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Abstract: Most Indian languages lack sufficient parallel data for Machine Translation (MT) training.
In this study, we build English-to-Indian language Neural Machine Translation (NMT) systems using
the state-of-the-art transformer architecture. In addition, we investigate the utility of back-translation
and its effect on system performance. Our experimental evaluation reveals that the back-translation
method helps to improve the BLEU scores for both English-to-Hindi and English-to-Bengali NMT
systems. We also observe that back-translation is more useful in improving the quality of weaker
baseline MT systems. In addition, we perform a manual evaluation of the translation outputs
and observe that the BLEU metric cannot always analyse the MT quality as well as humans. Our
analysis shows that MT outputs for the English–Bengali pair are actually better than that evaluated
by BLEU metric.

Keywords: machine translation; back-translation; parallel data

1. Introduction

The Indian languages belong to two major language families of the South-Asian
subcontinent: Dravidian and Indo-Aryan. Although there are high numbers of native
speakers in most Indic languages, there are still not enough available language-processing
resources. Most of the available resources are in English. NMT requires a substantially
large, high-quality corpus to build a good quality translation system [1,2]. Therefore, NMT
usually only works well for resource-rich languages, i.e., languages that contain several
hundred thousand or millions of parallel sentences. Hindi, the language with the largest
amount of parallel resources in India, is still considered a mid-resource language compared
to its European counterparts. Other Indic languages, such as Bengali, have even fewer
parallel resources and can be classified as low-resource languages. One popular technique
that generates additional synthetic parallel data to build larger MT models even in the
low-resource scenario is called back-translation. The authors of [3] leverage the ability of
the encoder–decoder architecture to generate synthetic sentences by switching the direction
of the translation model, i.e., translating the monolingual text in the target language to the
source language (target-source), and reversing the sentence-pairs to create additional source-
target data. This method relies on the quality of the target-language monolingual text and
the architectures used to build the models. Considering the number of unknown factors,
one promising research direction is experimenting with these variables and determining
the efficacy of back-translation, given the amount of resources in Indic languages.

In this work, we build English-to-Indian language MT systems for Hindi and Bengali,
using the state-of-the-art transformer architecture, and evaluate their performance. In
addition, we incorporate the back-translation technique to analyse its impact on the system
performance. The translation outputs are initially evaluated using automatic evaluation
metrics, and then manually evaluated to analyse the efficiency of automatic evaluation.
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The rest of this paper is organized as follows: Section 2 provides a detailed literature
review. We formulate and discuss the research questions in Section 3. We discuss our
system in Section 4. Section 5 provides all the details of our experiments. The results are
highlighted in Section 6. We discuss output analysis in Section 7. Finally, we conclude our
work and point out some future possible research avenues in Section 8.

2. Literature Review
2.1. Neural Machine Translation

The NMT architecture of Bahdanau et al. [1] is a sequence-to-sequence model that can
be broken down into encoder and decoder blocks. The encoder network first generates
word embeddings for each word in the source-language sentence. These word embeddings
are numerical representations of the words in a multi-dimensional space. They allow
for the model to encode the sequence of words in each sentence as distributed semantic
representations. To regenerate the sequence in the target language, the decoder network
regenerates the target-language sentence (token by token) from left to right. The encoder
generates a fixed-length vector from an input sequence (X) in the source language, and a
decoder uses it to decode and generate a translated sequence (Y) in the target language.

2.2. Transformers

The transformer architecture [2] uses the Attention mechanism to focus on the most
important weighted words instead of every word in the input sequence. Their architecture
entirely forgoes the Recurrent Neural Network’s (RNN) ordinal memory, favouring the
attention mechanism, which draws global dependencies between inputs and outputs.
Before Transformers, RNN and Long Short Term Memory (LSTM) networks were the state-
of-the-art in NMT. RNN was usually successful at modeling source sentence sequences to
target sentence sequences, but was eventually replaced by LSTMS because the gradients of
the network would explode and vanish if the length of the sequences increased beyond
a particular threshold. The training was also hardware-intensive, even with a truncated
back-propagation phase. Neural networks with LSTM cells performed well with longer
sequences but were even harder to train because of their continued ingestion of serialised
input. Naturally, they underutilised the parallelisation ability of GPUs.

The transformer architecture overcomes the drawbacks mentioned above by parallel
ingestion of all the words in a sentence in a single time-step, unlike its predecessors. It
follows the encoder–decoder architecture, where each layer in the encoder and decoder
comprises a self-attention sub-layer, followed by a feed-forward network. The input and
output embeddings are positionally encoded, i.e., the weight of each word in the sentence
is calculated based on its distance from other words in the sentence, using any reasonable
mathematical function. The feed-forward network is applied to all of the attention vectors.
These feed-forward networks are used in practice to transform the attention vectors into a
form that is digestible by the next encoder block or decoder block.

2.3. Alternative Low-Resource Solutions

Most data augmentation methods, such as back-translation, are specific to the data
available in the language pair. Poncelas et al. [4] explore back-translated data as a separate
standalone dataset, as well as combined with human-generated parallel data. They use
incrementally larger amounts of back-translated data to train English-to-German NMT
models and investigate the quality of the resulting translations. Fadaee et al. [5] use a dataset
that only contains parallel bitext to augment data with a word replacement approach. It
replaces words in the target sentences with rare words in the target vocabulary. Accordingly,
the aligned source words are replaced in the source sentences based on the semantic rules
of the language model. Other generic word replacement techniques include word dropout
and Reward Augmented Maximum Likelihood (RAML) [6,7]. These methods share the
common drawback of training brittle models resulting from noisy augmented data.
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Alternatively, Zoph et al. [8] try to solve the low-resource problem by borrowing from
a high-resource parent language. They train a high-resource language pair (the parent
model), then transfer some of the learned parameters to the low-resource language pair
(the child model) to initialize and constrain training. They further improve the results by
using ensembling and unknown word replacement. Their results show that this technique
only works well for highly related languages because most model components will have to
be frozen or strongly regularized to be effective.

2.4. Related Work

A significant amount of effort has been put into the machine translation of low-resource
Indian languages, but there has been little concentrated effort in Bengali. Choudhary et al. [9]
modeled Tamil, Malayalam, Urdu, Bengali, and Telugu in their efforts to alleviate the low-
resource problem. They use pre-trained Byte-Pair-Encoded (BPE) [10] and MultiBPE embed-
dings [11] to help solve the out-of-vocabulary (OOV) problem. Their method outperforms
Google Translate by 60%. Goyal and Sharma [12] work with the Hindi language and use
back-translation for the WAT-2019 Hindi–English shared task http://lotus.kuee.kyoto-u.ac.
jp/WAT/WAT2019/index.html#task.html (accessed on 8 April 2022). Das et al. [13] assert
that back-translation works better with similar languages. They use the LSTM Attention
model [1] to build a Bengali-to-Hindi translation system. With a similar intuition, Przystupa
and Abdul-Mageed [14] use back-translation on their Hindi–Nepali language pair and
deterministically generate synthetic data using greedy decoding. Their results show that
back-translation works better when the language pair has overlapping tokens, and the
parallel bitext only contains short sentences.

2.5. Tools

In our experiments, (discussed later in Section 5), we use OpenNMT [15], an open-
source NMT toolkit that supports a complete translation workflow, with features for
training, language modeling, and decoding, including many others. The work of [16]
adds the transformer model to their toolkit along with new configurations, such as copy
attention and relative position. We use the default configurations of OpenNMT to build
our translation models.

Several evaluation metrics exist for MT; however, each has its advantages and dis-
advantages. The Bilingual Evaluation Understudy (BLEU) evaluation metric [17] is the
most widely used metric for MT evaluation. It is language-independent and closely mimics
human evaluations. Unfortunately, they tend to favour shorter sentences by providing
very high precision scores. The Metric for Evaluation of Translation with Explicit ORdering
(METEOR) Universal [18] overcomes this bias using word-to-word matching between the
target and the reference sentences. Additionally, it has stemming and synonymy matching
features. The Translation Error Rate (TER) [19] is suited for post-editing tasks, because it
assesses an MT output by calculating the number of changes a human translator would
have to make in order for the MT output to match the reference sentence in meaning
and fluency.

2.6. Languages

In this work, we conduct experiments on English and two Indian languages: Hindi
and Bengali. These languages are chosen on the basis of diversity. They contain unique
scripts and are spoken in different regions of India. There is also a significant difference in
the amount of parallel English data available in these languages, which makes them close
representatives of other languages with similar resources.

• Hindi: Hindi belongs to the Indo-Aryan language family and is a descendent of
Sanskrit, like many Indian languages. Like Sanskrit, Hindi also uses the Devanagari
script, although the script offers minimal phonetics to certain sounds. The sentence
structure of short sentences in Hindi is flexible; in longer sentences, the Subject–Object–
Verb structure is given preference.

http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html#task.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html#task.html


Information 2022, 13, 245 4 of 11

• Bengali: Bengali is also a descendent of Sanskrit and from the Indo-Aryan language
family, but it makes use of a custom script that is more phonetically suitable. It
is not inflected by gender, has the same grammatical rules as Hindi, and is highly
morphological. It is the most widely spoken Indian language after Hindi.

3. Research Questions

Our main goals in this work are to investigate the impact of back-translation in
improving the English-to-Indian language MT system and also to evaluate the outputs
using both automatic and human evaluation metrics. Therefore, we address the following
two research questions (RQ).

• RQ-1: How efficient is back-translation in improving the baseline system built from
the most recently developed largest known Indian language parallel corpus called
Samanantar [20], especially for Hindi and Bengali?

• RQ-2: Is the actual translation quality similarly reflected in both Automatic and Manual
evaluations?

To answer the first research question (RQ-1), we initially built a baseline system from
Samanantar corpus. Afterwards, we built an extended model, which is trained from the
concatenation of Samanantar and a synthetic parallel corpus that is produced by back-
translating a monolingual corpus (details in Section 4). Finally, we evaluated both the
baseline and the extended model in order to investigate if the the back-translation was
capable of improving the performance of the baseline system. The second research question
(RQ-1) was addressed by evaluating the translation outputs using both automatic and
human evaluation and observing the scores.

4. System Description
4.1. Corpora Used

Many parallel corpora are available for MT development, but not all of them are of
good quality. Although certain corpora show great promise in terms of the number of
sentences and tokens, they train bad models due to the minimal variance among examples
and limited complexity of sentence structure. After a careful corpus survey, we decided to
use the Samanantar parallel corpus as the training data. For tuning and testing purposes,
we used the latest benchmark ‘WAT-2021‘ dataset http://lotus.kuee.kyoto-u.ac.jp/WAT/
indic-multilingual/ (accessed on 8 April 2022) of English–Indian language MT evaluation.

To the best of our knowledge, Samanantar is the most extensive publicly available
parallel corpora collection for 11 Indic languages. Table 1 shows the corpus statistics.

Table 1. Corpus statistics for training, development and test.

Corpus Name Number of Parallel Sentences per Language Pair

English–Hindi English–Bengali

Samanantar 8,466,307 8,435,355
WAT-2021 development 1000 1000
WAT-2021 test 2390 2390

For back-translation, we used ‘IndicCorp’ https://indicnlp.ai4bharat.org/corpora/
(accessed on 8 April 2022), one of the largest publicly available monolingual corpora for
Indian languages.

4.2. Corpus Pre-Processing

Our training data were pre-processed using the following steps.

• Filtering long sentences: Extremely long sentences were deleted because MT systems
generally produce a low-quality translation for very long sentences. If either side
contains too many words (100 words is set as the default limit), the sentence pair
is discarded.

http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
https://indicnlp.ai4bharat.org/corpora/
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• Removing blank lines: Sentence pairs with no content on either side are removed.
• Removing sentence pairs with odd ratio: Sentences with marginally longer or shorter

translations compared to their original sentences were removed because of the proba-
bility of their being incorrect translations. The filtering ratio was 1:3 in our case.

• Removing duplicates: All duplicate sentence pairs were discarded.
• Tokenisation: We broke down the sentences into their most basic elements, which

were called tokens. Tokenisation is particularly relevant because it is the form in which
transformer models ingest sentences. In practice, most NMT models are fed with
sub-words as tokens.

• BPE: Both the Indic languages we used in this study are derivatives of Sanskrit, which
makes them morphologically rich. This would imply that most OOV words have
similar morphemes to some of the words already in our vocabulary. With this in mind,
the BPE technique was leveraged to resolve the OOV problem by helping the model
infer the meaning of words through similarity. The BPE algorithm performs sub-word
regularization by building a vocabulary using corpus statistics. Firstly, it learns the
most frequently occurring sequences of characters, and then it greedily merges them
to obtain new text segments.

5. Experiments
5.1. Building Baseline Models

The first stage of our experiments involves building baseline models in both directions
(i.e., English to Indian language and vice versa) with the Samanantar corpus.

5.2. Building Back-Translation Models

All of our NMT models used the WAT-2021 development and test sets of Hindi and
Bengali, respectively.

5.3. Parameter Settings for MT Models

As mentioned earlier, we used the OpenNMT tool to build the MT models in this work.
We used the default parameter settings. Some of the parameter values are as follows:

• Minibatch size = 128;
• Hidden state size = 1000;
• Source and target vocabulary size = 32 K;
• Low dropout probability = 0.2;
• Learning rate used for both forward and backward models = 0.2;
• Decay rate = 0.9999;
• Beam search width = 12;
• Save checkpoint steps = 10,000;
• Minimum train steps = 100,000.

Although this a standard parameter setting, used in many cases, we varied some of
the settings; for example, the minimum training steps were increased to 200,000. There
was no improvement in the result. However, we did not explore the variations in all the
parameters. It would be interesting to test different combinations of parameter values in
order to investigate the system’s performance in different settings.

5.4. Evaluation Metrics

Several automatic evaluation metrics are available, such as BLEU, METEOR, and TER.
The BLEU metric calculates the score by comparing a candidate translation of text to one
or more reference translations. A perfect match results in a score of 1.0, whereas a perfect
mismatch results in a score of 0.0. METEOR is based on the harmonic mean of unigram
precision and recall, with recall weighted higher than precision. It also performs stemming-
and synonymy-matching, along with the standard exact word-matching. On the other
hand, TER measures the number of actions required to edit a translated segment in line
with one of the reference translations. The lower the TER score is, the better the translation
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quality. In contrast, a higher BLEU or METEOR score represents better translation quality.
In this work, we used BLEU as it is the most widely used automatic evaluation metric and
is well correlated with human evaluation in most cases.

5.5. Experimental Architecture

Our experimental architecture using back-translation is illustrated in Figure 1. The
whole system consists of two main parts; (i) translating monolingual data from Indian
language (IL) to English (EN) to generate a synthetic dataset, and (ii) building an extended
model from the combination of EN–IL parallel corpus and the synthetic dataset. The
blue dotted lines with arrows show the process of generating synthetic parallel corpus by
translating the monolingual corpora in Indian language (i.e., Monolingual IL) into English
(i.e., Translated EN). This monolingual corpora is translated into English using the model
built from the IL–EN parallel, which is shown in two circles connected with an arrow (i.e.,
IL->EN) right below the blue dotted lines. In the next part of this figure, we can see the
original EN–IL parallel corpus in two bigger circles with an arrow.

Figure 1. Experimental architecture.

Both of the source (EN) and target (IL) of this training data were then concatenated
with their respective counterparts of the generated synthetic data set, i.e., the English texts
(EN) were concatenated with the English translations of the monolingual IL corpus and the
IL texts were concatenated with monolingual IL texts. Finally, an extended model was built
by training this concatenated parallel corpus.

In summary, Figure 1 shows two stages of our experiments:

• Stage 1: This generates synthetic data by translating (back-translation) from Indian-
language (IL) into English (EN), and

• Stage 2: This builds English-to-Indian language MT systems using the existing parallel
data and the generated synthetic parallel data.

Our models’ vocabularies were built using the sub-words generated after applying the
BPE technique to our dataset. To generate synthetic data for our back-translation models,
we first built Indian language to English translation models and then used them to translate
sentences in our monolingual dataset. Afterwards, these synthetic data were added to the
already existing parallel dataset. For example, we first built a Hindi-to-English translation
model to translate Hindi monolingual sentences into English. The translations are aligned
with the monolingual Hindi sentences to form the new synthetic dataset, which was then
concatenated with the original English–Hindi parallel corpus to form the extended corpus.
Our extended models were then trained from scratch with new vocabularies built using
the extended dataset. The translation outputs were evaluated using BLEU. The higher the
BLEU score, the better the translation quality.

6. Results
6.1. Automatic Evaluation

The results of automatic evaluation using the BLEU score in our experiments are
shown in Table 2.



Information 2022, 13, 245 7 of 11

Table 2. BLEU scores for English-to-Indian language translation models on Samanantar dataset.

Translation Model BLEU Score per Language Pair

English–Hindi English–Bengali

English – Indian language 33.45 11.58
English – Indian Language + back-translation 33.72 11.99

The best BLEU scores for English-to-Indian language outputs are shown in bold font.
The scores show that models which already have strong baselines, such as the English-to-
Hindi model, improve, if only by 0.27 (0.8% relative improvement), upon the application of
back-translation. We hypothesise that this improvement could be attributed to the strength
of the Hindi-to-English translation model built from the Samanantar corpus and the high-
quality translations of the monolingual data that it produces. A slightly more BLEU score
increment (0.41, 3.5% relative improvement) was noticed for the English-to-Bengali model
using the back-translation technique. This indicates that back-translation is more helpful to
improve an already weaker MT model (low-scoring model, i.e, English-to-Bengali in this
case) as compared to the already high-scoring model, i.e, English-to-Hindi in this case.

In general, the models translating sentences into English performed better. A probable
reason for this is that English is relatively morphologically impoverished when compared to
many Indian languages. It is, therefore, easier to translate from Indian languages to English
than in the opposite direction. The BLEU scores are shown in Table 3. The authors of
Samanantar noticed a similar phenomenon and attributed this to the improved transference
in many-to-one settings compared to one-to-many settings [20].

Table 3. BLEU scores for Indian-to-English language translation models on the Samanantar dataset.

Translation Model BLEU Score

Hindi-to-English 38.57
Bengali-to-English 22.84

6.2. Manual Evaluation

While automatic evaluation metrics such as BLEU are convenient and easy to use,
they cannot always capture the semantic similarity between the translation output and the
reference, due to the complexity of meanings. This is amplified when the source and the
target language are significantly different in terms of structure and meaning representation.
As we deal with such languages in our work, it is very important to manually evaluate
the translation quality to validate the BLEU scores. However, manual evaluation is a
significantly time-consuming task when multiple languages are involved. Bearing this in
mind, we manually inspected a subset of 200 translation outputs generated by each of the
MT systems for both English–Hindi and English–Bengali language pairs in both translation
directions resulting in a total of 800 evaluation outputs (i.e, outputs from 4 MT models). We
evaluated them using the ‘Adequacy’ and ‘Fluency’ metrics, explained in brief as follows.

• Adequacy: This refers to the measurement of how much information is retained in
the translation outputs as compared to the references, regardless of the grammatical
correctness.

• Fluency: This refers to the measurement of how fluent the output is, that is, how
grammatically correct it is, regardless of adequacy.

We used a 5-point scale for both adequacy and fluency. Table 4 shows a description of
the scale for each metric. According to our 5-point scaling system, any translation output
that is assigned both adequacy and fluency scores of more than 3 is considered to be a
good-quality translation. In contrast, all the other translations with equal to or less then
3 points for both adequacy and fluency can be considered average and poor, respectively. It
is obvious that an ideal translation must have both adequacy and fluency scores of 5 points.
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Table 4. Description of Adequacy and Fluency.

Scale Adequacy Fluency

5 all information present perfect in terms of
in the translation grammatical correctness

4 most of the information present not perfect but very good
3 nearly half of the information present average quality
2 very little information present poor quality
1 no information present worst or completely incomprehensible

It is important to note that a good translation should convey all this information while
being fluent. Fluency is meaningless without adequacy. For this reason, we do not consider
a translation output that has high fluency and low adequacy and vice versa and as an
‘unconsidered’ translation. Among 200 manually evaluated translations, we found only
one to be an ‘unconsidered’ translation Note that this single ‘unconsidered translation’ was
observed in 200 outputs; the number may increase if a bigger subset is evaluated, which is
shown in Table 5.

Table 5. An example of unconsidered translation for Hindi-to-English.

Reference MT Output Adequacy Fluency

“In a way, this is endowed It is the
with the might to transform weather of the 2 5
the entire season-cycle of the country”. entire country.

We can see in the above table that only a little information is retained in the output;
hence, the adequacy is 2 according to our evaluation criteria. In contrast, the output is
completely fluent (regardless of adequacy) and so was assigned a fluency score of 5. As the
output eventually does not make any sense, even when completely fluent, it is treated as
an ‘unconsidered’ translation.

The average adequacy and fluency score for the English–Hindi and English–Bengali
pairs in both directions are shown in Table 6. We notice that the Hindi-to-English translation
model produces the best adequacy and fluency scores of 4.33 and an average fluency score
of 4.83. This is also true for BLEU scores for Hindi-to-English outputs, which were the
highest of the two scores (see Table 3).

Table 6. Results of manual evaluation.

Language Pair Translation Direction Average Adequacy Average Fluency

English–Hindi English-to-Hindi 4.31 4.77
Hindi-to-English 4.33 4.83

English–Bengali English-to-Bengali 3.74 4.4
Bengali-to-English 3.87 4.74

Now, if we compare the results of Table 6 with those of Table 2, we notice that the
BLEU score for English-to-Bengali is 64% less than that of English-to-Hindi, but the average
adequacy is 13% and average fluency is nearly 8% less, respectively. Similar observations
can be made when the manual evaluation results of Hindi-to-English and Bengali-to-
English are compared with the BLEU scores of Table 3. These results show inconsistencies
between automatic and manual evaluations, and hence prove that BLEU scores are not
always reliable for MT evaluation.

As mentioned earlier, the translations are only considered good when both adequacy
and fluency are greater than 3, i.e, when they retain all or most of the information and are
also fluent or nearly fluent. All other translations are considered either Average or poor; the
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translations that are unable to retain most of the information are less fluent. Table 7 reflects
the overall translation quality considering both of these metrics.

Table 7. Quality of translation outputs.

Language Translation Translation Quality Average or
Pairs Direction Good Poor

English–Hindi English-to-Hindi 90.5% 9.5%
Hindi-to-English 92.5% 7.5%

English–Bengali English-to-Bengali 68% 32%
Bengali-to-English 78% 22%

It can be seen that 90.5% of translations produced by English-to-Hindi model are
of good quality. The amount of average or poor translations is much lower, below 10%.
Slightly better results were noticed for the Hindi-to-English model. It is obvious that both
of these models produce a high percentage of good-quality translations. On the other hand,
the scores for English-to-Bengali (68%) and Bengali-to-Hindi (78%) are significantly less
than those for Hindi, but are still good enough, as most of the outputs are good quality.

7. Output Analysis

For the sake of reading simplicity, we now show some example outputs of Indian_
Language-to-English instead of English-to-Indian language MT systems in Tables 8 and 9.

Table 8. Some example Hindi-to-English translation outputs with adequacy and fluency scores.

Examples Reference MT Output Adequacy Fluency

I recently visited the I had visited the
1 Krishi Unnati Mela Agri-Unnati Mela 4 5

organized in New Delhi. in Delhi recently.

Start-Ups have been Startups are exempted
2 given income tax from paying income 5 5

exemption for three years. tax for 3 years.

Yoga helps to maintain Adds yoga
3 balance amidst between this scatter. 2 2

this disintegration.

“It brings about peace It brings happiness
4 in the family by uniting and prosperity 3 5

the person with the family.” to the family.

In the first example of Table 8, we can see that the MT system produces a slightly
incorrect translation “Agri-Unnati Mela” as compared to the reference. However, it retains
most of the information and so is assigned an adequacy score of 4 and a fluency score of
5 as a fluent translation. The second example is a perfect translation because it retains all
the information and is completely fluent; thus, it achieves a score of 5 for both fluency and
adequacy. The third example obtains very low scores as it loses most of the information
and is not fluent. The final example is fluent but retains only nearly half of the information,
and so cannot be considered a good translation.
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Table 9. Some example Bengali-to-English translation outputs with adequacy and fluency scores.

Examples Reference MT Output Adequacy Fluency

“Not only this, we We have also earned
1 are also the sixth the honour of the sixth 4 5

largest producer of largest producer of
renewable energy”. renewable energy.

Start-Ups have been Start-up companies
2 given income tax have been given tax 5 5

exemption for concessions for the first
three years. three years.

“In a way, this is All these ideas
endowed with the might are the strength 1 3

3 to transform the of the country’s
entire season-cycle transformation.

of the country.

“That is why a large number Many letters have
4 of letters on agriculture been written 3 5

have been received”. about agriculture.

In Table 9, we can see that the first and the second examples are good-quality transla-
tion outputs, and achieve high adequacy and fluency scores. In contrast, the third and the
fourth examples fail to fulfil the criteria of being good-quality outputs.

8. Conclusions and Future Work

In this work, we built English-to-Indian languages MT systems using the state-of-the-
art transformer architecure and subword NMT. We applied back-translation with the aim
of improving the performance of our MT systems. We reported positive improvements in
the BLEU scores with back-translation. It was observed that back-translation technique
helps the weaker MT models more than it helps already strong models. MT models with
English as the target language performed better than those in the opposite direction. This
produces good-quality synthetic data by translating the monolingual corpus in Indian
languages into English, and helps to improve the quality of baseline English-to-Hindi and
English-to-Bengali translation systems using back-translation. In addition, we performed
a manual evaluation of a subset of 200 translation outputs for each translation model in
order to test the efficiency of the BLEU metric. We observed that BLEU does not always
correlate well with human evaluation. BLEU scores did not reflect the actual quality of
English-to-Bengali translation. The outputs were, in fact, better than those evaluated by
BLEU. Our work can be extended by exploring monolingual datasets of different sizes
and domains to precisely identify the saturation point of back-translation. We also plan to
perform a manual evaluation on a bigger set of translation outputs. In addition, we will
extend our comparison to not only the baseline but to other state of the art methods.
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