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Abstract: In this paper, we consider a non-orthogonal multiple access (NOMA) system with coordi-
nated multi-point (CoMP), which is used in 5G cellular networks to guarantee the rate requirements
from the different edge users. Based on the China Family Panel Studies (CFPS) dataset, we use several
learning algorithms to predict users’ rate requirements according to their profiles. We propose a
many-to-many two-side subchannel–user matching strategy, which can classify users into cell-center
users, high-rate requirement edge users, and low-rate requirement edge users based on their status
and learning prediction results, and pair users with different subchannels to form joint transmis-
sion CoMP (JT-CoMP) subchannels and dynamic point selection CoMP (DPS-CoMP) subchannels.
Furthermore, a discrete power allocation algorithm based on group search is proposed. Simulation
results show that our proposed algorithm outperforms the traditional NOMA-CoMP algorithm and
maximum throughput (MT) NOMA-CoMP algorithm. It maximizes the rate of high-rate requirement
edge users while guaranteeing user fairness.

Keywords: non-orthogonal multiple access (NOMA); coordinated multi-point (CoMP); users
classification and subchannel scheduling; discrete power allocation

1. Introduction

In 5G and beyond 5G (B5G) wireless cellular networks, non-orthogonal multiple
access(NOMA) has great potential in improving spectrum efficiency and network through-
put [1–3]. Coordinated multi-point (CoMP) is applied to the scenario of multiple cells,
which can reduce the interference between cells, and improve the system throughput at
the same time [4–6]. The interferences arisen in different sectors of the same cell or differ-
ent cells can be aligned or mitigated by CoMP technologies. The traditional orthogonal
frequency division multiplexing (OFDM)-CoMP system can reduce inter-cell interference
(ICI) and increase the transmission rate of cell-edge users, but each subchannel can only
schedule one user in each time slot. Due to the deployment of 5G dense cellular networks,
NOMA systems need to solve problems such as improving the efficiency of cell resource
scheduling and reducing ICI. Therefore, it is an important research work to study NOMA
resource scheduling based on CoMP. In addition, the performance of 5G wireless networks
is greatly affected by efficient user clustering and scheduling, power allocation, and CoMP
transmission mode. In order to further improve the performance of the NOMA-CoMP
network system, it is necessary to establish a network model with differentiated user
rates and use a matching theory for user classification and optimization algorithms for
power allocation.

1.1. Existing Research

The basic idea of NOMA is to use non-orthogonal transmission at the transmitting
end, introduce interference information actively, and achieve correct demodulation through
a serial interference cancellation (SIC) receiver at the receiving end. Spectrum efficiency can
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be significantly improved by allowing multiple users to share the same subchannel in the
power domain. Therefore, it is widely studied and applied to 5G access technology [7–10].
Wireless network joint resource allocation and scheduling significantly impact system
spectrum efficiency and network throughput [11,12]. In [13], considering a downlink
NOMA network, the authors studied power allocation issues while scheduling subchannels,
and a subchannel–user matching algorithm was proposed by exploiting the many-to-many
two-side matching theory. The results proved that the algorithm was better than orthogonal
frequency division multiple access (OFDMA) schemes. Based on [13], a new algorithm was
proposed to solve a two-side exchange stable matching problem, and its results showed
that the proposed algorithm outperforms traditional OMA and NOMA schemes [14]. A
proportional fairness scheduling scheme for NOMA to maximize normalized rate was
studied in [15].

Edge users are usually far away from base stations (BSs). With NOMA technology
alone, edge users may not meet their quality of service (QoS) requirements. To solve
this problem, CoMP transmission was used in [16,17] to improve the throughput of edge
users. Recently, resource scheduling for NOMA-CoMP networks has attracted a lot of
attention. In downlink CoMP networks, an opportunistic NOMA (ONAMA) system was
proposed in [18,19]. It was shown that the performance of an ONOMA-CoMP system is
better than traditional joint transmission (JT) NOMA-CoMP. In [20], a multi-tier NOMA
(TNOMA) scheme was proposed for CoMP networks to increase a high-transmission-rate
service range. In [21,22], different clustering scenarios were investigated, where the authors
discussed a beamforming scheme in downlink NOMA systems and considered power allo-
cation. Various network scenarios with different user spatial distributions and derivation
of a user achievable rate expression in different NOMA-CoMP scenarios were discussed
in [23,24]. In [25], the authors proposed a power optimization method that maximizes en-
ergy efficiency in downlink NOMA-CoMP networks. However, the subchannel allocation
and power allocation issues are not well discussed in the existing works. JT-NOMA and
Alamouti-NOMA (A-NOMA) are proposed in [26] to reduce the outage probabilities in a
simultaneous wireless information and power transfer (SWIPT) network. The result shows
that A-NOMA performs better than both JT-NOMA and JT-OMA in high SNR. In [27],
a metaheuristic teaching–learning-based optimization (TLBO) algorithm is proposed to
optimize the energy efficiency in a hybrid satellite-unmanned aerial vehicle (UAV) relay
network (HSURN) based on the downlink NOMA transmission and CoMP. There are two
NOMA clustering models in [28] in order to improve user sum-rate and reduce user SIC
complexity. One is Unlimited NOMA clustering (UNC) where the order of each NOMA
cluster is the maximum possible value. Another is limited NOMA clustering (LNC) where
the SIC is performed for only a subset of users to improve user sum-rate and reduce user
SIC complexity. JT-CoMP is applied with full-duplex (FD) cooperative NOMA (C-NOMA)
to maximize the network sum-rate while guaranteeing the required quality-of-service of
users [29].

A few works considered a joint subchannel and multi-cell power allocation problem
in a NOMA-CoMP system. In [30], a multi-criteria user coordination mode selection algo-
rithm based on coordinated NOMA was proposed. Two resource allocation algorithms
were proposed considering the effects of imperfect channel state information (CSI) and
SIC. Simulation results showed that the proposed method can effectively reduce energy
consumption and improve user robustness. In [31], a maximum throughput (MT) algo-
rithm for subchannel allocation for a NOMA-CoMP system was proposed, and its results
showed that MT algorithm enhanced spectral efficiency. However, the authors assumed
an ideal condition without any difference among subchannels of each cell, and performed
user power allocation before subchannel allocation. A BS clustering algorithm based on
successive convex approximation is proposed to improve system sum-rate and spectrum
efficiency [32]. The simulation results show that the proposed scheme can increase the
sum-rate even in high user density. Inspired by [13,31], we consider the case of subchannel
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differentiation in each CoMP cell and propose a many-to-many two-side matching strategy,
where the subchannel allocation is performed prior to power allocation.

In order to introduce CoMP technology, we make a more specific analysis of CoMP
types so as to establish a theoretical foundation for the following discussion. CoMP technol-
ogy has three main scheduling modes, namely joint transmission (JT) [33], dynamic point
selection (DPS) [34], and coordinated scheduling/coordinated beamforming (CS/CB) [35].
(1) In the JT mode, the BSs of different coordinated cells can perform joint scheduling to the
same edge user on the same resource block (RB). The coordinated BSs can not only share
the CSI of each subchannel and the user’s scheduling information, but also exchange user
data. Users can obtain power allocation and data transmission from BSs in the same time
slot. This model can effectively convert ICI into desired signals and improve the overall
cell throughput. However, scheduling information and data exchange between multiple
BSs also brings high backhaul bandwidth and latency issues. (2) In the DPS mode, only
one of the coordinated BSs in the cluster can be selected for scheduling edge users in the
same time slot. According to the channel conditions between BSs and users, the system can
dynamically select different BSs in different time slots to obtain the optimal data transmis-
sion. (3) In the CS/CB mode, the BSs of the coordinated cells share CSI and beamforming
information, which can reduce or even eliminate ICI suffered by edge users. However,
the coordinated BSs only schedule edge users in their respective cells and do not exchange
user data. This greatly reduces the backhaul bandwidth overhead. In this paper, the types
of downlink CoMP we use are JT mode and DPS mode. JT-CoMP has better coverage
performance and stability, which can provide better performance gains. That is the reason
why high rate requirement user is served by JT-CoMP. Moreover, DPS-CoMP has lower
algorithm complexity, lower cost of returning to the city and lower system performance. So
we use DPS-CoMP to serve low rate requirement users.

The rapid development of deep learning is better satisfying the stringent requirements
of future cellular networks. Ref. [36] proposed a CoMP transmission method based on deep
learning, which can immediately determine whether to use synchronous transmission or
time-division multiplexing during the training process based on offline computer simula-
tion. Ref. [37] studied user-centric networks and proposed a reinforcement learning (RL)
framework based on neural fitting Q iterative technology, which can dynamically adjust the
transmission and reception points involved in joint transmission. In [38], a method based
on adaptive online learning was designed considering the inter-cell interference, which can
perform dynamic clustering and carrier aggregation in the CoMP system to improve the
throughput of the system. Refs. [39,40] adressed mobile network caching (MNC). Ref. [39]
used community-aware non-negative matrix factorization (CNMF) with implicit feedback
to predict the probability of content requests, and designed a CNMF-based active caching
algorithm to estimate content requests by considering associated users and neighbor users
in close collaboration with CoMP probability to make caching decisions. Ref. [40] proposed
an online learning algorithm based on reinforcement learning to search for the best caching
strategy considering practical time-varying user request patterns. Our work uses a deep
learning algorithm to predict the user rate to ensure that edge users can be divided into
high-rate requirement users and low-rate requirement users based on their mobile phone
usage habits.

1.2. Motivation and Contributions

For most current NOMA-CoMP systems, there are some problems existing: (1) Most
of the works assume that there is a significant difference in channel gain between users,
so that users are paired according to channel quality. However, when the users are close
to each other, their CSI is not much different, and the users cannot be distinguished and
successfully paired in terms of channel gain, so that the advantages of NOMA-CoMP
cannot be fully utilized; (2) in the future 5G actual network, the rate requirements from
the edge users are not guaranteed to be fully achieved due to the low data rate at the edge
areas and the high frequency handoff for edge users between cells in 5G networks [41,42].
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Thus, it is very important to predict users’ behaviors, especially their rate requirements
before we implement the downlink CoMP among the edge users; (3) most of the work
does not distinguish the required rate of users, which leads to the system applying many
resources to edge users with low rate requirements according to the principle of the NOMA
system, resulting in a waste of power resources. Therefore, it is very important to study
the scenarios of using CoMP and NOMA for user rate differentiation and subchannel
differentiation. This motivated our work.

In this paper, considering subchannel differentiation and user rate differentiation,
we aim to maximize the rate of edge users with high-speed demand while ensuring
user fairness. Our goal is to optimize joint subchannel scheduling and multi-cell power
allocation. The main contributions of this work are summarized as follows.

• We implement a variety of machine learning algorithms based on real datasets to
predict the rate requirements of edge users. This ensures that edge users can be
classified into high-rate requirement edge users and low-rate requirement edge users.

• A many-to-many two-side subchannel user matching algorithm (MSUMA) for NOMA-
CoMP systems is proposed to divide the subchannels into JT-CoMP subchannels and
DPS-CoMP subchannels according to different scheduling users.

• For the power allocation, we propose a discrete power allocation algorithm based
on group search. The performance of the proposed algorithm is evaluated and com-
pared to the MT scheme and traditional NOMA-CoMP algorithm. Simulation results
demonstrate that the proposed scheme outperforms the other schemes.

1.3. Paper Organization

The rest of the paper is organized as follows. Section 2 presents the NOMA-CoMP
system model. In Section 3, we propose a learning method to predict the rate of user
rate requirement and then build a model for predicting the rate of user rate requirement.
Section 4 proposes a many-to-many two-side subchannel user matching algorithm for
NOMA-CoMP systems. A discrete power allocation algorithm based on group search in
NOMA-CoMP systems is proposed in Section 5, including power allocation algorithms in
DPS-CoMP subchannels, JT-CoMP subchannels and between subchannels. Section 6 carries
on the simulations to the above-mentioned algorithms. Finally, Section 7 summarizes the
results and gives the conclusions of this paper.

2. System Model

A downlink multi-cell NOMA-CoMP wireless network is described in Figure 1. For
simplicity of discussion, we only consider establishing a three-cell NOMA-CoMP network
model. The analysis and simulation results under the model are applicable to the situation
of more cells, as the formulas and the algorithms we proposed are based on the discussion
of B cells, where the conclusion we draw is not effected by the number of cells.

There are 3 CoMP clusters in Figure 1 (i.e., one JT-NOMA-CoMP cluster and two
DPS-NOMA-CoMP clusters). In the JT-NOMA-CoMP cluster, UEC

B1,1 and UEC
B2,1 are the

cell-center users served by BS1 and BS2, respectively. UEE
B1B2,1 is the high-rate requirement

edge user from the prediction of the user behavior, which is expected to get the best service.
Meanwhile, UEE

B2,1 and UEE
B3,1 are the low-rate requirement users from the user behavior

prediction, which means they only need to be served with their target rate. In the ts
time slot, UEE

B2,1 and UEE
B3,1 form NOMA-CoMP clusters with UEC

B2,2 and UEC
B3,1 through

DPS-CoMP mode, respectively. According to the principle of NOMA, the subchannels of
each cell are superimposed on multiple users for simultaneous transmission. Therefore,
interference will occur on this subchannel, which is called intra-cell interference. In order
to obtain the signal desired by the user accurately, the receiving end of each user adopts
the SIC and the user can eliminate the intra-cell interference caused by other users whose
channel gain is smaller than its own channel gain on the subchannel.
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Figure 1. A system model of NOMA-CoMP networks.

First, we consider the DPS-NOMA-CoMP cluster. Each CoMP user is only scheduled
by one CoMP-BS, and other CoMP-BSs will not cause interference to the user (i.e., there is
no ICI). Consider a group of users M = {1, ..., M}, where each user has a distinct channel
gain. Moreover, suppose the SIC decoding order is based on the user’s index, i.e., the
signal of UE1 is decoded first, then the signal of UE2, and so on. Therefore, according
to the SIC, UE1 can decode its desired signal by treating the signals of all other users in
the system as intra-cell interference. In this way, UEm can decode its desired signal after
eliminating all users whose channel gain is smaller than its own by applying SIC technology.
In this DPS-NOMA-CoMP system, the achievable rate of any user l on subchannel k can be
written as

Rk,l = log2

1 +
xk,l pk,lγk,l

m

∑
l′=l+1

xk,l′ pk,l′γk,l + ωl

 (1)

where the channel is assumed to be a Rayleigh fading channel over bandwidth B = 1. γk,l
denotes the channel power gain for user l at the receiver, and pk,l represents the transmit
power of user l. xk,l represents the channel selection parameter. When the subchannel k
is allocated to the user l, the value is 1, otherwise it is 0. ωl ∼ CN

(
0, σ2

l
)

denotes additive
white Gaussian noise (AWGN) at user l and σ2

l is the variance of the noise.
Then we consider the JT-NOMA-CoMP cluster. We assume that the users in this

cluster are scheduled by at most two CoMP-BSs, denoted by BSα and BSβ, respectively.
The number of cell-center users in the cell α and β is defined as ϕc,α and ϕc,β, respectively,
and the number of of edge users with high rate requirement is defined as ϕe. In this two-BS
CoMP-set, the set of non-CoMP-UEs i ∈ {1, 2, . . . , ϕc,α} in the cell α, the set of non-CoMP-
UEs j ∈

{
1, 2, . . . , ϕc,β

}
in the cell β , and the set of CoMP-UEs e ∈ {1, 2, . . . , ϕe} all are

assumed to follow the SIC ordering according to their subscripts. Hence, the achievable
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data rate for the CCU i served by BSα for B = 1 can be expressed as (in order to make the
formula clear, we omit the part where the channel selection parameter xk,i is 0):

Ri = log2

1 +
pα

i γα
i

∑
ϕc,α
i′=i+1 pα

i′γ
α
i +

∣∣∣∣∣∣pβ
j

∣∣∣∣∣∣
1
γ

β
i + ωi

 (2)

where γα
i and γ

β
i denote the CCU i’s channel gain with BSα (desired channel) and with

BSβ(ICI channel), respectively. pα
i represents the transmit power of the CCU i from

BSα, while ∑
ϕc,α
i′=i+1 pα

i′ represents the power of other cell-center users from BSα who are
matched into the same JT-CoMP subchannel with the user i but have higher SIC ordering.∣∣∣∣∣∣pβ

j

∣∣∣∣∣∣
1
= ∑

ϕc,β
j=1 pβ

j represents the transmit power of cell-center users from BSβ, which form
the NOMA-CoMP cluster at BSβ end with the same edge users (i.e., the transmit power
of ICI).

The achievable data rate for the CCU j served by BSβ can be expressed as

Rj = log2

1 +
pβ

j γ
β
j

∑
ϕc,β
j′=j+1 pβ

j′γ
β
j +

∣∣∣∣∣∣pα
j

∣∣∣∣∣∣
1
γα

i + ωj

 (3)

where γ
β
j and γα

j represent the CCU j’s channel gain with BSβ (desired channel) and with

BSα (ICI channel), respectively. The terms pβ
j and ∑

ϕc,β
j′=j+1 pβ

j′ are similar to Equation (2) but

in terms of CCU j in the cell β. As well,
∣∣∣∣pα

i

∣∣∣∣
1 = ∑

ϕc,α
i=1 pα

i denotes the power for cell-center
users from BSα which form the NOMA-CoMP cluster at BSα end with the same edge users.

The achievable data rate for the edge user e, from the same JT-NOMA-CoMP cluster
as in Equations (2) and (3), can be expressed as

Re = log2

(
1 +

PT
e γe

Ie + ωe

)
(4)

where

Ie =
ϕe

∑
e′=e+1

PT
e′γe +

ϕc,α

∑
i=1

pα
i γα

e +

ϕc,β

∑
j=1

pβ
j γ

β
e (5)

The term PT
e γe = pα

e γα
e + pβ

e γ
β
e denotes the desired signal transmitted from both

CoMP-BSs (BSα and BSβ), where Pe =
[

pα
e , pβ

e

]T
, γe =

[
γα

e , γ
β
e

]T
and PT

e indicates the

transpose of Pe. ∑
ϕe
e′=e+1 PT

e′γe represents intra-cell interference caused by other users in

the cluster who have higher SIC ordering. ∑
ϕc,α
i=1 pα

i γα
e and ∑

ϕc,β
j=1 pβ

j γ
β
e are the ICI from two

jointly scheduled CoMP-BSs, BSα and BSβ, respectively.
In this system model, we need to maximize the sum data rate of CoMP users in the

JT-NOMA-CoMP cluster, while ensuring that the CoMP users in the DPS-NOMA-CoMP
cluster and the non-CoMP users in the two clusters reach their target rate. Pk and Ptotal
represent the power budget on the k-th subchannel and the total system power budget. We
assume that the number of users multiplexed on each subchannel is M. The range of M is
M f ≤ M ≤ Mu, where Mu is the upper bound of the multiplexed user on the subchannel
and M f is the lower bound. The optimization problem is expressed as
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max
xk,n ,pk,n

∑
k∈K

∑
n∈e

Rk,n (6)

s.t. C1 : ∑
n∈N

pk,n ≤ Pk (7)

C2 : ∑
k∈K

∑
n∈N

pk,n ≤ Ptotal (8)

C3 : Ri ≥ Rmin
i , ∀i = 1, . . . , ϕc,α (9)

C4 : Rj ≥ Rmin
j , ∀j = 1, . . . , ϕc,β (10)

C5 : Re ≥ Rmin
e , ∀k = 1, . . . , ϕe (11)

C6 : Rl ≥ Rmin
l , ∀l = 1, . . . , ϕl (12)

C7 : xk,n ∈ {0, 1} ∀k ∈ K, n ∈ N (13)

C8 : M f ≤ ∑
n∈N

xk,n ≤ Mu (14)

Since the transmission power of the BS and the power allocation of each subchannel is
limited, the power allocation variable pk,n must meet the constraints C1, C2. Constraints
C3–C6, respectively, represent the the minimum rate requirement of non-CoMP user i
served by BSα, and non-CoMP user j served by BSβ, CoMP user e jointly scheduled by BSα

and BSβ, and user l in the DPS-NOMA-CoMP cluster. Constraint C7 indicates whether a
discrete binary variable xk,n is allocated. Constraint C8 ensures that each subchannel can
only be allocated at most Mu users.

Due to the structure of the optimization function and the existence of discrete variables
xk,n and continuous variables pk,n , the entire optimization problem has the characteristics
of mixed integer nonlinear programming (MINLP), whose optimal solution is difficult to
determine. However, in practical systems, the power is typically set in discrete steps. In
this way, we discretize the entire optimization problem to facilitate our following work. We
predict the requirement rate of users in Section 3 to ensure that edge users can be divided
into two varieties.

3. Predict and Leverage Users’ Rate Requirements

In this section, we predict the user requirement rate based on the China Family Panel
Studies (CFPS) dataset. Assuming that the base station can obtain user information com-
pletely, we can classify the edge users into high-rate requirement and low-rate requirement
by the user’s predicted rate.

3.1. Introduction of Machine Learning Algorithms

Random forest is to construct a forest in a random way, and there are many decision
trees in the forest. In random forests, there is no relationship between each decision tree.
After getting the forest, let each decision tree in the forest make a judgment separately
when a new input sample comes in. Determine which category the sample should belong
to, and then determine which category is selected the most, and predict which category the
sample belongs to.

The linear discriminant analysis algorithm tries to find a line so that the projections of
points of the same class on the line are as close as possible, and the projections of points of
different classes on the line are as far as possible. When a new sample point needs to be
classified, the projection of the point on the straight line is calculated, and the classification
of the new sample point is judged according to the projection position.

Naive Bayes classification is a method based on Bayes’ theorem and assuming that
the feature conditions are independent of each other. First, learn the joint probability
distribution from input to output through the given training set, with the assumption that
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the feature words are independent. Then, based on the learned model, input X to find the
output that maximizes the posterior probability of Y.

Support vector machine (SVM) is a binary classification model whose basic model is
a linear classifier that defines the largest margin in the feature space. SVMs also include
kernel tricks, which make them essentially non-linear classifiers. The learning strategy of
SVM is interval maximization, which can be formalized as a problem of solving convex
quadratic programming, The learning algorithm of SVM is an optimization algorithm for
solving convex quadratic programming.

K-Nearest Neighbor (KNN) is one of the simplest machine learning algorithms that
can be used for classification and regression, and it is a supervised learning algorithm. Its
main idea is that if most of the K nearest neighbors of a sample in the feature space belong
to a certain class, then the sample also belongs to that class and has the characteristics of
the samples in that class. The KNN method only determines the class of samples to be
classified based on the class of one or more recent samples.

RUS refers to random undersampling, which randomly selects a certain amount of
majority class samples and minority class samples from the dataset to form a training
dataset with a balanced distribution. Boost refers to the Adaboost algorithm, which
means that the algorithm adds RUS technology to the Adaboost algorithm. The Adaboost
algorithm is an ensemble learning algorithm. Its core idea is to train different classifiers
(weak classifiers) for the same training set, and then combine these weak classifiers to form
a stronger final classifier (strong classifier). The RUSBoost algorithm changes the random
sampling of the Adaboost algorithm to the sampling technology of unbalanced data, which
greatly improves the accuracy of the classification of unbalanced data sets.

3.2. User Requirement Rate Prediction

We use the latest data released by CFPS and select 17,498 samples about mobile phones
(other samples have nothing to do with mobile phone use or refuse to answer questions
related to mobile phone using habits). Using the users’ profiles as features, we predict the
user’s communication habits as labels. These characteristics are all independent variables
that may affect the user’s communication habits which are the user’s profile. For the data
released by CFPS, we screen out about 45 features from 1371 variables.

In order to predict the rate requirements of users through features, we use “the
frequency of using the Internet to entertain” and “the frequency of using the Internet to
contact” to express the rate requirements of video services and the rate requirements of
text services (e.g., WeChat or email), respectively. According to the dataset’s quality, two
labels are selected to represent the user’s requirement rate: (1) The frequency of using the
Internet to entertain and (2) the frequency of using the Internet to contact. Correspondingly,
each label is represented by five levels (inaccurate frequency) in CFPS: (1) Almost every
day, (2) several times a week, (3) several times a month, (4) sometimes, (5) never or do not
answer. Specifically, “almost every day” is denoted by 1, and “never or do not answer” is
denoted by 5.

Next, we use machine learning methods to predict the user’s communication habits.
Specifically, we use random forest, linear discriminant, naive Bayes, linear support vector
machine (SVM), and k-nearest neighbor (KNN). In addition, we also design a learning
method based on the RUSBoost algorithm to predict the communication habits of users.
RUSBoost is an algorithm for dealing with class imbalance problems in data with discrete
class labels. It uses a combination of RUS (random undersampling) and the standard
boosting program AdaBoost to model the minority classes better.

We provide confusion matrices for predicting the “frequency of using the Internet
to entertain” and “the frequency of using the Internet to contact” in Figures 2 and 3 to
evaluate the performance of different learning algorithms, respectively. We use digitd with
color in Figures 2 and 3 for correct predictions. During simulation, we use cross-validation
to prevent overfitting by dividing the dataset into 10 groups and estimating the accuracy
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of each group. The row shows the number of users with the real value, and the column
shows the prediction number of users.

Figure 2. Confusion matrix for predicting the frequency of using the Internet to entertain.

Figure 3. Confusion matrix for predicting the frequency of using the Internet to contact.

We observe that the accuracy of our algorithm for users in classes 1 and 5 are higher.
Some users in class 2 are misclassified as class 1 users and given a higher prediction rate
requirement. However, the cost of misclassification is small. For users with small samples
in classes 3 and 4, the learning method based on the RUSBoost algorithm that we use can
model the minority categories better, so that the accuracy has better performance than other
learning algorithms.

3.3. Use of Predictions

Inspired by [42], we map the frequency domain f (values 1–5) to the probability
domain p, assigning values of 1, 0.8, 0.6, 0.4, and 0.2, respectively. We use pV to represent
the probability of a user having a video service and pT to represent the probability of a
user having a text service. For example, the value of the frequency domain of the user
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“using Internet to entertain several times a week” is 2, which means the user has a higher
probability of having a video service. Thus, this user’s pV is evaluated by 0.8.

We use Rmin
n to quantify the requirement rate of users. RV represents the minimum rate

requirement of the user’s video service, and RT represents the minimum rate requirement
of the user’s text service. Then, for user n, the desired rate requirement Rmin

n can be
calculated as

Rmin
n = pV(n) ∗ RV + pT(n) ∗ RT (15)

4. Many-to-Many Two-Side Subchannel User Matching Algorithm for
NOMA-CoMP Systems

It can be known from the system model that the rate of the system is determined by the
subchannel and power. Taking into account the complexity of allocation, this section first
classifies cell users, and then allocates subchannels to users. The many-to-many two-side
subchannel user matching algorithm will be implemented through the following steps.

4.1. Initialization

In order to transform Equation (6) into a many-to-many two-side matching problem
and use an equivalent channel gain to improve user fairness, BS b with k subchannels
broadcasts a reference signal sr to all users in the cluster with the same transmission power
Pr. Users in the cell using the same subchannel have the same power Pr. The BS b containing
k subchannels and m users can obtain the channel gain set Hb of all cell users in this way,

Hb =
{

Ĥb(1), Ĥb(2), ..., Ĥb(m)
}

, ∀b ∈ BS (16)

where

Ĥb(n) =
{

γ1
b(n), γ2

b(n), . . . , γk
b(n)

}
, n = 1, . . . , m (17)

4.2. User Classification

The users are classified according to the obtained equivalent channel gain set. If
max(Ĥb(n)) ≤ ε (ε is the threshold for dividing edge users), then the edge user set
U
(e)
b = {n}; otherwise, the cell-center user set U

(c)
b = {n}. We set a reasonable value

(ε = 1.5) in the simulation so that the number of CoMP users in the CoMP cluster and the
number of non-CoMP users in each cell are nearly equal. At the same time, according to
Section 3, it can be seen that the user requirement rate is predictable. Assuming that the BS
can obtain user information completely, we obtain the rate requirement set Rmin

b of users in

the edge user set U(e)
b . If Rmin

b (n) ≤ ξ (ξ is the threshold of user rate requirements), then

the high-rate requirement edge user set U(hr)
b = {n}; otherwise, the low-rate requirement

edge user set U(lr)
b = {n}. Moreover, the value of ξ we set is 2.5 so that the number of

high rate-requirement users and the number of low rate-requirement users in the cell are
nearly equal.

4.3. Calculate the Equivalent Rate Set

Because the BS transmits the signal with the same reference power, the channel gain
of a user can be represented by an equivalent channel gain as Equation (16). From Equa-
tions (1)–(4) and (16), we can obtain a data rate set for each user of different subchannels
when the same reference power is allocated as

R̂b =
{

R̂b(1), R̂b(2), ..., R̂b(m)
}

, ∀b ∈ B (18)

where
R̂b(n) =

{
R1

b(n), , R2
b(n, 2)..., Rk

b(n)
}

, (n = 1, . . . , m) (19)
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4.4. Problem Formulation

Let us consider the subchannel set Sb of each cell and the scheduled users set Ub as
two non-cooperative sets. Players in these two sets in each group are selfish and rational;
in other words, they only want to maximize their own interest. If the subchannel Sb,k is
allocated to the scheduled user Ub,n, it is said that Sb,k and Ub,n are matched with each other
to form a pair Sb,kΘUb,n, where Θ denotes a mapping relationship. Specially, we give the
definition of the mapping relationship between joint subchannels and users in a CoMP cell.

Definition 1. Given BS groups B = {1, . . . , B}, and each group has two non-cooperative sets,
the subchannels group S = {1, . . . , S} and the users group U = {1, . . . , U}. Θ is a many-to-many
mapping between subchannels and users:

(a) Θ(Ub,n) ⊆ Sb

(b) Θ
(
Sk

b

)
⊆ Ub

(c)
∣∣Θ(Ub,n)

∣∣ ≤ Ql

(d)
∣∣∣Θ(Sk

b

)∣∣∣ ≤ Qu

(e) Sk
b ∈ Θ(Ub,n)⇔ Ub,n ∈ Θ

(
Sk

b

)
Condition (a) states that each user of a CoMP cell b is matched to a subchannel set of the cell b.
Condition (b) expresses that each subchannel is matched to a user set in a CoMP cluster. Condition
(c) indicates that the maximum size of scheduled subchannels of user n is Ql . Condition (d) states
the fact that the maximum number of joint subchannel multiplexed users is Qu.

In order to describe the competition relationship and matching process among all
players in the system better, we assume that each player prefers to work with a player in
the other set in the same group. We denote the users’ preference list set in group b as

ZUb
=
{
ZUb,1

, . . . ,ZUb,U

}
, ∀b ∈ B (20)

and the set of preference list of subchannels in group b as

ZSb
=
{
ZS1

b
, . . . ,ZSS

b

}
, ∀b ∈ B (21)

where we can also call ZUb,n
and ZSk

b
the satisfaction sequence of user n and subchannel k

in group b, respectively.
Since one subchannel can be shared by at most Qu users, the preference set for each

subchannel for different subsets of users is expressed as

L � L̃
(
L ⊆ Ub, L̃ ⊆ Ub

)
⇔ RSk

b
(L) > RSk

b
(L̃) (22)

which states the fact that Sk
b is more likely to match to users in L, compared with those in

L̃. In this paper, the user is scheduled by only one subchannel in the same time slot. So
each subchannel preference set in each CoMP cell is represented as

Sk
b � S

k̃
b ⇔ γk

n,b > γk̃
n,b (23)

which means that Ub,n prefers the subchannel in Sk
b to S k̃

b . Specifically, the algorithm is as
Algorithm 1.
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Algorithm 1 User Classification and Preference Ranking Algorithm

Input: Pr, ωn, CoMP user division threshold ε, user rate requirement set Rmin
b , rate require-

ment division threshold ξ

Output: U
(c)
b , U(e)

b , U(hr)
b , U(lr)

b , ZUb
, ZSb

1: The BS b transmits the same signal Pr to each cell user to obtain the user n equivalent
channel gain set Ĥb(n).

2: if max(Ĥb(n)) ≤ ε then
3: U

(e)
b = {n}

4: else
5: U

(c)
b = {n}

6: end if
7: for each n ∈ U

(e)
b do

8: Obtain the rate requirement set Rmin
b of users in the edge user set U(e)

b
9: if Rmin

b (n) ≤ ξ then

10: U
(hr)
b = {n}

11: else
12: U

(lr)
b = {n}

13: end if
14: end for
15: Obtain subchannel preference list and user preference list:

(a) Obtain the user equivalent channel gain set Ĥb in different subchannels;

(b) According to Pr, ωn, Ĥb, and R̂b =
{

R̂b(1), R̂b(2), ..., R̂b(m)
}

, get R̂b;

(c) Sort Sk
b according to Ĥb, and get ZUb

;
(d) Sort Ub,n according to R̂b, and get ZSb

;

4.5. Many-to-Many Subchannel–User Matching Algorithm in NOMA-CoMP Systems

Compared to the traditional many-to-many two-side matching problem, our optimiza-
tion problem is more complicated. Our model is applied to ultra dense networks in 5G
scenarios, where the number of subchannels and users of CoMP cells may be very large.
To solve this matching problem, we propose a subchannel–user matching algorithm for
NOMA-CoMP systems based on the Gale–Shapley algorithm.

We modify the traditional Gale–Shapley algorithm [43,44] and propose a many-to-
many subchannel–user matching algorithm (MSUMA). The specific extensions of the
traditional many-to-many two-side matching algorithm are as follows: (1) We distinguish
different BSs in the form of groups, and extend the traditional many-to-many two-side
matching problem into multiple groups of interrelated non-cooperative subchannel–user
many-to-many two-sided matching problems. (2) The subchannel in each group must
not only consider matching with the user in this group, but also consider matching with
CoMP user in other groups, i.e., the subchannel in each group need match all CoMP
users, and the subchannel–user matching of each group will generate an associated CoMP
set. (3) Non-CoMP users and low-rate requirement CoMP users only need to send their
curriculum vitaes (CVs) to the subchannel with the highest satisfaction in their cell, while
high-rate requirement CoMP users not only send their CVs to the subchannel with the
highest satisfaction in their cell, but also send their CVs to the subchannels that have the
same resource block in all the cells of the CoMP cluster. (4) The subchannels need to
determine whether the matched user is a high-rate requirement CoMP user. For a high-rate
requirement CoMP user, it is necessary to determine whether joint CoMP cell selects the
CoMP user on the same RB. The high-rate requirement CoMP user is scheduled only when
the BS of the joint CoMP cell selects the CoMP user on the same RB. Otherwise, this user
will not be scheduled on the RB, e.g., step 8.B. Moreover, for a low-rate requirement CoMP
user, it is necessary to determine whether only one cell selects this CoMP user, e.g., step 8.C.
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The process of the MSUMA is as follows. As a user expects to be matched to subchan-
nels, it chooses subchannels according to its ZUb

, i.e., we assume that each user sends its
CV to subchannels (non-CoMP users and low-rate requirement CoMP users only send CVs
to the preferred subchannels in the local cell, and high-rate requirement CoMP users send
CVs to its preferred subchannels in each cell in the CoMP cluster). Then, each subchannel in
each cell has the right to reject or accept these CVs according to their respective preferences
ZSb

. When all users have submitted their CVs to their preferred subchannels, the current
round of mutual selection ends. The specific description of the algorithm is as Algorithm 2.

Algorithm 2 Many-to-Many Subchannel–User Matching Algorithm

Input: U
(c)
b , U(e)

b , U(hr)
b , U(lr)

b , ZUb
, ZSb

Output:
{
S JT

b

}
,
{
SDPS

b
}

1: Construct a set of all subchannels {Sbmatch} to label the users that Sb is currently matched to;
2: Each user Ub,n ∈ Ub sends his CV to his favourite subchannel in ZUb,n

: Sk
b = arg max

k∈ZUb,n

[
Ĥb,n

]
, ∀n ∈ U

3: if |{Sbmatch}| < Qu then
4: Sk

b keep Ub,n’s offer;
5: else
6: Sk

b selects a set of Qu satisfying L � L̃
(
L ⊆ Ub, L̃ ⊆ Ub

)
, update {Sbmatch};

7: end if
8: Determine whether to schedule edge users:

(A)For Sk
b selected Ub,n ∈ U

(e)
b , do:

(B) If Ub,n ∈ U
(hr)
b

(a) If there is another BS which selects Ub,n at the same time
(b) Sk

b keeps Ub,n;
(c) else, {Sbmatch} - {n}, update {Sbmatch}.

(C) Else if Ub,n ∈ U
(lr)
b

(a) If there is no other BS which selects Ub,n at the same time
(b) Sk

b keeps Ub,n;
(c) else, {Sbmatch} - {n}, update {Sbmatch}.

9: Update subchannel preference list and user preference list:

(A)Sk
b removes the selected users from ZSk

b
, updates ZSk

b
;

(B) If
∣∣∣Sk

b

∣∣∣ = Qu, then remove Sk
b from ZUb,n

, updates Sk
b ; else,only remove scheduled users list in Sk

b from ZUb,n
,

updates Sk
b

(C) If |{Sbmatch}| = Qu × S, ∀b ∈ B or |{Sbmatch}| = U, ∀b ∈ B, go to Step 10; else, go back to Step 2

10: If Ub,n ∈ U
(hr)
b , where Ub,n ∈ Sk

b , add Sk
b to

{
S JT

b

}
; else if Ub,n ∈ U

(lr)
b , where Ub,n ∈ Sk

b , add Sk
b to

{
SDPS

b
}

;
11: End of the algorithm

Through Algorithm 2, we successfully established the connection between the user and
the subchannel, and completed the subchannel allocation of the system. In the next section,
we will carry out the power allocation of the entire system to further improve our system,
including the subchannel power allocation and power allocation between subchannels.

5. Discrete Power Allocation Algorithm Based on Group Search in
NOMA-CoMP Systems

In order to achieve the maximum sum rate of high-speed demand users, we need to
optimize the user’s power allocation variable pk,n. Nevertheless, the power allocation value
for paired users is continuous. It is impossible to divide them based on the exhaustive
search. However, the power is usually set in discrete steps in existing systems. Therefore,
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we can discretize the total power into the number of L uniform power levels, and each
power level can be expressed as ξ = Ptotal/L, using pl = ξ ∗ l to represent the power level,
and l ∈ (1, 2, . . . , L). After we discretized the power, the original optimization problem
could be optimized based on the idea of group search.

5.1. DPS-CoMP Intra-Subchannel Power Allocation

First, let us discuss the power allocation in the DPS-CoMP channel. In the first
step, pair users based on the MSUMA algorithm. After pairing, rank the paired users
in descending order according to the equivalent channel gain, and get different paired
user pairs φm,n. After pairing users, the BS transmits L different total power levels for
subchannel k. For each user in the user pair φm,n, the power level allocated to them by the
BS is l′ = 0 : 1 : l, l′′ = l′ + 1 : 1 : l , and l′ + l′′ ≤ l. Get the maximum throughput of
paired users φm,n through iteration. Then obtain the maximum throughput of the current
power level l for different user pairs φm,n by repeating the above steps. The maximum
throughput of subchannel k user pairs is selected as the maximum sum rate, denoted by Rl

k.
Finally, adjust the power level l on the subchannel k to achieve the maximum sum rate of
the system. The specific description of the algorithm is as Algorithm 3.

Algorithm 3 DPS-CoMP Intra-Subchannel Power Allocation Algorithm

Input: the set of DPS-CoMP users
{
SDPS

b
}

, the power level constraint L, the number of
users M on each subchannel = 2,

Output: Rl
k

1: For user pair φm,n, assume γk,m > γk,n
2: for each power level l on the subchannel k do
3: for power level l′ = 0 : 1 : l of user m; power level l′′ = l′ + 1 : 1 : l of user n do
4: if l′ + l′′ ≤ l then
5: According to Equation (1), calculate their throughput Rl′

k,m and Rl′′
k,n

6: if Rl′
k,m > Rmin and Rl′′

k,n > Rmin then

7: select max
{

Rl′
k,m + Rl′′

k,n

}
as the maximum sum-rate Rl

k achieved by φm,n

under the power level l of the subchannel k in this DPS-CoMP subchannel.
8: end if
9: end if

10: end for
11: end for
12: for power level l = 0 : 1 : L do
13: repeat steps 2–11, get the maximum sum-rate Rl

k of each power level l on subchannel
k.

14: end for

Through Algorithm 3, the maximum sum-rate Rl
k of each power level l on DPS-

CoMP subchannels k can be obtained. In the next step, we introduce the power allocation
algorithm in the JT-CoMP subchannel.

5.2. JT-CoMP Intra-Subchannel Power Allocation

We continue to discuss the power allocation within the JT-CoMP channel. After pairing,
the paired users are sorted in descending order according to the equivalent channel gain.
For the same high-rate requirement edge user p, two paired user pairs φm,p and φn,p are
obtained. Then BS sends L different total power levels for subchannels k, k′. For each user
in the user pair φm,p, the power level allocated to them by the base station is determined
by lα = 0 : 1 : l, lλ = lα + 1 : 1 : l, and lα + lλ ≤ l. In the same way, for each user in φn,p,
the power level allocated to them by the base station is lβ = 0 : 1 : l′, lµ = lβ + 1 : 1 : l′,
and lβ + lµ ≤ l′. Obtain the maximum rate of the edge users in the paired user pair group
Φm,n,p through iteration, and then obtain the maximum rate of the edge user under the
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current power level l, l′ on the subchannel k, k′ for different user pair groups Φm,n,p by
repeating the above steps. Select the maximum rate of the edge user as the maximum rate,
denoted by Rlγ

p . Finally, adjust the power level l, l′ on the subchannel k, k′ to achieve the
maximum sum-rate of the edge users in the JT-CoMP system. The specific description of
the algorithm is as Algorithm 4.

Algorithm 4 JT-CoMP Intra-Subchannel Power Allocation Algorithm

Input: the set of JT-CoMP users
{
S JT

b

}
, the power level constraint L, the number of users

M on each subchannel = 2,
Output: Rlγ

K
1: For each user pairs φm,p and φn,p, assume γk,m > γk,p, γk′ ,n > γk′ ,p
2: for each power level l on the subchannel k do
3: for each power level l′ on the subchannel k′ do
4: for power level lα = 0 : 1 : l of user m; power level lβ = 0 : 1 : l′ of user n ;power

level lγ = lλ + lµ of user p, where lλ = lα + 1 : 1 : l, lµ = lβ + 1 : 1 : l′ do
5: if lα + lλ ≤ l and lβ + lµ ≤ l′ then
6: According to Equations (2)–(4), calculate Rlα

k,m, Rlβ

k′ ,n and Rlγ

p ;

7: if Rlα

k,m ≥ Rmin and Rlβ

k′ ,n ≥ Rmin then

8: select max
{

Rlγ

p

}
as the maximum rate Rlγ

p achieved by φm,p and φn,p un-

der the power level l and l′ of the subchannel k and k′ in this JT-CoMP
subchannel.

9: end if
10: end if
11: end for
12: end for
13: end for
14: for power level l = 0 : 1 : L do
15: for power level l′ = 1 : 1 : L do
16: repeat steps 2–13, get fixed l, the maximum high-rate requirement user rate of each

power level l′ in the JT-CoMP subchannel group K = {k, k′}.
17: end for
18: obtain the maximum high-rate requirement user rate Rlγ

K in the JT-CoMP subchannel
group K.

19: end for

After determining the power of the paired user through Algorithms 3 and 4, the BS
will then allocate power among the subchannels in the next step.

5.3. Inter-Subchannel Power Allocation

For different JT-CoMP and DPS-CoMP subchannels, repeat the above steps to obtain
the required maximum rate, which is achieved by different paired users (groups) at different
power levels. When the sum of power levels on all subchannels is less than the total power
sent by the base station, the maximum user sum-rate in the DPS-CoMP cluster and the
maximum edge user sum rate in the JT-CoMP clusters can be realized based on the idea
of group search,. Prioritize the minimum rate requirement of the center user and the
maximum sum-rate of the edge users in the JT-CoMP clusters, then determine the power
allocated by the JT-CoMP subchannel. Finally, allocate the remaining total power to the
DPS-CoMP channel to obtain the maximum sum-rate in DPS-CoMP clusters, and determine
the power level allocated on each subchannel k. The specific description of the algorithm is
as Algorithm 5.
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Algorithm 5 Inter-Subchannel Power Allocation Algorithm

Input: the maximum sum-rate Rl
k of each power level l ∈ L on subchannel k; the maximum

sum-rate of high-rate requirement Rlγ

K of each power level lγ ∈ L on the subchannel
group K = {k, k′}; the number of DPS-CoMP subchannels K; the number of JT-CoMP
subchannel groups K′; the power level constraint on each subchannel L.

Output: RJT−edge
sum ;RDPS

sum
1: for subchannel k = 1 : K do
2: peform Algorithm 3, obtain Rl1

k , Rl2
k , . . . , RL

k
3: end for
4: for subchannel group K = 1 : K′ do

5: peform Algorithm 4, obtain R
lγ
1

K , Rlγ
2

K , . . . , RL
K

6: end for
7: for power level on the DPS-CoMP subchannel l = 1 : 1 : L do
8: Each DPS-CoMP subchannel selects one power level l to achieve the maximum

sum-rate of Rl
k.

9: for power level on the JT-CoMP subchannel l′ = 1 : 1 : L do
10: Each DPS-CoMP subchannel selects one power level l′ to achieve the maximum

sum-rate of Rlγ

K .
11: end for
12: end for
13: if the sum of the power of all subchannels is less than the total power Ptotal , and the

rate of all users meets their QoS requirements then
14: exhaustively combinate the maximum edge-user sum-rate Rlγ

k,k′ achieved at each
power level lγ on each subchannel k and k′.

15: end if
16: select the maximum RJT−edge

sum =
{

Rl1
1 + Rl2

2 +, . . . ,+RlK′
K

}
as the JT-CoMP system

achieved maximum edge-user sum-rate, and determine the power allocation for JT-

CoMP system; PJT
sum =

{
Pl1

1 + Pl2
2 +, . . . ,+PlK′

K

}
.

17: if the sum of the power of all DPS-CoMP subchannels is less than the total power
Ptotal − PJT

sum, and the rate of all users meets their QoS requirements then
18: exhaustively combinate the maximum edge-user sum-rate Rl

k achieved at each power
level l on each subchannel k.

19: end if
20: select the maximum RDPS

sum =
{

Rl1
1 + Rl2

2 +, . . . ,+RlK
K

}
as the DPS-CoMP system achieved

maximum sum-rate, and dedetermine the power allocation for DPS-CoMP system.

Through Algorithm 5, we can determine the power allocated to each subchannel, and
obtain the user pairing and power allocation of the entire system. In the next section, we
will further verify our method through simulation.

6. Simulation Results
6.1. Simulation Scenario Setup

In this section, we evaluate the performance of the proposed discrete power allocation
algorithm (DPA) based on group search, and compare the performance with the most classic
matching theory with the NOMA-CoMP scheme and the MT NOMA-CoMP scheme. In the
following simulations, we assume that each user is scheduled by at most one DPS-CoMP
subchannel or one JT-CoMP subchannel, and each subchannel can schedule two users at
most. The radius of the cell is set to 200 m; assume that all users are randomly distributed in
the respective cells. The total bandwidth of each cell is B = 5 M, and the total transmission
power of each base station is set to Pr = 30 dBm. Assume that both the user and the base
station are single antenna. The definitions of the symbols in main text are shown in Table 1
and the main simulation parameters are shown in Table 2.
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Table 1. List of Symbols.

Symbols Definition

B The set of BSs

M The set of users in each cell

S The set of subchannels

xk,n The channel selection parameter

γk,n The channel power gain for user n in the subchannel k

Ub,n The user n in cell b

Sk
b The subchannel k of cell b

U
(c)
b The set of cell edge users in a CoMP cluster

U
(e)
b The set of cell center users in cell b

U
(hr)
b The set of high-rate requirement users in cell b

U
(lr)
b The set of low-rate requirement users in cell b

Hb The channel gain set of cell b

Rb The data rate set of cell b

Ĥb(n) The equivalent channel gain matrix form BS b to user n

R̂b(n) The equivalent data rate matrix form BS b to user n

Z The preference list set

Z The preference list matrix

Table 2. Simulation Parameter.

Parameters Values

Parameters Values

Number of cells 2

Cell radius 200 m

Total bandwidth(B) 5 M

Total power(Ptotal) 30 dBm

Noise power spectral density −173 dBm/Hz

CoMP user division threshold ε 1.5

Rate requirement division threshold ξ 2.5

Fading Block fading channel

Pass loss model 133.6 + 35 lg(d[km])dB

Minimum rate requirement 1 Mbps

6.2. Results Analysis

Figure 4 shows the sum-rate of high-rate requirement users versus the number of
users in the cell on the JT-CoMP subchannels. Each cell has 12 subchannels, which can
be divided into DPS-CoMP subchannels and JT-CoMP subchannels according to the user
pairing algorithm. We find that the sum rate of edge users with high-rate requirements for
each cell using the DPA algorithm, MT algorithm, and NOMA-CoMP algorithm increases
with the number of users in each cell. The reason is that as the number of users in each cell
increases, more high-rate requirement edge users with higher equivalent channel gains will
appear, resulting in more subchannels being divided into JT-CoMP subchannels. Therefore,
in the JT-CoMP subchannels of the entire cell, the sum-rate of high-rate requirement users



Information 2022, 13, 200 18 of 22

will be higher. However, the difference is that the MT algorithm will slowly decline
when the number of users increases to a certain extent. In [31], it was assumed that
there is no difference between subchannels. The power is allocated to the users first,
and then the subchannels are allocated. Each subchannel is sequentially allocated to CoMP
users or non-CoMP users. When the number of users exceeds the maximum number of
subchannel scheduling in the cell, user competition becomes more intense, which will
further reduce user fairness. Edge users with high-rate requirements lose the opportunity
to be scheduled by subchannels because the channel gain is not as good as that of the
central user. The MSUMA algorithm proposed in this paper assumes that each subchannel
is differentiated. Even when the number of users increases to a certain extent, it can well
protect the opportunity of edge users to be scheduled by the subchannels and ensure user
fairness. This also causes the sum-rate of high-rate requirement edge users in the DPA
algorithm we proposed to be better than other algorithms.

Figure 4. Sum rate of JT-CoMP edge users (Mbps) versus the number of users per cell.

Figure 5 illustrates the relationship between the sum-rate of users and the number of
users in the cell on DPS-CoMP subchannels, where each cell has 12 subchannels. It can
be seen that as the number of users increases, the sum rate of users on the DPS-CoMP
subchannels in each cell using the DPA algorithm, MT algorithm, and NOMA-CoMP
algorithm increase with the number of users in each cell. The reason is that there will be
more high-rate requirement edge users with higher equivalent channel gains when the
number of users in each cell increases, resulting in more subchannels being divided into JT-
CoMP subchannels. This also leads to a decrease in the number of DPS-CoMP subchannels,
and further leads to a decrease in the user sum-rate of the DPS-CoMP subchannels. We
find that the sum rate of the DPS-CoMP subchannels in the DPA algorithm from Figure 5
is greater than that of the traditional NOMA-CoMP algorithm and the MT algorithm. In
other words, the DPA algorithm we proposed can serve the edge users with high-speed
requirement as much as possible while protecting well the sum rate of the DPS-CoMP
system composed of edge users with low-speed requirement.

Figure 6 depicts the sum rate of high-rate requirement users on JT-CoMP subchannels
versus the number of cell subchannels, where the number of users in each cell is set to 30.
In Figure 6, we can see that when the number of schedulable users in each subchannel is
less than the actual number of users, the sum rate of high-rate requirement users in the
DPA algorithm, NOMA-CoMP algorithm, and MT algorithm all increase as the number
of subchannels increases. Since as the number of subchannels increases, more users can
be scheduled by the subchannels, the sum rate will increase. When the actual number of
users is less than the maximum number of users that can be scheduled in the subchannel,
the rate growth of the three algorithms slows down because all users are scheduled by
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the subchannel. However, as the number of subchannels increases, users can recommend
themselves to subchannels with a better set of preferences to obtain a higher rate.

Figure 5. Sum rate of DPS-CoMP users (Mbps) versus the number of users per cell.

Figure 6. Sum rate of JT-CoMP egde users (Mbps) versus the number of subchannels per cell.

In Figure 7, the performance of user sum rates in DPS-CoMP subchannels and the
number of cell subchannels is evaluated. It can be seen from Figure 7 that the user sum
rate in the DPS-CoMP subchannel of each cell in the DPA algorithm, the NOMA-CoMP
algorithm, and the MT algorithm all increase as the number of subchannels increases. The
reason is same as that of the JT-CoMP system. The difference is that when the maximum
number of users schedulable in the subchannel is more than the actual number of users in
the cell, the sum rate growth rate of users in the DPS-CoMP subchannel does not decrease.
In the DPS-CoMP system, our indicator is the sum of the center users’ rate and the edge
users’ rate. At this time, all users will have more choices, and they will be more inclined to
send their CVs to subchannels with better channel gain, which will lead to an increase in
their own rate, and ultimately lead to an increase in the sum rate of the system.
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Figure 7. Sum rate of DPS-CoMP users (Mbps) versus the number of subchannels per cell.

7. Conclusions and Future Work
7.1. Conclusions

In this paper, we investigated the problem of multi-cell joint subchannel user pairing
and power allocation in the NOMA-CoMP system. While maximizing the sum-rate of edge
users with high-rate requirement, we also guarantee the rate of other users and improve
the fairness of the system. First, we use deep learning algorithms to predict the users’
requirement rate, ensuring that users can be divided into high-rate requirement users
and low-rate requirement users. The CoMP cell joint subchannel user pairing problem is
transformed into a user pairing algorithm based on two-side many-to-many matching, and
the discrete power allocation algorithm based on group search is proposed to allocate the
user power of different systems. Simulation results show that the algorithm is superior to
the traditional NOMA-CoMP algorithm and the MT-NOMA-CoMP algorithm. It maximizes
the rate of edge users with high-rate requirements while the sum rate of our DPS-CoMP
users is no lower than other algorithms.

7.2. Future Work

In this paper, corresponding research analysis and algorithm design are carried out
for the wireless resource scheduling problem of the NOMA-CoMP system from three
perspectives: Rate requirement prediction, user–subchannel pairing and power allocation.
However, there are still many problems worthy of further analysis and discussion. In future
work, we will investigate making full use of the data related to the user’s mobile phone
usage habits to improve the accuracy of user demand rate prediction. Moreover, how to
use mathematical optimization tools to deduce the optimal solution of the mixed integer
nonlinear programming (MINLP) problem of Equation (6) and comparison of the results
with the results simulated by the DPA algorithm and the latest related work are worth
further study.
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