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Abstract: IoT devices play a fundamental role in the machine learning (ML) application pipeline,
as they collect rich data for model training using sensors. However, this process can be affected by
uncontrollable variables that introduce errors into the data, resulting in a higher computational cost to
eliminate them. Thus, selecting the most suitable algorithm for this pre-processing step on-device can
reduce ML model complexity and unnecessary bandwidth usage for cloud processing. Therefore, this
work presents a new sensor taxonomy with which to deploy data pre-processing on an IoT device by
using a specific filter for each data type that the system handles. We define statistical and functional
performance metrics to perform filter selection. Experimental results show that the Butterworth
filter is a suitable solution for invariant sampling rates, while the Savi–Golay and medium filters are
appropriate choices for variable sampling rates.

Keywords: Internet of Things; sensor; machine learning; computational intelligence; data analytics;
data pre-processing

1. Introduction

Internet of Things (IoT) technology allows electronic devices to be deployed in indoor
and outdoor environments to collect data [1]. Commonly, these IoT devices consist of a
microcontroller, sensors, a battery, and wireless communicationelectronic devices to be
deployed in indoor and outdoor environments to collect data. IoT devices can be installed
in harsh scenarios due to their flexible development [2]. Nowadays, about 22 billion IoT
devices are uploading data to the cloud. Every year, this number increases exponentially to
continue collecting data through a wide variety of sensors. These data are used to train
machine learning (ML) models, powerful tools that can find hidden knowledge in data that
describes a phenomenon or human behavior [3]. However, constantly uploading data to
the cloud causes bottlenecks in the communication channel, and in some cases, the stored
data are not processed for a specific purpose [4]. Hence, cloud computing servers have to
delete data periodically to avoid storage overload. Consequently, data quality is essential
to reduce the complexity of the ML model, and it is necessary to send only relevant data
to be processed. Therefore, after the data gathering process, a data pre-processing step
is required to eliminate errors, which means both stages are part of the ML pipeline [5].
There are several repositories in different areas where researchers and developers can
obtain databases to deploy and test ML models. They assume that the data are cleaned
before being put into the repository. Nevertheless, this is not the case for IoT environments,
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where sensors gather data in situ because they describe specific parameters such as envi-
ronmental conditions, gas concentration, and location. In conclusion, data gathering and
pre-processing are obligatory stages of building an ML application in IoT environments.

The data collection stage in IoT environments needs to handle uncontrolled conditions
such as environmental changes, construction failures of microcontrollers and sensors that
cause poor calibration, and vibrations in their working environment, among others [6].
Therefore, model inference can reduce performance, resulting in the use of complex models
when describing a phenomenon or human behavior [7]. The pre-processing stage produces
reliable, accurate, repeatable, and error-free data [8]. Thus, the electrical signal obtained
by the sensors should be acquired with an adequate sampling rating and proper tuning of
analog-to-digital converters [9]. On the software side, digital filters are applied when data
have been stored on servers. However, sensors have different data collecting procedures,
such as digital-analog converters, communication ports, and pulse trains [10]. Therefore,
the cloud can not apply a standard filtering process to all the features stored. Additionally,
this data flow over communication channels increases security concerns and decreases user
confidence in the system. Therefore, new computational paradigms propose decentralized
computing where some ML stages run closer to the user, which means performing data-
preprocessing locally [11]. It is worth pointing out that these algorithms can be deployed
on IoT devices due to the microcontrollers’ increasing computing capacity, which will not
affect battery consumption [12]. Additionally, sensors vendors are working to give the IoT
developer robust libraries to improve sensor management [13]. However, sensor data need
to be pre-processed before sending it to the cloud [14].

Data filtering removes noise by comparing each signal component to the rest and
eliminating the unusual ones. The most relevant criteria and their principal algorithms are
infinite impulse response (IIR) with the approximations Butterworth, Bessel, and Cheby-
shev; finite impulse response (FIR) with the windows Hamming, Tayler, Barlett, and
Blackman; and smoothing filters with the algorithms: mean, average, Gaussian, and Savi–
Golay [14]. For more information about digital filter design, we suggest following these
works [15,16]. These filter criteria depend on the sampling rate at which the IoT device is
configured, the collection procedure of each sensor, and the application. However, previous
sensor taxonomies focus on hardware characteristics without considering their primary
purpose of collecting data. In addition, data filtering criteria are applied for each IoT
development, which consumes additional time for IoT researchers and developers.

It is necessary to define a new sensor taxonomy related to the data collection and pre-
processing processes that fits the filtering criteria to be part of the whole ML pipeline [17].
Therefore, this work introduces a new sensor taxonomy oriented to pre-processing data
on-device according to the type of sensor used in the IoT application. Consequently, we
need to define how IoT devices collect data through sensors to determine the suitable filter
for each case. Our summarized contributions are:

• We define a new sensor taxonomy related to data gathering and data pre-processing
on-device.

• We determined that the main sensor characteristic for classification is sampling rate.
• We introduce a data filtering scheme using the most representative algorithms/models

of infinite impulse response (IIR), finite impulse response (FIR), and smoothing filters
by setting specific sampling rates for each sensor type.

• We compare data filtering criteria to select the suitable ones for the proposed taxonomy
of sensors and ensure its usefulness in computationally constrained IoT environments.

• We performed tests on sensor data with statistical and functional metrics.

The main result of this work is defining the Butterworth filter as a suitable criterion for
analog sensors with invariant sampling rates. Meanwhile, Savi–Golay fits analog sensors
with varying sampling frequencies. The average filter is adequate with this signal in digital
pulse train sensors. Savi–Golay and medium filters remove noise and preserve the main
signal characteristics regarding communication protocol sensors.
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The rest of the manuscript is structured as follows: Section 2 shows related works
and signal filtering background. Then, Section 3 introduces the proposed sensor taxonomy.
Next, the methodology is shown in Section 4. Results are presented in Section 5 with the
statistical and sensor functionality metrics to define the filter algorithm we chose. Finally,
Section 6 shows conclusions and future work.

2. Background

In this section, we present a summary of previous sensor taxonomy and data filter-
ing works.

2.1. Early Studies Sensors

The increasing use of electronic devices in the industry has opened up opportunities
to develop different types of sensors. Indeed, new technology trends such as the Internet
of Things (IoT) allowed expanding the research areas where sensors are used. Therefore,
new ways to describe/classify them are relevant, since they play a significant role in the
data-gathering stage of the entire machine learning application pipeline. Thus, in the early
stages of sensor development, works such as MacRuairi et al. [18] presented sensor require-
ments taxonomies to match specific sensors with real scenarios. Then, Fowler et al. [19]
presented a survey related to the materials that sensors are made from. Following this clas-
sification scheme, works such as Tuukkanen et al. [20], Noel et al. [21], Cornacchia et al. [22],
and Khanh et al. [23] presented sensors surveys for specific areas, such as piezoelectric sen-
sors, health monitoring, wearable sensors, and intelligent agriculture, respectively. In recent
years, Abdel Azeem et al. [17] have shown the fundamentals, challenges, opportunities,
and taxonomy of sensors in IoT environments describing the needs and usages of each one.
They also presented a wide array of previously proposed solutions, comparing them to
each other and providing brief descriptions of the issues addressed by each category of that
taxonomy. Finally, works such as Latifi et al. [24] and Anajeba et al. [25] presented early
intuitions about improving the security of the communication channel in IoT environments.

In the ML application pipeline, Morrison et al. [26] present an innovative survey in
sensor data collection and analytical systems. Additionally, Infanteena et al. [27] showed
a survey on compressive data collection techniques for IoT devices and analyzed their
features. Finally, in this research area, Tiboni et al. [28] described sensors and actuators in
exoskeletons using the machine learning pipeline.

2.2. Data Pre-Processing

The most relevant works in this field started with Zhang et al. [14] presenting a
relevant work about a data H∞ filtering approach for wireless sensor networks (WSNs) in
nonuniform sampling periods with optimization techniques. Then, Deepshukha et al. [29]
designed a low-power digital FIR filter on FPGA for noise reduction in a WSN. Later,
Bose et al. [2] presented an analysis of contemporary lossy compression algorithms using
the signal characteristics of sensor data. At the same time, Safaei et al. [30] showed a
novel approach to integrating time-series analysis, entropy, and random forest-based
classification. For their part, Kowalski et al. [31] presented a review and comparison of
smoothing algorithms for one-dimensional data noise reduction in specific sensors and
environments. Timo et al. [12] presented outlier detection from non-smooth sensor data, as
they worked in spatial discontinuities in the data, such as those arising from shadows in
photovoltaic (PV) systems. Saad et al. [32] analyzed how quantization affects distributed
graph filtering over both time-invariant and time-varying graphs. We bring insights into the
quantization effects of the two most common graph filters: the finite impulse response (FIR)
and auto-regressive moving average (ARMA) graph filters. In addition, we have proposed
robust filter design strategies that minimize the quantization noise for time-invariant and
time-varying networks.

Several works have delved into data pre-processing in IoT devices, but most intro-
duced approaches for specific scenarios without a rationale for the selected filter criterion.
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On the one hand, outlier detection is a complex task for determining if external causes
have corrupted the data. Therefore, as mentioned in [33], the filtering process must be
carried on before the outlier detection stage. On the other hand, filtering can avoid physical
constraints by giving a clean dataset to implement different stages. Finally, the literature
review allowed us to observe open challenges in data filtering, such as the lack of a sen-
sor taxonomy related to the data acquisition process and the establishment of adequate
sampling rates for each type of sensor.

3. Proposed Sensor Taxonomy

We propose classifying sensors into three groups considering the sampling rate and
how sensors send information to the microcontroller. Figure 1 illustrates this taxonomy.

Figure 1. Proposed taxonomy of IoT sensors considering data processing characteristics.

3.1. Analog Sensors

These sensors mostly have passive elements and operational amplifiers for the hard-
ware conditioning of the electrical signal and deliver it analogously to the microprocessor to
convert it to digital form (analog–digital conversion) [34]. The ability to recreate the original
signal is related to the resolution of the ADC, which is the number of bits that the micropro-
cessor has for this process. Therefore, the sampling rate is the most relevant characteristic
of the filter implementation criteria. Hence, we divide them into two categories:

• Invariant sampling rate: These sensors are developed for collecting signals continu-
ously to detect changes in a main characteristic. For example, the processing of human
electrical activity through electromyography (muscle), electrocardiogram (heart), elec-
troencephalogram (EEG), or galvanic skin response (hands).

• Variant sampling rate: These sensors run a couple of times a day due to their applica-
tions. They do not have a specific sampling frequency because the system focuses on
taking the same number of samples each time it is activated [6].

3.2. Digital Sensors

These sensors each contain a tiny microcontroller to perform the ADC process by
themselves and send the data to the main microcontroller in two ways:

• Pulse train sensors: variate their pulse train frequency when the transducer detects
that a physical magnitude such as temperature, humidity, or distance is changing.
Therefore, capacitors are often used in this type of sensor.

• Logic states sensors: use only two logical values, 3.3 vs. or 5 vs., when detecting a
physical magnitude, no matter their variations, and 0v when the sensor cannot catch
the magnitude. Thus, for example, the human presence sensor can not give us more
information about the phenomenon, just its presence.

3.3. Sensors by Communication Protocol

They are the most complex sensors because they have a microcontroller inside whose
main objective is to obtain the best signal of the physical magnitude. These sensors also
implement a communication protocol to connect sensors in series. Therefore, only a few
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pin connections are necessary to handle many sensors. Furthermore, these communication
protocols define a master device (microcontroller) to coordinate the slave devices’ (sensors)
communication. Nowadays, sensor vendors, such as SparkFun, perform new socket
connections to develop the electronic systems quickly.

• Serial communication: A sensor uses one pin to transmit messages and another pin to
receive them. This protocol extensively adds wireless protocols to the IoT device, such
as Bluetooth.

• I2C: They have a new socket connection called Qwiic (Connect System uses 4-pin JST
connectors to quickly interface development boards with sensors). This standard also
allows connecting 127 sensors using just two pins. One is the clock rate, and the other
is the transmitter line.

4. Methodology

The proposed methodology determines the sensors used and the data sampling
required to implement filters. First, it is necessary to mention that the FIR and IIR filters are
implemented only in the sensors with invariant sampling rates and the signal smoothing
technique on the rest. However, the metrics used for both criteria are: signal-to-noise ratio
(SNR), mean squared error (MSE), mean absolute error (MAE), root-mean-square error
(RMSE), and R2 score. Figure 2 shows the mentioned process.

Figure 2. Sensor data and pre-preprocessing analysis.

4.1. Sensors’ Characteristics

The most commonly used sensors were identified from the reviewed related works.
As a result, the relevant research areas are smart farming, cities’ environmental conditions
analysis, and human illness. Therefore, sensors chosen regarding the proposed taxonomy
were ECG Pulse Sensor (Bio-signal), Force Sensitive Resistor (FSR) (specific propose), Flex
Sensor (Specific propose), Humidity and Temperature Sensor DHT-22 (pulse train), Gas
Sensor MQ-135 (pulse train), and CO2 sensor-SCD30 (I2C/serial), UV sensor-VEML6075
(I2C/serial). These sensors are from the same sensor vendor company SparkFun. We
avoided using logical state sensors because they would not allow us to have data filtering
criteria with only two values. Moreover, the sensors’ communication protocol offers us the
same ability to use I2C and serial protocol. Table 1 shows the principal characteristics of
each sensor used.

https://www.sparkfun.com/products/11574
https://www.sparkfun.com/products/9375
https://www.sparkfun.com/products/10264
https://www.sparkfun.com/products/10264
https://www.sparkfun.com/products/10167
https://www.sparkfun.com/products/10167
https://www.sparkfun.com/products/10167
https://www.sparkfun.com/products/15112
https://www.sparkfun.com/products/15089
https://www.sparkfun.com/
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Table 1. Most commonly used sensors in IoT devices regarding the proposed taxonomy.

Sensor Type Sensor Characteristics

Bio-Signals ECG (pulse sensor)

Detects changes in the volume of a blood vessel that
occur when the heart pumps blood. To do so, they emit
infrared, red or green light (550 nm) towards the body
and measure the amount of reflected light with
a photodiode or phototransistor. It has an operating
voltage between 3.3 and 5 volts with a power
consumption of 4 mA.

Specific Propose

Flexometer
Produces a variable resistance according to the degree
to which it is bent. In this sense, the sensor converts the
bending into different values of electrical resistance.

Force

The force-sensing resistance sensor (also called FSR)
varies its internal resistance when pressure is applied
to its sensing area. As of this effect, the output
voltage changes as well. Thus, the higher the pressure,
the higher the output voltage.

Pulse train

Humidity and Temperature (DTH11)

This sensor sends a calibrated digital signal containing
an 8-bit microcontroller. In addition, it contains two
resistive sensors (NTC and humidity). It uses one-wire
communication (pulse train).

gas NOx (MQ135)
This air quality sensor detects gas concentration in
various percentages. The output signal presents TTL
voltage levels to be processed by a microcontroller.

Cx I2C

CO2 (SCD 30)
This is a high quality non-dispersive infrared (NDIR)
based CO2 sensor capable of detecting from 400 to
10,000 ppm with an accuracy of ± (30 ppm + 3%).

UV (VEML)

This sensor implements a simple photodiode to
measure UVA (320–400 nm) and UVB (280–320 nm)
radiation levels. With this data, it can read the intensity
of these types of light in irradiance and, from there,
calculate the UV index.

4.2. Data Samples Acquisition

First, we started with the ECG Pulse Sensor of the invariant sample rate sensors.
The sample rate was 1 kHz (Nyquist theorem) because the signal has main components
until 100 Hz. Therefore, 1400 samples were obtained in 10 controlled experiments. Second,
the variable sample rate sensors were exposed to their physical magnitude for 10 s, and then
they returned to their initial condition (flexometer and force sensors). Consequently,
this process was carried out ten times to store 1000 samples with a 100 Hz sample rate.
A similar procedure was carried out with pulse train sensors, such as DTH11 and MQ135.
Finally, communication protocol sensors (SCD30 and VMLE) were tested in 10 controlled
experiments. As a result, we stored 500 samples with a 50 Hz sample rate because their
response times are higher than those of the other sensors.

5. Results

The sensors were tested with statistical metrics according to the experiments per-
formed for each one. Then, they were evaluated with functional metrics such as accuracy,
reproducibility, repeatability, and stability. These metrics represent the sensors working
in real conditions. Thus, for a better understanding of each metric result, four evaluation
levels were established for the sensors: (i) excellent, (ii) good, (iii), normal, and (iv) poor.
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Finally, Figure 3 shows all the sensors used in this research and their connections with a
sample board, such as Arduino.

Figure 3. Sensors used in this work according to the new proposed taxonomy. (—) Analog connection,
(—) Digital connection, (—) Prot. Communication connection (SDA), ( —) Prot. Communication
connection (SCL), (—) VCC, (—) GND.

5.1. Invariant Sampling Rate (ISR)

The signal needs to be converted to the frequency domain to detect the principal
components. Therefore, a fast Fourier transform was implemented to define that the EMG
components were between 5 and 40 Hz, which are presented in Figure 4. Then, IIR filters
were the first approach with Chebyshev, Butterworth, and Bessel approximations with 3,
5, and 7 orders of band-pass filter design. We noticed that the filters in order 5 fit better than
the rest. Table 2 summarizes the results of the statistical metrics mentioned before. The
Butterworth filter demonstrated superior SNR, MAE, and R2 metrics. Additionally, it is
visible that Butterworth reduced the noise with few signal alterations. The second approach
was FIR filters. They focus on a time-domain analysis through windows. Reference [35]
defines that using 10% as a window size of sample rate is recommended. Thus, we defined
window sizes of 150, 250, and 300 components to compare with the ECG signal. Table 3
summarizes that windows size equal to 150 components produced a better SNR when
Nutall window was applied. However, the differences between the windows were minimal
when we tried to improve the signal. As a result, FIR filters are a better option than IIR.
Finally, Figure 4 shows the components in the frequency domain and the graphical results
of FIR and IIR filters.

Table 2. EMG signal statistical analysis and IIR filters.

Approximation SNR (dB) MSE MAE RMSE R2

Butterworth 4.44 0.13 0.31 0.36 −6.83

Bessel 4.20 0.20 0.38 0.44 −10.66

Chebyshev 4.12 0.12 0.30 0.34 −6.26

Table 3. EMG signal statistical analysis and FIR filters.

Window SNR (dB) MSE MAE RMSE R2

Nutall 4.48 0.04 0.18 0.20 −1.55

Hamming 3.77 0.13 0.33 0.36 −7.15

Taylor 4.21 0.80 0.81 0.9 −8.43

Blackman 4.09 0.06 0.22 0.25 −3.0
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(a)

(b)

(c)

Figure 4. EMG signal analysis. (a) EMG signal in the frequency domain. (b) IIR filters: (—) Butter-
woth, (—) Chebyshev, (—) Bessel, (—) original samples. (c) FIR filters: (—) Hamming, (—) Nutall,
(—) Taylor, (—) Blackman, (—) original samples.

5.2. Variable Sample Rate (VSR)

For experimental purposes, the Force Sensitive Resistor sensor was tested with 40 lbs
of pressure, and the Flex sensor bent it 45 degrees. Both were tested with the sample rate
mentioned above (100 Hz). Additionally, their datasheet recommends using an analog
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amplifier in follow-up configuration to avoid DC voltage. Therefore, we applied smoothing
filters. The average filter has a better SNR metric; however, the R2 score indicates that
this filter affects the original signal. Additionally, the Gaussian filter tends to round off
the maximum values obtained and modifies the output signal due to sigma parameter
(Gaussian bell size). The Savi–Golay filter eliminates noise in VSR signals: see the strong
results in R2 score and SNR metrics (Table 4). Figure 5 shows the graphical results of each
smoothing filter.

Table 4. Statistical analysis of sensors with various sampling rates.

Sensor Average Medium Gaussian Savi–Golay Statistical
k = 20 k = 20 Sigma = 7 k = 9, Poly = 4 Metrics

Flex sensor

9.07 8.28 8.97 7.90 MSE

1.49 1.60 0.65 1.27 MAE

1.91 1.96 0.98 2.81 RMSE

0.642 0.56 0.99 0.99 R2 score

2.65 2.16 2.47 2.49 SNR

Force sensor

195.39 198.23 205.31 158.2 MSE

5.25 5.29 3.20 4.96 MAE

18.85 15.78 14.32 15.67 RMSE

0.75 0.65 0.99 0.99 R2 score

2.91 2.65 2.86 2.87 SNR

(a) (b)

Figure 5. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples.
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) FLEX sensor.
(b) FORCE sensor.

Sensor performance metrics: These sensors have a variable resistor as their main
component. Therefore, they are stable in operation, and similar data can be obtained
in each data gathering process. However, their wear and tear is very high, subject to
human activity. For this reason, they are dependent on their location and use, and their
reproducibility tends to decrease over time.

5.3. Digital Pulse-Train

The data collection process was based on having a closed box with an incandescent
bulb, a fan, and extra space for sensors. First, we used the DTH11 to get measurements when
the temperature inside the box increased due to the bulb and then decreased when the
fan was powered. Then, for the gas sensor MQ135, we used a gas emitter (lighter) instead
of the bulb and a fan, and a sensor inside to change the gas concentration inside quickly.
These experiments demonstrated that Savi–Golay and average filters fit with these kinds
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of signals and have better SNR metrics. Consequently, we noticed that the average filter
reduces the dc voltage (peaks), producing good R2 score, MAE, and MSE results (Table 5).
Moreover, Figure 6 represents the smoothing signal applied in pulse train sensors, from
which we can notice that medium and Savi–Golay filters do not modify the electric signal.

Sensor performance metrics: These sensors have standard accuracy and stability due to
their calibrated modes. However, they have restrictions on repeatability and reproducibility
metrics because they sense physical magnitudes that do not vary in short periods, such as
temperature and humidity, among others.

(a) (b)

Figure 6. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) DHT-22 sensor.
(b) MQ-135 sensor.

Table 5. Digital pulse-train sensors’ statistical analysis.

Sensor Average Medium Gaussian Savi–Golay Statistical
k = 30 k = 30 Sigma = 7 k = 9, Poly = 4 Metrics

DHT-11

6.40 6.51 0.2 4.29 MSE

2.15 2.14 0.07 0.29 MAE

1.03 1.04 0.15 0.54 RMSE

0.75 0.77 0.99 0.96 R2 score

9.72 9.60 9.61 9.69 SNR

MQ-135

13.55 11.79 10.48 13.73 MSE

1.35 2.29 0.29 1.62 MAE

3.77 3.49 0.69 3.70 RMSE

0.51 0.35 0.99 0.98 R2 score

1.36 1.27 1.26 1.28 SNR

5.4. I2C Communication Protocol

These sensors were exposed to their corresponding physical features (UV rays and
CO2 gas). Gausian and Savi–Golay filters removed the noise better than the other algo-
rithms. However, the Gausian modifies the signal output significantly. Additionally, the
average does not fit with these types of electrical signals due to the sizes of their windows
affecting the signal with few samples of data. Therefore, medium and Savi–Golay can be
applied to these sensors. Table 6 represents the statistical analysis, and Figure 7 shows the
graphical results.

Sensor performance metrics: They have poor repeatability and reproducibility because
UV rays do not have considerable variability during the day. Moreover, CO2 can increase
exponentially in fires, smoking zones, etc., but it needs a few hours to normalize. As a
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result, the sensor has restrictions concerning returning to the initial state. Figure 7 shows
the smoothing graphical results of both sensors.

Table 6. Communication protocol sensors’ statistical analysis.

Sensor Average Medium Gaussian Savi–Golay Statistical
k = 30 k = 20 Sigma = 7 k = 9, Poly = 4 Metrics

SCD30

540.16 650.66 435.10 475.0 MSE

47.89 69.5 62.14 105.78 MAE

178.05 111.02 124.23 182.96 RMSE

0.55 0.77 0.94 0.86 R2 score

1.51 1.47 2.01 2.37 SNR

VEML6075

2.51 3.44 2.14 2.43 MSE

0.97 0.98 0.39 0.9 MAE

1.58 1.85 1.2 0.20 RMSE

0.42 0.22 0.10 0.99 R2 score

1.0 0.88 0.89 0.92 SNR

(a) (b)

Figure 7. Smoothing graphical analysis in the proposed sensor taxonomy. (—) Original samples.
(—) Average filter. (—) Medium filter. (—) Gaussian filter. (—) Savi–Golay filter. (a) SCD30 sensor.
(b) VEML6075.

5.5. Real Tests

Sensors were evaluated under natural conditions to test each filter selected. In addi-
tion, we compare the voltage obtained through sensors using a multimeter KEYSIGHT
DIGITAL MULTIMETER U1282A, which has a 0.025% voltage accuracy. Therefore, for a
better understanding of each metric’s result, four levels of evaluation were established
for the sensors: (i) excellent, (ii) good, (iii), normal, and (iv) poor. Table 7 shows the
results obtained.

Finally, we obtained the system response time for each sensor with the filter deployed
on the device. For example, the Butterworth filter takes 2.5 ms to process an array with
300 samples, the Savi–Golay takes 1.2 ms to process the same number of samples, and the
medium filter takes 0.68 ms. Therefore, this pre-processing technique is a suitable solution
to run in real-time scenarios when the IoT system can define threads for each procedure
to reduce the time response of each task. Additionally, filters have a small footprint in
memory, leaving enough space to run the IoT application.
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Table 7. Sensor performance metrics.

Sensor Taxonomy

Performance Metrics Analog Sensors Pulse Comm.

ISR VSR train Protocol

Accuracy Good Good Normal Excellent

Reproducibility Good Poor Poor Excellent

Repeatability Good Normal Excellent Poor

Stability Normal Poor Good Normal

Noise Poor Normal Good Good

6. Conclusions and Future Works

This work introduced a new taxonomy of sensors focused on data pre-processing
on-device to upload reliable data to the cloud. Furthermore, filter implementation criteria
were established to prevent erroneous data from being part of the ML model. We now
present the conclusions of this work:

• This taxonomy of sensors is appropriate for the new trend of executing some ML stages
on-device. Therefore, this work prevents data that do not describe the phenomenon
being studied from being part of the ML model. Thus, the sampling frequency used in
the sensors is a fundamental part of implementing filters.

• The proposed methodology demonstrates which filter is adequate and does not deform
the original signal.

• Performance metrics in real environments define the ability to reduce noise and
provide new trends to improve this process for coming sensors.

• We declare the Butterworth filter suitable for analog sensors with invariant sampling
rates. Savi–Golay fits analog sensors with variant sampling rates. The average filter is
adequate for digital pulse train sensors. Regarding communication protocol sensors,
Savi–Golay and medium filters remove noise and provide improved signal for the
proposed data gathering.

Finally, we understand that the next step is to detect anomalies in sensor data due to
manipulation or sensor failure.
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