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Abstract: Air pollution is becoming a serious concern with the development of society and urban
expansion, and predicting air quality is the most pressing problem for human beings. Recently,
more and more machine-learning-based methods are being used to solve the air-quality-prediction
problem, and gated recurrent units (GRUs) are a representative method because of their advantage for
processing time-series data. However, in the same air-quality-prediction task, different researchers
have always designed different structures of the GRU due to their different experiences. Data-
adaptively designing a GRU structure has thus become a problem. In this paper, we propose an
adaptive GRU to address this problem, and the adaptive GRU structures are determined by the
dataset, which mainly contributes with three steps. Firstly, an encoding method for the GRU structure
is proposed for representing the network structure in a fixed-length binary string; secondly, we
define the reciprocal of the sum of the loss of each individual as the fitness function for the iteration
computation; thirdly, the genetic algorithm is used for computing the data-adaptive GRU network
structure, which can enhance the air-quality-prediction result. The experiment results from three real
datasets in Xi’an show that the proposed method achieves better effectiveness in RMSE and SAMPE
than the existing LSTM-, SVM-, and RNN-based methods.

Keywords: gated recurrent unit; genetic algorithm; network structure; adaptive structure

1. Introduction

Air pollution has become one of the most crucial environmental issues in the world [1],
contributing to a set of serious outcomes for human beings. The greenhouse gases emitted
by anthropogenic activities consistently affect the global ecosystem [2], and the amount
of air pollutants is increasing obviously, which indirectly affects the health of people by
permeating into agricultural food products [3,4] and even influences the living comfort
of citizens [5]. The degree of air pollution depends on the different types of air pollu-
tants, such as sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxide (NOx), and
particulate matter (PM2.5, PM10), the concentrations of which in air are closely related to
human health [6–8]. Air-pollutant concentration is an index to quantitatively measure the
content of certain pollutants in the air. When the pollutant value is lower, the air-pollution
degree is lower and the impact on human health is smaller, and vice versa. In recent
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years, with the increase in types and accuracy of sensors, environmental monitoring tech-
nology is constantly being upgraded and more and more air-quality-prediction methods
have emerged.

Traditional air-quality-prediction methods are mainly based on numerical prediction
and generally simulate the movement of air pollutants in the air through a combination
of mathematical models and physical knowledge, predict the actual diffusion degree of
air pollutants in the atmosphere, and then obtain the actual concentration of air pollu-
tants through simulation calculation [9–13]. For example, the Danish Eulerian model is
a powerful air-pollution model which calculates sensitivity indices by taking physical
and chemical processes into consideration [14]. However, the prediction process requires
complex formula derivation and programming to reproduce real physical processes, which
is time-consuming and laborious, and the prediction effect is mediocre. In addition to
numerical prediction-based methods, some statistics-based methods are also applied for
air-quality prediction. Decision tree, a classic algorithm based on statistics, uses the non-
parametric supervised learning method to realize the decision and classification of air
quality by optimizing the Gini coefficient [15,16]. On this basis, the decision-tree algorithm
was taken as the basic unit of the random forest algorithm, and the sampling method with
replacement was used to generate the training set; the prediction results were obtained
after repeated iterations [17]. Some scholars also proposed to use support vector machine
(SVM) [18] to solve the problem of air-quality prediction and obtain prediction results by
dividing the hyper plane of the feature space of the data. Gao et al. proposed the MFO-SVM
method [19], further optimized the SVM algorithm by solving the linear equations, and
achieved good prediction results. At the same time, a K-means algorithm [20] was also
applied to the problem of air-quality prediction and has achieved acceptable results.

In recent years, with the active development of machine-learning theory, more and
more artificial-intelligence technologies are applied for air-quality prediction [21–24], espe-
cially methods based on deep learning. For example, an artificial neural network (ANN)
was proposed in the 1980s that can simulate the activity of human neurons to achieve an ef-
fect similar to human numerical calculation. This method has also been well-applied in the
field of air-quality prediction [25]. The appearance of the BP neural network [26] improved
the computing power of artificial neural networks, and after optimization using the KNN
algorithm, it was also applied for the prediction of air quality [27]. However, due to the
stochasticity of initialization of the back-propagation neural network (BP neural network),
the network weight could converge slowly. The genetic algorithm [28] has also been used to
optimize neural networks for obtaining a better network initial value and threshold value
to improve the training speed. Under the condition of better initialization of the network,
its weight will still float within a certain range after training and convergence. Li et al. [29]
proposed to use the discrete HopField network structure for air-quality prediction, which
can fix the weight after the network training and stability so as to improve the storage
capacity of the network and obtain a better result. In order to improve the prediction
accuracy of the neural network, scholars selected the optimal particle size in a dynamic
wavelet neural network [30] and tried to change the solution space of air-quality prediction,
which achieved certain prediction results.

Although deep-learning-based methods have achieved acceptable results in the air-
quality-prediction task, the characteristic of the air-quality-prediction task needs to combine
the previous data to predict the future data, i.e., air-quality data generally contain a time
series, which is hardly captured by traditional networks such as BP, CNN, etc. Equally,
most of the existing air-quality-prediction methods based on deep learning do not have
strong time-series memory, which affects the prediction accuracy. Thus, the support of a
strong model with time-series memory is crucial for air-quality prediction.

Mitigating the above problems, the recurrent neural network (RNN)-based air-quality-
prediction method [31] improved the shortcoming of slow convergence of traditional
machine-learning algorithms and the prediction accuracy by combining the time-series
correlation of the data itself. However, it is inefficient for an RNN to deal with long-term
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memory due to the gradient vanishing. Hence, an air-quality-prediction method based on
a long short-term memory network (LSTM) [32–34] improved the efficiency of extracting
continuous time features and the prediction effect of the RNN. Some scholars proposed a
mixed model of RNN-LSTM [35] to further improve the accuracy of air-quality prediction.
These methods have made a lot of changes to the classical convolution neural network and
fully connected network.

Compared with RNN and LSTM, the GRU has demonstrated its better performance
in many real tasks. Therefore, we use a gated recurrent unit (GRU) [36] as our air-quality-
prediction model, which can effectively leverage time-series data of air quality and has a
longer memory of time-series data. Furthermore, we note that its structures are manually
designed, which limits the flexibility of the model and influences the prediction accuracy.

This paper presents a data-adaptively designed GRU structure for air-quality predic-
tion, which mainly contributes in three aspects. Firstly, a new encoding method is utilized
to encode the GRU network structure, which adjusts its characteristics. Secondly, a new fit-
ness function is used for the genetic algorithm process, which uses the reciprocal of the loss
function as the fitness function and solves the evaluation problem of the candidate structure
in the genetic algorithm. Finally, the genetic algorithm is utilized to data-adaptively design
the GRU network structure for air-quality prediction.

Using the above algorithm, a GRU with a data-adaptively designed structure will
be obtained to forecast the air quality of Xi’an city, and only the values of PM2.5, PM10,
NO2, SO2, O3, and CO need to be observed or predicted; then, the air-quality index can be
predicted by the model, thus allowing relevant departments to carry out environmental
assessment and protection. Of course, the method can also be used to establish models to
predict the air quality of other regions and even the whole country.

The paper is organized as follows: Section 2 introduces the details of related works.
Section 3 illustrates the proposed method. The experimental results and analysis are
presented in Section 4, and in Section 5 the conclusions of this paper are presented.

2. Related Works
2.1. Gated Recurrent Unit

The gated-recurrent-unit network model is a neural network model that combines the
unit state and hidden layer state of the long short-term memory (LSTM) [37]. The network
model could improve on the shortcomings of LSTM, i.e., long training time, high number of
parameters, and complex internal calculation. The GRU combines the forget gate and input
gate into a single update gate and has a reset gate. By combining the cell state and hidden
state, the GRU is a new method of calculating new information at the current moment
based on LSTM that is different from LSTM but maintains the effect of the LSTM model.
However, it has a simpler structure, fewer parameters, and a better convergence model.
The basic unit structure of the gated recurrent neural network is shown in Figure 1.

In the figure, "×" and "+" represent matrix multiplication and matrix addition, re-
spectively; σ and Tanh are the Sigmoid activation function and Tanh activation function,
respectively; rt is the reset gate; zt is the update gate; H̃ is the candidate hidden state; Ht−1
and Ht are the hidden state; and Xt denotes the input.

As seen in Figure 1, the GRU has only two gates, namely the update gate rt and the
reset gate zt. The update gate rt is used to control the degree to which the state information
of the previous moment is brought into the current state. When the update gate rt is larger,
more state information of the previous moment is brought into the current state. The reset
gate zt is used to control the degree to which the state information of the previous moment
is ignored. The smaller the value of the reset gate zt is, the more the state information
is ignored. Through the mechanism of these two gates, the GRU can adjust the flow of
information to reduce short-term memory problems. Therefore, this paper proposes an
air-quality-prediction method based on the GRU to achieve long-term and continuous
data prediction.
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The activation functions Sigmoid and Tanh are used in the GRU to process the input
values. The Sigmoid function is used to convert the input value to 0~1, as shown in
Formula (1).

σ(x) =
1

1 + e−x (1)

The Tanh function is similar to the Sigmoid function, converting the input value to
between −1 and 1 and retaining a nonlinear monotonic relationship between the input and
output, as shown in Formula (2).

Tanh(x) =
ex − e−x

ex + e−x (2)

In this paper, the number of hidden units in the GRU network is h, and the number of
hidden layers is denoted by L. At a given time step t, the input is Xt, whose batch size is n,
and the sample number of each batch is d.

The steps of GRU forward propagation are as follows.
First of all, the hidden state of the last time step is Ht−1 ∈ Rn×h. The calculations of

the reset gate rt ∈ Rn×h and update gate zt ∈ Rn×h are shown in Formulas (3) and (4),
respectively.

rt = σ(XtWxr + Ht−1Whr + br) (3)

zt = σ(XtWxz + Ht−1Whz + bz) (4)

where Whr, Whz ∈ Rh×h are the weight matrix; br, bz ∈ R1×h are the bias matrix; and
Wxr, Wxz, br, and bz are the parameters that must be updated.

In addition, the candidate hidden state is computed by the reset gate H̃t ∈ Rn×h,
where Θ represents element-wise multiplication, as shown in Formula (5):

H̃t = tanh(XtWxh + (rtΘHt−1)Whh + bh) (5)

where Wxh ∈ Rd×h and Whh ∈ Rh×h are the weight matrices, and bh ∈ R1×h is a bias matrix.
Finally, the hidden state is computed by the result of the reset gate, update gate, and

candidate hidden state Ht ∈ Rn×h, as shown in Formula (6):

Ht = ztΘHt−1 + (1− zt)ΘH̃t (6)
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2.2. Genetic Algorithm

The genetic algorithm is an optimized algorithm based on the mechanism of natural
selection and population inheritance. It simulates reproduction, hybridization, and muta-
tion in the process of natural selection and inheritance and uses these bioinspired operators
to generate effective solutions to optimization and search problems [38–41]. When using
the genetic algorithm to solve a problem, individuals constitute every possible solution
of the problem which could be encoded as a "chromosome", and the population is the
solution domain, which is composed of all possible individuals. Evidently, a typical genetic
algorithm generally needs to consider two prerequisites, namely the genetic representation
of the solution domain and the design of the fitness function to evaluate the competitiveness
of each candidate—e.g., the traveling salesman problem [42] aiming to find the optimal
Hamiltonian path of the N-node graph, whose fitness function is the total cost of the path,
and each feasible solution is represented as {1,2, . . . ,N}.

The genetic algorithm starts by randomly producing individuals; the fitness value of
each individual is given by being evaluated according to a predetermined fitness function,
and some individuals are selected to produce the next generation based on this fitness
value. Selection allows us to keep the strong ones and eliminate the weak ones. The selected
individuals then produce a new generation through crossover and mutation operators,
and the method of mutation and crossover varies from case to case, usually based on the
properties of the particular problem. The individuals in the new generation inherit some
of the good traits of the previous generation, and their performance is therefore better
than that of the previous generation, thus gradually evolving towards the optimal solution.
Therefore, some previous work applied the genetic algorithm to explore efficient neural
network architecture [43–48].

3. The Proposed Method

This section illustrates the data preprocessing before the air-quality-prediction based
on an adaptive GRU using the genetic algorithm and the GRU network structure. We also
present a genetic algorithm customized for obtaining a more competitive GRU network
structure. Firstly, we depict how to encode the network structure into a fixed-length
binary string. Secondly, we define several genetic operations, i.e., selection, mutation, and
crossover, through which we can search the adaptive GRU structure. Finally, the training
and evaluation method is discussed.

3.1. Data Preprocessing

To demonstrate the data preprocessing, we have taken real-time report data of the air-
quality index from 2018 to 2020 recorded at the Central Square station of Xincheng District,
Xi’an as an example, which include 25,569 data points. Hourly average concentrations of
fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2),
nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) selected from 2018 to 2020
are used as an original dataset, which is denoted by D. Several parts of dataset D are shown
in Table 1.

Table 1. Air-pollutant-data examples at the station of Xincheng Central Square in Xi’an from 2018 to 2020.

Time PM10
(µg/m3)

PM2.5
(µg/m3)

SO2
(µg/m3)

NO2
(µg/m3)

CO
(mg/m3)

O3
(µg/m3)

2018-01-01 01:00 436 201 27 85 2.2 5
. . . . . . . . . . . . . . . . . . . . .

2020-12-31 23:00 267 218 21 82 2.4 7

The original dataset D is divided into a training set Dtrain, a validation set Dval , and a
testing set Dtest, which are based on a certain proportion mentioned in the following section.
Then, the normalization operation is applied to the three sets to balance the influence of
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different types of air pollutants on the fitness. Taking the training set Dtrain as an example,
the method of normalization is shown in Formula (7).

xi
train′ =

xi
train − µtrain

σtrain
(7)

Here, xi
train represents the data in Dtrain; i ∈ {1, 2, . . . , i, . . . , n}; n is the number of training

samples; µtrain is the mean of data in Dtrain; σtrain is the standard deviation of data in Dtrain;
and xi

train′ represents the data of Dtrain′ which is normalized from Dtrain.
The dataset Dr

train′ is shown in Table 2.

Table 2. The examples of the dataset D.

Order Time PM10 PM2.5 SO2 NO2 CO O3

0 2018-01-01 01:00 5.6161 2.1780 −0.3676 0.4809 −0.7304 −0.6894
1 2018-01-01 02:00 5.1333 3.0558 −0.4115 0.3639 −0.7260 −0.6748

. . . . . . . . . . . . . . . . . . . . . . . .
26,276 2020-12-31 23:00 3.1436 2.4267 −0.4553 0.4370 −0.7275 −0.6602

Then, each continuous 25 h of the normalized dataset Dtrain′ is represented as a sample.
The previous 24 h (i.e., the data in order 0–23 h) of the sample will serve as the input, and
the last hour (i.e., the data in order 24 h) denotes the label of the input data; this operation
will work in the training set, validation set, and testing set. The sample is shown in Table 3.

Table 3. The example of the sample.

Order Time PM10 PM2.5 SO2 NO2 CO O3

0 2018-01-01 01:00 5.6161 2.1780 −0.3676 0.4809 −0.7304 −0.6894
1 2018-01-01 02:00 5.1333 3.0558 −0.4115 0.3639 −0.7260 −0.6748

. . . . . . . . . . . . . . . . . . . . . . . .
23 2018-01-02 00:00 6.1428 3.3777 −0.0457 0.8613 −0.7158 −0.6894
24 2018-01-02 01:00 6.7573 5.3528 −0.1774 0.7589 −0.7099 −0.6309

3.2. The Network Structure of GRU

In this paper, we use the genetic algorithm to search the solution domain of the GRU
network structures, and the best solution in this paper includes a feature in the hidden state
and b hidden layers; its network structure is shown in Figure 2. x ∈ XB×144 is the input of
the network with B batch size, where 144 is the number of data points of 6 air pollutants in
24 h, and the nth element of x is denoted as xn. Gm

l represents the mth structural unit of
the lth layer of the network. hm

l ∈ XB×6 denotes the output of Gm
l , while h0

l is the initial
hidden state of the lth layer. The fully connected network is denoted as FC. A schematic
diagram of the proposed GRU neural networks is shown in Figure 2.
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3.3. Binary-Network Representation

We provide a binary-string representation for a network structure. We firstly note that
the number of layers and the number of features in hidden state is variable, which mainly
affect the effectiveness of the GRU, while the size of input and output data is unchanged
after being defined.

In this paper, we use a binary string of length 20 as an example. Figure 3 shows the
binary string with random numbers that may occur in our experiment.
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Here, the i-th number of the string L is si ∈ {0, 1}, i = 1,2, . . . ,20. The first 10 numbers
of the string L represent the code of the number of layers L1, which is denoted as L′1;
the remaining numbers represent the number of features in the hidden state L2, which is
denoted as L′2.

L1 decodes to the solution L′1 as shown in Formula (7).

L′1 =

⌈
1
8

10

∑
i=1

(si × 210−i)

⌉
, (8)

Similarly, L2 decodes to the solution L′2 as shown in Formula (8).

L′2 =

⌈
1
8

20

∑
i=11

(si × 220−i)

⌉
, (9)
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Here, we take L = 0110110111|0000010100 as an example, where L1 = 0110110111 and
L2 = 0000010100. The final numbers of layers L′1 and features L′2 are 55 and 2, respectively.

3.4. Genetic Operation

The genetic algorithm starts with the initialization of N random individuals. We
perform T generations of the whole genetic process—i.e., we repeat the operations of
selection, crossover, and mutation T times. Then, the fitness of each individual is obtained
by training the reference dataset. The detailed genetic algorithm is shown in the following
algorithm steps.

3.4.1. Initialization

First, we randomly initialize a group of models {Mn
0}

N
n=1. The number of layers and

the number of features in the hidden state of each model of the group are represented by a
binary string of length 20. Each bit, bl

0,n, l = 1, 2, . . . , 20, of the binary string independently
follows a Bernoulli distribution: bl

0,n ∼ B(1, 0.5). Then, we obtain the fitness of each initial
model by the fitness function. The fitness function in this paper is shown in Formula (11).

1
6
∑

k=1
Lossk + 1e−10

(10)

Here, Lossk is the loss generated after evaluating the model which has pretrained on the
reference dataset for the kth air pollutant.

3.4.2. Selection

We then perform selection at the beginning of each generation. At the beginning of
the t-th generation, the fitness rn

t−1 of individual Mn
t−1 at the (t − 1)th generation or initial

generation is given by the fitness function. Here, rn
t−1 affects the probability of Mn

t−1 being
selected in the selection process.

Rank selection is used to determine which individuals survive the selection process.
Firstly, at the beginning of generation T, the population is sorted according to fitness values.
Each chromosome is then assigned selection probabilities based on its rank [43]. Individuals
are selected according to their selection probability, and each individual from the previous
generation can be selected multiple times in order to keep the number of individuals
constant.

In rank selection, the sum of ranks is computed and the probability of each individual
is computed, as shown in Formulas (10) and (11), respectively:

Rsum =
N

∑
i=1

Rj
i , (11)

Prank =
Rj

i
Rsum

, (12)

where Rj
i denotes the jth individual of the ith layer.

3.4.3. Mutation

We give each bit of code of the Mn
l a probability pM to change, and the individuals

with the probability qM are selected to perform this process. In general, pM is very small.
For example, pM = 0.1 is used in our experiment. Although the mutation may not have a
great impact on the individual, its purpose is to provide new possibilities while preserving
the excellent genotype of the surviving individual.
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3.4.4. Crossover

Crossovers involve genotypic changes in both individuals, and qc denotes the number
of individuals that will be selected to perform this process (Algorithm 1). The basic
operated object is a stage of the genotype, rather than a single gene, with the aim of
preserving the local structure of a good genotype. Similar to mutations, each pair of
corresponding stages is exchanged with a small probability pc. In this paper, we have
adopted the single-point crossover method. First, two crossover points are randomly
set in the two individual coding strings that correspond with each other. Then, the two
individuals swap parts of their chromosomes between the two designated intersections.

Algorithm 1 The Genetic Process for Network

1: Input: the reference dataset D, the number of generations T, the number of individuals in each
generation N, the mutation probability pM, the crossover probabilities pc, the mutation parameter
qM, and the crossover parameter qc.
2: Initialization: randomly generating a group of models {Mn

0}
N
n=1 and computing their fitness;

3: for t = 1, 2, 3, . . . , T do
4: Selection: generating a new generation {Mn

t }
N
n=1 using rank selection;

5: Crossover: performing crossover with probability qM and parameter qc;
6: Mutation: performing mutation on each individual {Mn

t }
N
n=1 with probability pM

and parameter qM;
7: Evaluation: computing the fitness for each individual {Mn

t }
N
n=1;

8: end for
9: Output: the final generation {Mn

T}
N
n=1.

3.5. Training and Evaluation

For each dataset, the genetic algorithm is implemented in the training set correspond-
ing with the dataset. In the genetic process, we set the number of generations as 100 and
the number of individuals as 20; the fitness of each individual in the validation dataset is
achieved after training 200 epochs, and this fitness is the evaluation index fitness. Finally,
we obtain an optimal GRU network structure i.e., the GRU structure with the best fitness in
all individuals at the final genetic generation.

Next, we use the adaptive network structure to train the corresponding dataset in this
experiment to obtain the final optimal predicted result. The network after 1000 training
iterations is obtained via the training set, and the predicted results are obtained by inputting
the testing data. The predicted results will be evaluated by the evaluation index.

4. Experiments and Analysis

In order to verify the effectiveness of air-quality prediction based on adaptive GRU
using genetic algorithm, the actual data of three observation stations in Xi’an city were used
for the experiments. The following is an introduction to the dataset used for the experiments,
the experimental environment, the experimental evaluation index, the experimental results,
and analysis.

4.1. Datasets

This paper adopted the real-time air-quality information collected by the following
three air-quality observatories in Xi’an city, China, as the experimental datasets: Dataset
1, Xi’an Xincheng Center Square Station from 2018 to 2020; Dataset 2, Xi’an Caotang Base;
Dataset 3, Xi’an Gaoxin West Station.

The air-quality dataset of Xi‘an Xincheng Center Square Station from 2018 to 2020
includes 25,569 data points, that of Xi’an Gaoxin West Station includes 14,567 data points,
and that of Xi’an Caotang base includes 14,568 data points. The quantity of data in the
three datasets is shown in Table 4.
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Table 4. The quantity of data in three datasets.

Dataset Name Xi‘an Xincheng Center Square Station Xi‘an Caotang Base Xi‘an Gaoxin West Station

Dataset
Number Dataset 1 Dataset 2 Dataset 3

Data Quantity 25,569 14,567 14,568

In this paper, the data from every 25 consecutive hours are considered as a sample.
The data of the previous 24 h are considered as the input data, and the data of the last 1 h
are considered as label data. The stride is designed as 1, and these processed datasets are
made into reconstructed datasets. The sample quantity of the reconstructed datasets is
shown in Table 5.

Table 5. The quantity of samples in the reconstructed datasets.

Dataset Name Xi‘an Xincheng Center Square Station Xi‘an Caotang Base Xi‘an Gaoxin West Station

Dataset
Number Dataset 1 Dataset 2 Dataset 3

Sample
Quantity 25,545 14,543 14,544

In addition, the datasets were divided into training sets and testing sets at a rate of 7:3,
and the last 10% of the training set was then taken as a validation set—i.e., the first 63% of
each reconstructed dataset was taken as the training set, the following 7% as the validation
set, and the last 30% as the testing set.

The sample numbers in the training set, validation set, and testing set obtained from
each reconstructed dataset are shown in Table 6.

Table 6. Number of samples in training set, validation set, and testing set of the reconstructed datasets.

Dataset
Number of Samples

Training Set Validation Set Testing Set

Dataset 1 16,093 1788 7664
Dataset 2 9157 1017 4360
Dataset 3 9157 1018 4360

4.2. The Experimental Environment

The code was run on a computer with an Intel(R) Core (TM) i9-10900K CPU @3.70
GHz, NVIDIA GeForce RTX 2080, 128 GB RAM, 1 T SSD, Python3.6, and PyTorch 1.4.1.

The number of genetic-process generations was 100. The number of iterations was set to
1000. The learning rate was 0.02. The batch size was 512. Two fully connected layers were
included: the first layer had 256 hidden nodes, and the second layer had 512 hidden nodes.

4.3. The Experimental Evaluation Index

In order to evaluate the effectiveness of the air-quality-prediction model proposed in
this paper, two evaluation indexes were adopted, namely root-mean-square error (RMSE)
and symmetric mean absolute percentage error (SMAPE), which were used to analyze the
error between the prediction results and the real data. In general, the smaller the RMSE
and SMAPE values are, the smaller the deviation between the predicted results and the
true values is and the better the model is. The calculation formulas of RMSE and SMAPE
are shown in Equations (13) and (14), respectively.

RMSE(y, ŷ) =

√
1
m

m

∑
i=1

(y− ŷ)2 (13)
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Here, y is the prediction of the model, ŷ represents the real data taken from the real-
time air-quality measurements, and m is the sum of the number of data points used in
calculation.

SMAPE =
100%

n

n

∑
i=1

2
∣∣∣ f − f̂

∣∣∣(
| f |+

∣∣∣ f̂ ∣∣∣) (14)

Here, f is the prediction of the model, f̂ represents the real data taken from the real-
time air-quality measurements, and n is the sum of the number of data points used in
calculation.

4.4. The Adaptive GRU Structure Using Genetic Algorithm

In order to prove the efficiency of the genetic algorithm used in this paper in searching
the adaptive GRU network structure, we applied the genetic algorithm process to the GRU
network structure in three datasets.

The generations and corresponding best fitness in Dataset 1 are shown in Figure 4.
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The best fitness and corresponding network structure at each genetic generation are
shown in Table 7.

Table 7. The best fitness and corresponding network structure in Dataset 1.

Generations Best Fitness Network Structure

00 514.13 0110011000|0001001001
01 514.13 0110011000|0001001001
03 536.76 0110011100|0001001001
05 548.55 0110011101|0000101001
08 548.55 0110011101|0000101001
10 548.55 0110011101|0000101001
30 551.22 0111011101|0000101011
50 574.82 0111100010|0000101010
80 574.82 0111100010|0000101010

100 575.37 0110110010|0000101111
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The generations and corresponding best fitness in Dataset 2 are shown in Figure 5,
and the best fitness and corresponding network structure at each genetic generation are
shown in Table 8.
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Table 8. The best fitness and corresponding network structure in Dataset 2.

Generations Best Fitness Network Structure

00 1722.22 0010111110|0000001101
01 1909.79 0101111000|0000010101
03 1919.86 0010111101|0001011110
05 1967.90 0111000111|0001011101
08 2043.25 0111110011|0000010110
10 2043.25 0111110011|0000010110
30 2043.25 0111110011|0000010110
50 2053.95 0111110111|0000010110
80 2058.13 0110110111|0000010100

100 2058.13 0110110111|0000010100

The generations and corresponding best fitness in Dataset 3 are shown in Figure 6.
The best fitness and corresponding network structure at each genetic generation are

shown in Table 9.

Table 9. The best fitness and corresponding network structure in Dataset 3.

Generations Best Fitness Network Structure

00 2125.73 0010111000|0001000010
01 2204.67 0011101111|0000101111
03 2213.15 0010010110|0000110010
05 2273.15 0011101011|0000101011
08 2311.43 0011101011|0000100001
10 2311.43 0110010110|0000101001
30 2381.33 0111011101|0000100010
50 2382.01 0111110011|0000011010
80 2404.84 0111100111|0000011011

100 2404.84 0111100111|0000011011
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Figure 6. The generations and corresponding best fitness in Dataset 3.

As shown in Figures 4–6, we observed, in detail, a change in the best fitness and
corresponding generations.

Tables 7–9 demonstrate that the best fitness always emerges in the final generation, so
the best network structure is also in the final generation. Finally, the optimal number of
hidden layers of the GRU and the number of features of the GRU were 54 and 6, respectively,
with Dataset 1; 55 and 2, respectively, with Dataset 2; and 61 and 2, respectively, with
Dataset 3.

4.5. The Adaptive GRU Structure Compared with the Manually Designed GRU Structure

To prove the effectiveness of the adaptive GRU structure, we compared it with two
manually designed structures with the three datasets. These two GRU network structures
were manually designed as follows:

GRU1: 3 features in hidden state and 10 hidden layers;
GRU2: 256 features in hidden state and 256 hidden layers;
GRU_GA: the adaptive GRU structure.
The results for Dataset 1 are shown in Table 10.

Table 10. The result of the adaptive GRU network structure compared with manually designed GRU
network structures with Dataset 1.

Air Pollutant
RMSE SMAPE

GRU1 GRU2 GRU_GA GRU1 GRU2 GRU_GA

PM10 0.0264 0.0647 0.0224 0.0870 0.1937 0.0855
PM2.5 0.0136 0.0392 0.0078 0.0699 0.3041 0.0678
SO2 0.0067 0.0065 0.0035 0.0154 0.2734 0.0143
NO2 0.0076 0.0202 0.0068 0.0974 0.3835 0.0959
CO 0.0088 0.0003 0.0001 0.0007 0.0014 0.0007
O3 0.0087 0.0359 0.0088 0.0759 0.3608 0.0761

As shown in Table 10, the adaptive GRU network structure obtained the best prediction
results for five air pollutants. For O3, the GRU_GA structure achieved the second-best
prediction results, which are almost equal to the best one.

The results for Dataset 2 are shown in Table 11.
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Table 11. The result of the adaptive GRU network structure compared with manually designed GRU
network structures with Dataset 2.

Air Pollutant
RMSE SMAPE

GRU1 GRU2 GRU_GA GRU1 GRU2 GRU_GA

PM10 0.0388 0.0722 0.0339 0.1286 0.2307 0.1297
PM2.5 0.0066 0.0330 0.0057 0.0777 0.3650 0.0692
SO2 0.0025 0.0029 0.0023 0.0136 0.0150 0.0127
NO2 0.0078 0.0186 0.0075 0.1045 0.2195 0.1035
CO 0.0004 0.0003 0.0004 0.0020 0.0016 0.0022
O3 0.0119 0.0441 0.0115 0.1003 0.2164 0.0978

As shown in Table 11, the adaptive GRU network structure achieved the best prediction
results compared with the other two manually designed GRU network structures with
Dataset 2, except for CO.

The results for Dataset 3 are shown in Table 12.

Table 12. The result of the adaptive GRU network structure compared with manually designed GRU
network structures with Dataset 3.

Air Pollutant
RMSE SMAPE

GRU1 GRU2 GRU_GA GRU1 GRU2 GRU_GA

PM10 0.0273 0.0652 0.0208 0.0865 0.2136 0.0854
PM2.5 0.0085 0.0425 0.0078 0.0740 0.3270 0.0701
SO2 0.0045 0.0054 0.0028 0.0195 0.0285 0.0160
NO2 0.0082 0.0246 0.0084 0.1035 0.3859 0.0971
CO 0.0003 0.0003 0.0022 0.0014 0.0016 0.0015
O3 0.0099 0.0430 0.0100 0.0874 0.3124 0.0895

Table 12 shows that the adaptive GRU network structure performed better than the
other two manually designed GRU network structures for four air pollutants in Dataset 3,
and GRU1 had the best prediction results for CO and O3.

It should be noted that the adaptive GRU network structure derived from the proposed
method with the three datasets could perform better than the manually designed GRU
network structures for most air pollutants.

4.6. The Adaptive GRU Compared with Other Air-Quality-Prediction Methods

In order to prove the effectiveness of the proposed method in air-quality prediction,
it was compared with SVM, RNN, and LSTM methods for air-quality prediction, and the
prediction capability of the proposed method was verified in three datasets. The prediction
results of the air-quality-prediction methods based on SVM, RNN, LSTM, and GRU_GA
for each pollutant in Dataset 1 are shown in Table 13.

Table 13. The prediction results of GRU_GA compared with other air-quality-prediction methods
with Dataset 1.

Air Pollutant
RMSE SMAPE

SVM RNN LSTM GRU_GA SVM RNN LSTM GRU_GA

PM10 0.6732 0.6471 0.6470 0.0224 0.1936 0.1937 0.1837 0.0855
PM2.5 0.4031 0.3923 0.3921 0.0078 0.3031 0.3063 0.3041 0.0678
SO2 0.0078 0.0066 0.0065 0.0035 0.0290 0.0285 0.0285 0.0143
NO2 0.0215 0.0203 0.0202 0.0068 0.3711 0.3725 0.3617 0.0959
CO 0.0003 0.0003 0.0003 0.0001 0.0015 0.0012 0.0014 0.0007
O3 0.0355 0.0358 0.0359 0.0088 0.3727 0.3601 0.3403 0.0761
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As shown in Table 13, the RMSE and SMAPE values obtained by the method proposed
in this paper for the air-quality prediction of six pollutants were the best in Dataset 1, with
RMSE values for PM10, PM2.5, SO2, NO2, CO, and O3 of 0.0024, 0.0078, 0.0035, 0.0068,
0.0001, and 0.0008, respectively, which are the lowest of the inferred methods. The SMAPE
values with GRU_GA for PM10, PM2.5, SO2, NO2, CO, and O3 are 0.0855, 0.0678, 0.0143,
0.0959, 0.0007, and 0.0761, respectively, which are also lower than those obtained with
other methods.

A comparison between the predicted values and true values of different pollutants
with the adaptive GRU network in Dataset 1 is shown in Figure 7.
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The air-quality-prediction results of SVM, RNN, LSTM, and GRU_GA for Dataset 2
are shown in Table 14.

Table 14. The prediction results of GRU_GA compared with other air-quality-prediction methods
with Dataset 2.

Air
Pollutant

RMSE SMAPE

SVM RNN LSTM GRU_GA SVM RNN LSTM GRU_GA

PM10 0.0722 0.0722 0.0722 0.0339 0.2306 0.2306 0.2307 0.0854
PM2.5 0.0331 0.0330 0.0330 0.0057 0.3589 0.3659 0.3650 0.0701
SO2 0.0030 0.0029 0.0031 0.0023 0.0151 0.0150 0.0150 0.0160
NO2 0.0186 0.0187 0.0186 0.0075 0.2192 0.2341 0.2195 0.0971
CO 0.0003 0.0004 0.0007 0.0004 0.0016 0.0033 0.0016 0.0015
O3 0.0440 0.0441 0.0441 0.0115 0.2167 0.2173 0.2164 0.0895

As can be seen from Table 14, GRU_GA achieved the best RMSE values for five air
pollutants and the lowest SMAPE values for all pollutants in Dataset 2. The RMSE values
from GRU_GA for PM10, PM2.5, SO2, NO2, and O3 were 0.0339, 0.0057, 0.0023, 0.0075, and
0.0115, respectively, which are lower than those obtained with other methods. However,
the RMSE value obtained with SVM for CO was the best out of the models, at 0.0003. The
SMAPE values obtained with the proposed method for the six pollutants were the best,
with values for PM10, PM2.5, SO2, NO2, CO, and O3 of 0.0854, 0.0701, 0.0160, 0.0971, 0.0015,
and 0.0895, respectively.

A comparison between the predicted values and true values of different pollutants
from the adaptive GRU network in Dataset 2 are shown in Figure 8.

The RMSE and SMAPE values of the air-quality-prediction methods based on SVM,
RNN, LSTM, and GRU for each pollutant in Dataset 3 are shown in Table 15.

Table 15. The prediction results of GRU_GA compared with other air-quality-prediction methods
with Dataset 3.

Air Pollutant
RMSE SMAPE

SVM RNN LSTM GRU_GA SVM RNN LSTM GRU_GA

PM10 0.0651 0.0651 0.0652 0.0208 0.2130 0.2128 0.2133 0.0854
PM2.5 0.0425 0.0425 0.0425 0.0078 0.3260 0.3270 0.3277 0.0701
SO2 0.0054 0.0054 0.0055 0.0028 0.0284 0.0284 0.0291 0.0160
NO2 0.0246 0.0246 0.0247 0.0084 0.1673 0.1681 0.2837 0.0955
CO 0.0003 0.0003 0.0006 0.0022 0.0016 0.0016 0.0028 0.0015
O3 0.0430 0.0430 0.0431 0.0100 0.3132 0.3139 0.3150 0.0895

As demonstrated in Table 15, the RMSE values obtained by the GRU_GA in the air-
pollutant predictions for PM10, PM2.5, SO2, NO2, and O3 were the best at 0.0208, 0.0078,
0.0028, 0.0084, and 0.0100, respectively, but compared with GRU_GA, the SVM and RNN
performed better for CO with RMSE values of 0.0003. The SMAPE values with GRU_GA
for the six pollutants were the best, with values for PM10, PM2.5, SO2, NO2, CO, and O3 of
0.0854, 0.0701, 0.0160, 0.0955, 0.0015, and 0.0895, respectively.

A comparison between the predicted values and true values of different pollutants
with the adaptive GRU network in Dataset 3 is shown in Figure 9.
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The experimental results demonstrate that air quality prediction based on the adaptive
GRU using a genetic algorithm proposed in this paper is superior to that based on SVM,
RNN, and LSTM methods and can obtain more accurate prediction results.

5. Conclusions

In this paper, in order to better solve air-quality data with time-sequence information,
we chose a GRU to address the task of air quality prediction. Inspired by the genetic
algorithm, the adaptive GRU network structure was obtained via genetic processing, and
optimal prediction results of air quality were achieved. Compared with other, previously
used air-quality-prediction methods, our proposed method showed a better performance in
the air-quality-prediction task with three datasets. By applying the proposed method, the
effective prediction of air quality can provide the government and relevant departments
with the changing trend of air quality in time, which is conducive to improving the ability
of environmental-protection departments to study and judge the risk information of air
pollution and providing early warnings. In addition, there are many factors influencing the
air quality, including not only meteorological factors but also the social environment, human
factors, and the geographical environment, etc., but due to the limited data acquirement,
there are insufficient data related to local production and living in Xi‘an, such as the
distribution of polluting enterprises, people’s life customs, etc. Therefore, if we want to
consider the effect of the whole index, a series of more detailed and effective work needs to
be conducted in the later stage.
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