablation Experiment
4.5.1. Naïve Local Transformer Structure and Improved Local Transformer Structure

Table 5 shows a comparison of the performances between the naïve local transformer
structure and the improved local transformer structure on the S3DIS dataset. In the ablation
experiment, we fused the two attention weight matrices by adding them. The experiment
results proved the importance of adding the key matrix obtained by the position embedding
matrix. Using the improved local transformer structure, OA improved by 0.8%, mAcc
improved by 1.6%, and mIoU improved by 1.5%.

Table 5. Segmentation results on area 5 of S3DIS. (Naïve: naïve local transformer; Improved: im-
proved local transformer).

Methods OA mAcc mIoU

Naïve 86.8 70.3 62.6
Without cross-skip selection 87.0 70.1 62.5

Without normal 87.1 68.9 61.6
Improved 87.6 71.9 64.1
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The results of the visualization are shown in Figure 12. According to these results (the
part circled in the figure), it can be seen that between some objects in which the geometric
structures are too similar and cause confusion (such as walls and windows, and walls and
doors), the improved local transformer structure (adding the attention weight matrix to
explore the geometric relationship) obtains better segmentation results than the naïve local
transformer structure.
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Figure 12. Visualization results. First row is the ground truth. Second row shows the results when
using the improved local transformer block. The third row shows the results when using the original
local transformer block.

4.5.2. Cross-Skip Selection Method

Our experiments verified the effectiveness of the cross-skip selection of neighbors.
The results are shown in Table 5. The OA will increase by 0.6%, mAcc will increase
by 1.8%, and mIoU will increase by 1.6%. The results of the visualization are shown in
Figure 13. At the junction between objects, the similarity between points is not necessarily
positively correlated with the distance between them. Points belonging to different objects
may interfere with each other and affect the segmentation performance. Using cross-skip
selection of the neighbors can expand the receptive field of each point. The results of the
visualization are shown in Figure 14. In the places marked in blue circles, using this method
will obtain better segmentation results.
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4.5.3. Normal Feature

Table 5 shows a comparison between the results when using and not using normal
vector features on the S3DIS dataset. It can be found that, after using normal vector features,
OA will be improved by 0.5%, mAcc will be improved by 3%, and mIoU will be improved
by 2.5%. This is mainly due to the fact that the normal vectors of most points belonging to
the same object are similar or continuously changing.

5. Conclusions

In this paper, we first proposed a muti-scale transformer network for semantic seg-
mentation of a 3D point cloud. This network structure can effectively extract the local and
global features of a 3D point cloud. Second, in the local transformer structure, two different
attention weight matrices are obtained, with the aim of obtaining the feature similarities
and local geometric structure relationships between points. Moreover, we proposed two
strategies for fusing the two attention weight matrices. Through ablation experiments, it
was proven that the structure can extract the nearest neighbor feature and obtain better
segmentation performances between objects with similar geometric structures. Third, we
proposed a parallel encoder layer with the cross-skip neighbor selection method, which
obtains a larger receptive field for each point without increasing the dimensions of the
neighbor feature matrix. From the results of the visualization, it can be seen that this
method obtains better results at the junction of multiple objects.

In future work, the following two aspects will be explored. First, this paper proposed
two methods for fusing two different attention weight matrices in the local transformer.
Whether there is a more effective and efficient fusion method is worthy of further explo-
ration and research. Second, the transformer itself has the disadvantages of requiring a
large number of calculations and having low efficiency. The work conducted in this paper
was an attempt at applying it to large-scale datasets. However, improving the efficiency
and real-time performance without losing accuracy needs further research.
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Figure A1. Visualization of the attention weight matrices. The first column is Wadd obtained using
Formula (16). The second and the third columns are W1 and W2 when using the second fusion
method, which can be obtained using Formulas (13) and (15).
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