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Abstract: The widespread and growing usage of machine learning models, particularly for critical
areas such as law, predicate the need for global interpretability. Models that cannot be audited
are vulnerable to biases inherited from the datasets that were used to develop them. Moreover,
locally interpretable models are vulnerable to adversarial attacks. To address this issue, the present
paper proposes a new methodology that can translate any existing machine learning model into a
globally interpretable one. MTRE-PAN is a hybrid SVM-decision tree architecture that leverages
the interpretability of linear hyperplanes by creating a set of polygons that delimit the decision
boundaries of the target model. Moreover, the present paper introduces two new metrics: certain and
boundary model parities. These metrics can be used to accurately evaluate the performance of the
interpretable model near the decision boundaries. These metrics are used to compare MTRE-PAN
to a previously proposed interpretable architecture called TRE-PAN. As in the case of TRE-PAN,
MTRE-PAN aims at providing global interpretability. The comparisons are performed over target
models developed using three benchmark datasets: Abalone, Census and Diabetes data. The results
show that MTRE-PAN generates interpretable models that have a lower number of leaves and a
higher agreement with the target models, especially around the most important regions in the feature
space, namely the decision boundaries.

Keywords: explainability; global interpretation; translation; machine learning; TRE-PAN;
explainable AI

1. Introduction

Since 2018, the European Union (EU) has placed regulations on personal data us-
age and algorithmic decision making systems [1]. As a result, EU citizens are entitled
to explanations of algorithmic decisions and are able to contest them [1]. In the United
States (US), regulatory bodies have begun investigating the widespread usage of artifi-
cial intelligence (AI). In 2014 and 2016, the executive office of the National Science and
Technology Committee published two reports related to the ethical usage of AI and its
regulatory recommendations [2]. This was followed by the introduction of the National
Security Commission Artificial Intelligence Act of 2018 that established a formal committee
to review the usage of AI and recommend necessary regulations [3].

Laws that regulate the use of machine learning (ML) applications are difficult to
draft since they require extensive technical knowledge to accurately assess the outcomes
produced by the underlying algorithms. However, these laws are needed to prevent misuse
and decision failures. For instance, recidivism prediction instruments are widely used
but are also the subject of controversy because they can inherit biases from the training
data [4]. In the US, the judiciary presiding over State of Wisconsin vs. Eric. L. Loomis
used an algorithm, COMPASS, to recommend sentencing. It sentenced the accused to
6 years in prison [5]. The defense argued that the usage of a black-box algorithm violated
Mr. Loomis’s right to due process since the algorithm was a trade secret. On appeal to the
Wisconsin supreme court, the judgment was upheld [5]. The court’s decision was heavily
criticized by law scholars as having “failed to protect due process rights” [6]. These systems
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may perpetuate a cycle of incarceration [4]. In order to overcome some of these legal and
ethical pitfalls, ML models need to be interpretable and open to auditing [7].

In response to this concern, the IEEE published the “The IEEE Global Initiative on
Ethics of Autonomous and Intelligent Systems”, a set of guiding principles for ethical AI
usage [8]. These principles formed the foundation of the IEEE P7000 series of standards
addressing AI standardization. Subsequently, the P7001 and P7003 standards required
transparency and algorithmic bias considerations for autonomous systems, highlighting
the need for interpretability for all ML models.

In general, ML models can be classified into two main categories in terms of inter-
pretability. The first category consists of easily interpretable models, such as Bayesian
networks [9], decision trees [10] and random forests [11]. The second category includes
more complex models such as neural networks [12] and support vector machines [13]. This
second category of models is often more accurate and generalizes better to new data [14].
However, it suffers from reduced interpretability [15]. In fact, the more complex the model,
the less interpretable it becomes. More examples of this category include deep neural
networks [12], convolution neural networks [16] and recurrent networks [17]. Similarly,
the interpretability of SVM decreases with higher-order SVMs, which rely on RBF or
polynomial kernels as opposed to the simpler linear kernels.

In [15], Lipton divides the notion of interpretability into two main categories: trans-
parency and post hoc explanation. Transparency aims to deliver model- or global-level
interpretability, whereas post hoc explanation is a per input “after the fact” explanation
that provides a local level of interpretability. Both the local and the global interpretabil-
ity of ML models have been investigated in previous studies. These studies propose a
translation mechanism, where a non-interpretable model is translated to an interpretable
model. For instance, the local interpretable model-agnostic explanations (LIME) technique
translates a non-interpretable model to a locally interpretable one by sampling data around
a query from the non-interpretable model [18]. The sampled data are labeled using the
non-interpretable model and then are used to train a simple linear separator. The weights of
the linear separator are provided as the explanation. An example of a global interpretation
technique is TRE-PAN [19], which translates a neural network by training a decision tree
model using data generated from the original model. These two approaches treat the target
model as a black-box where only the outcome produced for a given input is available.
A different type of global translation techniques relies on the complete knowledge of the
architecture and parameters of the target model. For instance, the internal structure of a
neural network was used to generate rules from an induced decision tree in CRED [20].

Global interpretation is the focus of this paper. A decision tree that relies on linear
hyperplanes as separators is used to provide global interpretability for a target neural
network model. The target model is considered to be a black-box. The present paper
also introduces two metrics that can more accurately compare the target model and the
interpretable model, specifically around the decision boundaries. Agreement between the
target model and the interpretable model near the decision boundaries is critical since these
regions delineate between different outcomes of the target model.

2. Related Work

Several methods have been proposed in the literature for translating non-interpretable
ML models to interpretable ML models [18,19]. As mentioned above, these methods fall into
two categories: transparency and post hoc explanation or, in other words, global translation
and local translation, respectively [15]. Global translation corresponds to transparency
because it aims to provide a comprehensive understanding of the behavior of the target
model. Local translation corresponds to post hoc explanation, as it focuses on a subspace
of the entire model. Lipton [15] further divides these two categories, where simulatability,
decomposability and algorithmic transparency are sub-categories of global translation,
whereas text explanations, visualization, local explanations, and explanation by example
are sub-categories of local translation.
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2.1. Global Translation

The aim of algorithmic transparency is to create an interpretable model that estimates
the target model by translating it into a model whose behavior is understood [15]. For
instance, TRE-PAN generates a decision tree which describes the behavior of a deep neural
network [16,17]. This approach treats the target model as a black-box and is not limited
to neural networks. It uses the target model to generate data that are used to train the
interpretable decision tree. For each child node in the tree, enough data are generated
to obtain the best split for the constrained sample space inherited from the parent node.
TRE-PAN uses two of three decision trees. The top three features are selected, and the
corresponding thresholds are established based on the potential gain in entropy from the
split for each node. At most, two conditions need to be satisfied for a sample to be assigned
to the left subtree.

The motivation behind TRE-PAN is that decision trees require substantially more
training data than neural networks in order to achieve the same accuracy. These data
may not be available. Therefore, the non-interpretable model, once trained with the
available data, can be used to generate the additional synthetic data needed to train the
interpretable model [19]. Some limitations of TRE-PAN include the fact that two out of
three trees are more difficult to interpret than binary splits since three different possibilities
are evaluated at each node. Moreover, the depth of the tree in TRE-PAN is primarily
dictated by the complexity of the non-linear decision boundaries of the target model
under consideration [19]. As TRE-PAN generates data near the decision boundaries, the
information gain from splitting is likely to be greater than the gains from splitting regions
that are farther away from the decision boundaries. This is anticipated because the data
will have a more balanced proportion of positive and negative samples near the decision
boundaries, requiring a higher number of splits to represent them. In fact, when the decision
boundary of the target model has a non-linear shape, representing the area constrained by
this shape requires several rectangles of varying sizes. Therefore, these boundaries often
correspond to a large number of leaves in the TRE-PAN decision tree. Limiting the depth
of the tree comes at the cost of lower accuracy [19].

An alternative global translation approach only applicable to neural networks was
proposed in [20]. This approach requires access to the hidden nodes of the target neural
network. Rules describing the global behavior of the network are extracted using the
“continuous/discrete rule extractor via decision tree induction” (CRED) algorithm [20].
This algorithm builds a decision tree by clustering data around the training samples that
activate a hidden node for a specific output class. CRED builds decision trees for each layer,
generates intermediate rules, and combines them into global rules.

Another rule extraction technique was proposed in [21]. This technique is labeled
“rule extraction by reverse engineering the neural networks” (RxREN). It extracts the rules
in two phases. RxREN requires access to the internal architecture of the target neural
network as well as the training data. In the first phase, RxREN prunes the input nodes
based on their significance. In the second phase, the misclassified training examples are
used to infer the feature ranges of the remaining (i.e., significant) input nodes, and to create
threshold rules [21]. A subsequent improvement to RxREN, named “deep neural network
rule extraction via decision tree induction” (DeepRED) was proposed in [22]. DeepRED
combines RxREN and CRED. It first uses RxREN to prune the input nodes, and then uses a
modified version of CRED to develop the explainable decision tree [22]. The modification
consists of extracting intermediate rules from the target neural network model before
merging them into complete decision trees [22].

2.2. Local Translation

The objective of local translation is to observe a limited subset of the feature space and
attempt to explain it using specific input examples. Therefore, the focus of local transla-
tion is on explaining individual decisions, rather than the behavior of the entire model.
An example of this type of translation is the model-agnostic explanations (LIME) [18].
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This technique relies on a post hoc approach to explain local classification results. Specifi-
cally, LIME uses a linear model to represent a decision derived from a non-interpretable
model. Given a target model and an input vector with a corresponding class prediction, the
input is perturbed to generate synthetic data in the local neighborhood of the input vector
under consideration. This synthetic data are then weighted by using a distance metric from
the original input and used to train the interpretable linear model. By observing the feature
weights of this linear model, the features that dictated the classification can be identified.

There are two potential limitations to LIME: random explanations and unconvincing
explanations. LIME uses randomly perturbed data to create a local linear model. Therefore,
it can generate different explanations for the same input depending on the distribution
of the sampled data. Moreover, the local explanation can become less reliable if the input
vector is near a non-linear decision boundary of the target model [18].

Other local translation techniques include utilizing a heat map to visualize the acti-
vation patterns in the input data [15,23,24]. For instance, given an input image, the pixels
which were the most influential in selecting a predicted class can be identified [25]. In par-
ticular, it is possible to decompose the output of an image classifier such that each pixel in
an image is weighted on how much it contributed to deciding the final outcome as in [26].
This decomposition is applied on a layer-by-layer basis, where the weights are propagated
from one layer to the next layer. The decomposition can be done on pre-trained models,
but does require access to the internal parameters of the models.

A similar decomposition technique can be applied to neural networks using DeepLIFT [24].
In this case, the contribution of the input feature to each layer is decomposed into a
summation of weights as the value of the feature is propagated from the input layer to the
output layer [24]. This technique requires a significant amount of domain knowledge, as a
“reference” input (i.e., near the decision boundary) needs to be used as the baseline [24].

In [27], locally interpretable models such as LIME and DeepLIFT are considered
to belong to the same “class of additive feature attribution methods”. These methods
decompose the target model into a sum of weights of the input features. A technique for
finding these weights according to some properties (e.g., local accuracy, missingness, and
consistency) is needed. Towards this goal, the “Shapley additive explanation" (SHAP) is
proposed as a unified measure of feature importance [27]. The output of a given model
is compared to the output of the same model after the removal of some features. The
difference is assumed to be proportional to the contribution of the missing features [27].

Since SHAP is a local explanation technique, it is unable to capture the global behavior
of the model. SHAP explains examples in a post hoc fashion and describes the aggregate
behavior of a target model by only considering a representative sample of the data. There-
fore, it is unable to describe the decision boundaries of the target model and is vulnerable
to adversarial attacks [28].

In general, while local translation is easier to implement than global translation, it is
prone to adversarial manipulation in various applications, including image classification
and insurance decision support systems [15]. For example, an adversarial fake image
can be overlaid on top of a real image, causing the model to misclassify the image [29].
A globally interpretable model is more resilient to such adversarial attacks and provides
an opportunity to audit how a given decision is reached. The latter is important, as it can
identify gaps in the inference mechanisms used by the target model.

2.3. Evaluation Metrics

A survey of previous research on model translation indicates that most of the tech-
niques use common metrics to describe how accurately the interpretable model represents
the target model. TRE-PAN calls this metric fidelity [19]; CRED refers to it as accuracy [20];
and RxREN calls it rule accuracy [21]. This metric is called model parity in the present paper.
It compares the outcome of the target model and the interpretable model on a test dataset.
Model parity is unable to represent the behavior of the target model near the decision
boundaries. Data near the decision boundaries are significantly more sparse, compared to
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the rest of the feature space. When validation data are sampled uniformly from the entire
feature space, they often fail to focus on the boundaries. As a result, interpretable models
may generate high parity values but fail near the decision boundaries. The parity metric
needs to consider the entropy of the subspace when evaluating the match between the
target model and the interpretable model. Ideally, if the entropy is too low, all data should
be considered mislabeled.

3. Materials and Methods

The global translation technique proposed in this paper translates a target ML model
into a hybrid model consisting of a decision tree with linear SVM classifiers at each node.
This hybrid ML architecture, which was previously proposed in [30,31], is extended to
global translation. The proposed technique, MTRE-PAN, leverages the interpretability of
the decision tree and the generalizability of SVM. It uses SVM with linear kernels instead
of higher order kernels to facilitate interpretability. As in TRE-PAN, MTRE-PAN treats the
target model as a black-box.

3.1. Model Overview

Let f (x), x ∈ RN represent a pre-trained, non-interpretable model, where x is the
feature vector consisting of N dimensions and f (x) is a binary classifier with codomain
{−1, 1}. MTRE-PAN builds an interpretable model for f consisting of a decision tree that
uses hyperplanes to split each node into subtrees.

Each node k in MTRE-PAN is associated with a weight matrix Ck ∈ RN∗M and a
bias vector bk ∈ RN . Ck and bk form the set of linear constraints for each node. When
applied simultaneously, they combine to form a convex hyper-polygon, where each node
represents a mutually exclusive partition of the space of f . In the first phase, MTRE-PAN is
trained using the original training data used to develop f , along with additional training
data sampled from f . These data consist of the input set Q = {x1, x2, x3, . . . xm} and the
corresponding label set Y = {l1, l2, l3, . . . lm}. Let Parent(k) represent the parent node of
node k. The set of samples that are passed from a parent node to its left and right children
is defined below:

left child: Ql = {∀x ∈ QParent(l) | xT
i CParent(l) ≤ bParent(l)} (1)

right child: Qr = {∀x ∈ QParent(r) | xT
i CParent(r) > bParent(r)} (2)

Leaf nodes inherit a label from the SVM classifier according to the side of the split they
fall into. Figures 1 and 2 show two instances of an MTRE-PAN tree for the same function
f , one at depth 1 and the second at depth 2. The target model f is a circle, where samples
inside the circle are labeled “1” and those outside the circle are labeled “−1”. The feature
space for this synthetic example consists of two dimensions: the horizontal (feature 1) and
vertical (feature 2) positions of the sample. In Figure 2, the right child of the root node is
expanded by training an SVM on data sampled from a subspace of the feature space of
f (x), such that any data used in the training must satisfy xT

i C1 > b1. Similarly, the left child
of the root node is expanded by training an SVM on data sampled from a subspace of the
feature space of f (x), such that any data used in the training must satisfy xT

i C1 ≤ b1. As the
nodes continue to be split, the MTRE-PAN estimate of f improves. The splits induced by
the new leaf nodes in Figure 2a start to converge to the boundaries of f (Figure 2b).
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(a) MTRE-PAN at depth 1 (b) MTRE-PAN partitioning the feature
space of a target model

Figure 1. (a) represents a trained MTRE−PAN model of depth 1, with the hyperplane(s) acting as
separators. It shows how an input vector Xi is classified to the correct leaf using the constraints C1

and the bias b1 as per Equations (1) and (2). (b) illustrates how MTRE−PAN partitions the feature
space of an existing target model. For this example, the decision boundary is a circle. The light
regions are assigned label 1, and the dark regions are assigned label −1.

(a) MTRE-PAN at depth 2 (b) Sub-partitioning of the feature space

Figure 2. MTRE−PAN is applied to the same target model in Figure 1 with the depth expanded to 2.

In MTRE-PAN, the decision to split a node is made according to the standard binary
gain measure G [32] given by

G(Qk) = −E(
p

p + n
) (3)

where Qk are the data of node k, p is the number of positive examples of Qk, n is the number
of negative examples of Qk, and the entropy E is defined as follows:

E(α) = −(α log2 α + (1− α) log2(1− α)) (4)

Nodes whose gains fall below a preset threshold are considered uncertain and there-
fore are candidates for further splitting. The main steps of MTRE-PAN are outlined in
Algorithms 1 and 2. Each node generated by MTRE-PAN may sample the original non-
interpretable model for more training data to add to its dataset Q if the available data are
not sufficient to represent the subspace. This is accomplished by calling sampling-on-demand,
as discussed next.
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Algorithm 1: M-TRE-PAN algorithm.

Begin Initializing Variables
Load training data of the target model (Tf);
Enter entropy threshold (Et);
Enter variance cutoff (Vc);
Initialize an empty priority queue (Pq) ordered on gain as in Equation (3);

Begin Building the MTRE-PAN tree
Create the Root node of the tree (kRoot);
Populate kRoot with Tf;
Call Sampling_on_Demand (Algorithm 2) on kRoot;
Place kRoot in the queue Pq;
while The queue Pq is not empty do

Dequeue a node (k) from Pq;
if The entropy of k is above Et then

Train a linear classifier (Sep_k) on the data in k;
Add the parameters of Sep_k to the constraints of k (Ck & bk) from

Equations (1) and (2) ;
Create two new empty nodes for the left (childL) and right (childR)

children of k;
Use Ck & bk to split the data already sampled and stored in k;
As in Equations (1) and (2), data are partitioned (Ql & Qr) between

childL and childR;
Call Sampling_on_Demand for both childL and childR;
Attach childL and childR as the children of k;
Place childL and childR in the queue Pq;

Return the Root node kRoot;

Algorithm 2: Sampling on demand.

Begin Initializing Variables
Load input node k;
Load trained target model as a function f (x), x ∈ RN ;
Load user defined entropy threshold Et;
Load user defined variance cutoff Vc;
Load the constraints (Ck & bk) of node k;
Load the data (Qk) stored in k;

Begin Sample the subspace of the node
Calculate the point estimate (Pe) of the entropy of Qk stored in k using
Equation (6) ;
Calculate the variance (Pv) of the point estimate from Equation (7);
Build a bounding box (Box) as a set of constraints for every feature of Qk. This

bounding box constrains the maximum and minimum of each feature
thereby surrounding all the data in Qk;

while Pv is greater than Vc do
Sample data uniformly along the dimensions of Box;
Discard samples that do not satisfy the constraints Ck & bk of the node k. If

k is the left child of its parent, Equation (1) is used to accomplish this
process, otherwise Equation (2) is used;

Add the data to Qk, the list of data of node k;
Recalculate Pe and Pv on Qk;
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3.2. Sampling on Demand

After a leaf node is created in Algorithm 1, it might be necessary to generate more
data to measure the entropy of the subspace encapsulated by its constraints. The leaf node
was created by imposing additional constraints on the region of the feature space available
to the parent node. The decision to sample more data is made by comparing the variance
of the data assigned to the leaf to a predefined variance cutoff as shown in Algorithm 2.

The constraints associated with the leaf node (i.e., Equations (1) and (2)) make the
subspace available for sampling a hyper-polygon. Data were already generated by the
parent and distributed to the left and right child nodes in accordance to their respective
constraints. A bounding box is built around these data. The bounding box is simply a
hyper-rectangle that surrounds the data by placing bounds on the maximum and minimum
of each feature plus a slight margin. The bounding box is uniformly sampled for data that
is labeled using f and if the sample fits within the constraints of the leaf node, it is added
to its dataset.

The entropy is measured using a point estimate of the probability. This is because in
Equation (4), the value of α (the probability) is unknown. Every sampled data point can
be considered to come from a series of independent and identically distributed indicator
random variables: I = {I1, I2, I3, . . . Ij}, and since ExpectedVal[I] = α, we can estimate α
with the sample mean α:

α ≈ α =
1
N

N

∑
0

xj (5)

and the entropy as

E(α) ≈ E(
1
N

N

∑
0

xj) (6)

In order to determine when enough samples have been collected, the variance of α is
observed, and since the variance of an indicator R.V is var[I] = α ∗ (1− α)

var[α] =
α ∗ (1− α)

N
(7)

While sampling the data, if the variance of the point estimate falls below a user-defined
variance cutoff, sampling is stopped, and the entropy estimate of Equation (6) is considered
to be an accurate estimate.

4. Results

Multiple experiments were conducted to assess the efficacy of MTRE-PAN and com-
pare it to that of TRE-PAN [16,17]. In its proposed implementation, TRE-PAN generates an
interpretable decision tree for each target model using a two out of three split as described
in Section 2.1. In order to simplify the comparison with MTRE-PAN with respect to the
depth of the resulting interpretable models, the C4.5 binary implementation of TRE-PAN
was used [33]. MTRE-PAN, the model proposed in the present paper, consists of a hybrid
combination of a binary decision tree and a linear SVM classifier at each node of the tree.
Both TRE-PAN and MTRE-PAN were used to generate interpretable models with varying
tree depths for several target models.

The first target model is a simple function with a circular boundary delineating the
negative and positive samples. This model was used earlier to illustrate the methodology.
The remaining target models are feed forward neural networks, which were trained using
three public domain datasets.

The hyperparameters of MTRE-PAN and TRE-PAN include the maximum depth, the
cutoff entropy, the cutoff variance and the margin as described in Table 1. All the ML target
models follow the same general architecture that consists of the following:
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- An input layer and two hidden layers, each with a number of nodes equal to the
number of input variables in the dataset.

- An output layer consisting of a single node.
- All the nodes use a sigmoid activation function.

Table 1. Hyperparameter definitions and values used in the study.

Hyperparameter Description Value

Maximum Depth The maximum allowable depth of the interpretable decision tree. 10

Cutoff Entropy A leaf node with an entropy higher than the Cutoff Entropy is
considered uncertain and is a candidate for further splitting. 0.0808

Cutoff Variance
Places an upper limit on the number of data points sampled in a
given leaf. A lower cutoff variance will result in a more accurate
value for the sample entropy.

10−5

Margin

The width around the decision boundary of the target ML from
which data are being sampled. It is based on the input of the last
layer of the target ML model. The margin is not used during the
training of the interpretable model. It is simply used to calculate
the post hoc metric, boundary model parity, defined below in
order to test the efficacy of the algorithm near the decision
boundaries of the target model.

0.05

This architecture is trained with 70% of the original data over 100 epochs. The re-
maining 30% are held-out samples that are used for validation and testing. The data are
normalized to [−1,1]. After training, the model that achieved the highest accuracy on the
validation data across all the epochs is retained.

Four metrics are used to compare MTRE-PAN and TRE-PAN in this study:

- Model parity: The agreement in classification between the decision tree and the target
model f . It is measured as the ratio of matching labels between f and either the
decision tree generated by MTRE-PAN or TRE-PAN over the total number of samples
in the validation set. Model parity is calculated as

TP + TN
TP + TN + FP + FN

∗ 100. (8)

- Certain model parity: This metric is similar to the model parity, except, in this case,
the sample in the validation dataset that is assigned to uncertain nodes (i.e., nodes
with entropy below the cutoff entropy) are labeled uncertain. These samples cannot
match any label from f and as such are considered misses. This metric is calculated as

TP + TN
TP + TN + FP + FN + uncertain

∗ 100 (9)

and takes into consideration uncertain nodes that require further expansion.
- Boundary model parity: This metric is also similar to the certain model parity. How-

ever, the validation dataset is limited to the samples that are near the decision bound-
ary within a predefined margin (Table 1). The boundary model parity measures the
progress of the interpretable model toward replicating the behavior of the target model
near the decision boundaries. It identifies an interpretable model that may have a high
certain model parity but may not fare well around the decision boundaries.

- Leaf count: The number of leaves in the interpretable decision tree generated by either
MTRE-PAN or TRE-PAN.
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4.1. Synthetic Data

MTRE-PAN makes use of linear separators at each node of the tree. This is similar to
LIME [18]. However unlike LIME, MTRE-PAN uses multiple separators whose constraints
define a hyper-polygon at each leaf node. As the tree grows, the set of polygons from the
root to a leaf node decrease in entropy after every split. This corresponds to a decrease in
the total area of the uncertain polygons. Therefore, the certain polygons start to approach
the boundaries of the target model.

In order to illustrate this aspect, MTRE-PAN was applied to a simple function f
consisting of a circle with a radius of 1 introduced earlier. The samples that fall inside
the circle are positive and those outside are negative. TRE-PAN was also applied to the
same synthetic function. Results for both MTRE-PAN and TRE-PAN are provided in
Tables 2 and 3, respectively.

Table 2. Evaluation of the interpretable models for the circle function generated by MTRE-PAN at
depths ranging from 1 to 12.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 91.5 0 0 1
2 42.88 34.38 0 2
3 78.65 34.38 0 3
4 81.75 66.53 0 5
5 85.22 66.53 0 8
6 84.58 66.53 0 14
7 87.7 69.85 0 26
8 88.88 76.45 1.47 48
9 94.03 81.85 25.29 80

10 95.95 90.08 48.82 132
11 97.78 94.4 69.12 206
12 98.9 96.75 82.35 305

Table 3. Evaluation of the interpretable models for the circle function generated by TRE-PAN at
depths ranging from 1 to 12.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 90.95 0 0 1
2 50.5 0 0 2
3 77.72 0 0 4
4 81.33 64.85 0 8
5 83.45 64.85 0 14
6 83.58 66.2 0 26
7 87.15 70.5 0 49
8 88.7 76.12 12.15 91
9 92.85 83.28 39.23 166

10 95.95 89.62 58.01 286
11 98.12 94.75 75.97 476
12 99.15 96.85 86.19 775

Figure 3 is a visualization of the polygons generated by MTRE-PAN for f at depths 9
and 12. It illustrates the convergence of the polygons to f . That is, the collective area
of the uncertain polygons becomes smaller at depth 12 compared to depth 9. Moreover,
as expected, the figure shows that the uncertain polygons always contain the decision
boundaries of f . Otherwise, the polygon will not include both positive and negative labels
and would have an entropy of 0. This behavior is also seen in Figure 4 for TRE-PAN. The
uncertain polygons (i.e., hyper-rectangles in this case) also contain the decision boundaries
of f .
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(a) Depth = 9 (b) Depth = 12

Figure 3. The polygons generated by MTRE−PAN for the circle function f with a radius of 1 when
the maximum tree depth is set to (a) 9 and (b) 12. The dark and white-shaded polygons define
the boundaries of the negative and positive samples, respectively. The medium shaded polygons
represent uncertain regions.

(a) Depth = 9 (b) Depth = 12

Figure 4. The polygons generated by TRE−PAN for the circle function f with a radius of 1 when
the maximum tree depth is set to (a) 9 and (b) 12. The dark and white-shaded polygons define
the boundaries of the negative and positive samples, respectively. The medium shaded polygons
represent uncertain regions.

Since the uncertain polygons are mutually exclusive, they can be used as an estimate
of the decision boundaries and the overall behavior of the underlying model. As mentioned
above, the accuracy of the interpretable model in representing the decision boundaries
depends on the values of the cutoff variance and cutoff entropy. If the cutoff variance
is high, it may not be possible to generate enough data to accurately label a polygon as
positive, negative, or uncertain. On the other hand if it is low, more data are needed to
ensure that the sample variance of the entropy is below the cutoff variance. Similarly, if the
cutoff entropy is high, it may not be possible to decide whether a leaf node is certain or
uncertain. This may potentially lead to labeling polygons that contain a decision boundary
as certain. A cutoff entropy close or equal to zero with a sufficiently low cutoff variance
will ensure that no decision boundary is missed.

If a decision boundary falls within a certain polygon (i.e., a polygon with an entropy
lower than the cutoff entropy), it is still possible to estimate the missing decision bound-
ary. This entails finding neighboring leaves that do not have the same label since an
estimated boundary is simply a shared constraint that separates neighboring polygons of
different labels.
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MTRE-PAN provides a global explanation of the function f in the form of a set of
uncertain polygons and of polygons that have an estimated boundary as a constraint.
The remaining polygons provide additional constraints that help define the limits of this
estimate in the feature space. This characteristic is important, as it avoids the unbounded
plane issue observed in LIME. In LIME, a plane is generated as a local estimator of the
decision boundary. However, the plane is not delimited in the feature space.

Tables 2 and 3 show that the parity of both interpretable models of f are high for
depths greater than 3. However, MTRE-PAN produces interpretable models with a lower
number of leaves and similar certain model parity and boundary model parity to those
produced by TRE-PAN. At depth 12, the interpretable model generated by MTRE-PAN
consists of 305 leaves, whereas the one generated by TRE-PAN includes 775 leaves.

4.2. Abalone Data

The Abalone dataset consists of recorded physical characteristics for the Abalone
mollusks [34]. It includes 4177 samples, where each sample has 8 features and an integer
label representing the physical characteristics of abalone gastropods. The input features
are sex, length, diameter, height, whole weight, shucked weight, viscera weight, and shell
weight. The label, rings, is an integer number that represents the age of abalone mollusks.
For the purpose of this study, it was converted to −1 for all values below the median and 1
for all values above the median in order to enable binary classification. The target model
for this dataset achieved an 84.4% accuracy over the validation dataset. The performance
metrics of the corresponding interpretable models generated by MTRE-PAN and TRE-PAN
are reported in Tables 4 and 5, respectively.

Table 4. Evaluation of the interpretable models for the Abalone dataset generated by MTRE-PAN at
depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 35.6 0 0 1
2 93.72 0 0 2
3 81.27 51.81 0 4
4 83.39 67.65 45.87 7
5 86.68 67.65 45.87 12
6 88.27 74.25 64.99 22
7 92.12 74.25 64.99 40
8 92.77 76.95 68.74 76
9 93.93 83.17 77.74 144

10 95.04 87.02 83.86 259

Table 5. Evaluation of the interpretable models for the Abalone dataset generated by TRE-PAN at
depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 36.14 0 0 1
2 74.71 0 0 2
3 69.25 0 0 4
4 69.2 0 0 8
5 70.91 15.67 0 16
6 74.93 30.71 16.4 31
7 79.6 38.41 21.6 58
8 80.61 49.87 37.16 109
9 84.49 55.34 42.98 201

10 85.46 61.73 50.11 374

From the results, both MTRE-PAN and TRE-PAN approach the target model in terms
of model parity. MTRE-PAN begins to achieve a non-zero certain model parity earlier in
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comparison to TRE-PAN (depth 3 vs. depth 5). MTRE-PAN also starts from a higher certain
model parity when compared to TRE-PAN (51.81% vs. 15%). Both models converge near the
boundaries, with MTRE-PAN achieving a non-zero boundary model parity sooner (depth 4
vs. depth 6), with a significantly higher starting parity (45.87% vs. 16.40%). As the leaf
count indicates, MTRE-PAN at depth 4 has a significantly lower number of leaf nodes when
compared to the closest TRE-PAN tree (with respect to parity) at depth 9 (i.e., 7 leaf nodes
vs. 201 leaf nodes). The cost of training the linear classifiers of MTRE-PAN is superseded by
the exponentially higher number of splits that is needed for TRE-PAN to achieve a similar
parity. It can also be argued that while the separators used by TRE-PAN are simple, the
high number of nodes complicates the interpretability of the resulting decision tree.

4.3. US Adult Census Data

This dataset is a collection from the US 1994 adult census data [35]. It includes 13 input
variables and one output variable for 32,561 individuals that responded to the census. The
input variables are age, work class, level of education, education years, marital status,
occupation, relationship, race, sex, capital gain, capital loss, hours per week, and native
country. The output variable is the income of the individual. In the original dataset, the
income is a binary label that is set to −1 if the income is less than USD 50,000 and 1
otherwise. The target neural network model for the US Adult Census Data achieved an
accuracy of 82.9%. The performance metrics of the corresponding interpretable models
generated by MTRE-PAN and TRE-PAN for this dataset are included in Tables 6 and 7,
respectively.

Table 6. Evaluation of the interpretable models for the US Adult Census dataset generated by
MTRE-PAN at depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 5.13 0 0 1
2 95.76 0 0 2
3 90.53 84.25 0 4
4 95.37 84.25 0 7
5 95.24 88.64 0 13
6 95.86 89.21 12.5 24
7 95.64 89.68 12.5 45
8 96.02 89.68 12.5 86
9 96.11 90.32 15.57 168

10 96.4 90.73 21.05 327

Table 7. Evaluation of the interpretable models for the US Adult Census dataset generated by
TRE-PAN at depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 5.3 0 0 1
2 92.21 0 0 2
3 80.76 72.92 0 4
4 90.94 72.92 0 7
5 91.21 72.92 0 13
6 90.16 78.64 0 25
7 92.35 80.08 0 47
8 92.56 82.1 0 90
9 93.07 84.25 1.9 173

10 93.65 84.84 1.9 330

Similar to the Abalone dataset, these results reflect an overall higher certain model
parity with MTRE-PAN compared to TRE-PAN. However, both MTRE-PAN and TRE-
PAN struggle when attempting to converge to the decision boundary within the margin.
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They need depths of 6 and 9, respectively, before they start to show convergence toward
the decision boundary. While the certain model parity increases steadily for both TRE-
PAN and MTRE-PAN, the boundary model parity stagnates at depth 9 for TRE-PAN. The
decision boundaries for the target model associated with the US Adult Census dataset are
more complex than those of the Abalone dataset. This complexity is compounded by the
increased number of dimensions in this dataset compared to the Abalone dataset.

4.4. Diabetes Diagnosis Data

This dataset covers a population of 798 Pima Indian women. It consists of eight
input features, which were selected based on the WHO suggested predictors for diabetes
mellitus [36]. The label is either 1 or −1 based on whether or not diabetes is detected for
each individual. The eight input features are age, number of pregnancies, plasma glucose
concentration, diastolic blood pressure, triceps skin fold thickness, 2-h serum insulin, body
mass index, and diabetes pedigree function. The target model for this dataset achieved an
accuracy of 70.8%, which is lower than the previous two target models. The performance
metrics of the corresponding interpretable models generated by MTRE-PAN and TRE-PAN
are included in Tables 8 and 9, respectively.

Table 8. Evaluation of the interpretable models for the Diabetes dataset generated by MTRE-PAN at
depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 16.36 0 0 1
2 87.41 0 0 2
3 74.61 53.57 0 4
4 81.52 53.57 0 7
5 79.88 53.57 0 13
6 83.21 64.99 14.37 25
7 89.49 70.22 24.89 46
8 91.64 74.98 33.88 85
9 93.43 79.95 45.17 154

10 94.17 85.78 58 275

Table 9. Evaluation of the interpretable models for the Diabetes dataset generated by TRE-PAN at
depths ranging from 1 to 10.

Depth Model Parity Certain Model Parity Boundary Model Parity Leaf Count

1 16.72 0 0 1
2 70.27 0 0 2
3 74.45 43.13 0 4
4 82.79 43.13 0 7
5 80.49 43.13 0 13
6 81.48 52.33 0 25
7 84.4 60 13.18 47
8 86.87 64.02 13.18 87
9 87.48 68.92 20.91 163

10 88.98 70.77 23.43 303

Unlike the Census data, the boundary model parity converges faster. However the
starting value of the non-zero model parity is still significantly lower compared to the
Abalone dataset. Considering that the Diabetes dataset has the same number of dimensions
as the Abalone dataset, it is likely that the lower starting boundary model parity and target
model accuracy (70.8% vs. 84.4%) are due to the Diabetes dataset being more non-linear
than the Abalone dataset. Moreover, even though both MTRE-PAN and TRE-PAN are close
in terms of boundary model parity at depths 6 and 7 (i.e., 14.37% and 13.18%, respectively);
MTRE-PAN converges faster over 4 levels reaching a boundary model parity of 45.17%
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compared to the 23.43% boundary model parity achieved by TRE-PAN over the same
number of levels.

4.5. Explanation

TRE-PAN uses the decision tree as the explanation of the target model [19]. However,
this decision tree may not represent the decision boundaries of the target model. In fact, as
shown in the above tables, at extremely shallow depths, model parity can reach 90% while
the boundary model parity is low (e.g., Table 3).

MTRE-PAN represents the target model using several matrices that place constraints
on subsets of the feature space of the target model. These subsets can be certain positive,
certain negative, or uncertain (i.e., boundary polygons). The constraints take the form
of xTC ≤ ~b as indicated in Equations (1) and (2). Since the uncertain polygons contain
the boundary of the target model, they can be used to generate linear approximations of
the decision boundaries. Each linear approximation created by this approach is similar to
the explanation employed by LIME [18]. However, in the case of MTRE-PAN, the linear
approximation is bounded within the uncertain polygon used to generate it.

The explanation process is illustrated using the Diabetes Diagnosis dataset. The MTRE-
PAN model at depth 8 shown in Table 8 has a total of 85 polygons. Each of these polygons
is constrained by a bounding box, where the bounds are defined by the maximum and
minimum of each feature as shown in Table 10. For brevity, the features of the Diabetes
Diagnosis Dataset are abbreviated as follows:

- NTP: Number of times pregnant;
- GTT: Plasma glucose concentration at 2 h in an oral glucose tolerance test;
- DBP: Diastolic blood pressure (mm Hg);
- TST: Triceps skin fold thickness (mm);
- 2SI: 2-h serum insulin (µU/ml);
- BMI: Body mass index (weight in kg/(height in m)2);
- DPF: Diabetes pedigree function;
- AGE: Age (years).

Table 10. Bounding box defined by the maximum and minimum of each feature in the input space.

NTP GTT DBP TST 2SI BMI DPF AGE

Maximum 15 199 122 99 846 67.1 2.29 70
Minimum 0 56 0 0 0 0 0.08 21

Equations (10)–(12) each represents a different polygon from the set of 85 polygons
mentioned above. Specifically, Equations (10) and (11) represent a certain positive and
a certain negative polygons, respectively. Equation (12) depicts an uncertain polygon
(i.e., boundary polygon) with a linear estimate of the boundary as defined in Equation (13).

[
x1 x2 x3 x4 x5 x6 x7 x8

]
∗



C1 C2
−0.04 −0.04 wNTP
−0.02 −0.02 wGTT
−0.01 0 wDBP

0 0 wTST
0 0 w2SI
−0.02 −0.03 wBMI
−1 −1 wDPF
0.01 0.02 wAGE


≤
[ b1 b2
−5.28 −5.26

]
(10)
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[
x1 x2 x3 x4 x5 x6 x7 x8

]
∗



C1 C2 C3 C4 C5 C6
0.04 0.08 0.24 0.13 −0.60 0.47 wNTP
0.02 0.02 0 0.01 0.02 −0.05 wGTT
0.01 −0.02 −0.09 −0.1 0.26 −0.20 wDBP

0 0.02 0.08 0.04 −0.25 0.21 wTST
0 0.01 0.04 0.02 −0.11 0.09 w2SI

0.02 0.02 0.04 0.11 −0.17 −0.12 wBMI
1 1 0.96 0.98 −0.67 −0.81 wDPF
−0.01 0.01 0.04 0.02 −0.13 0.12 wAGE


≤
[ b1 b2 b3 b4 b5 b6
5.29 5.31 4.68 4.07 −4.06 1.54

]
(11)

[
x1 x2 x3 x4 x5 x6 x7 x8

]
∗



C1 C2 C3 C4 C5 C6
0.04 −0.08 −0.09 −0.03 0 −0.44 wNTP
0.02 −0.02 0.11 0.05 0.04 −0.01 wGTT
0.01 0.02 0.17 0.04 0.02 0.07 wDBP

0 −0.02 −0.09 −0.02 −0.02 0.03 wTST
0 −0.01 −0.01 0 0 0.03 w2SI

0.02 −0.02 −0.08 −0.02 0 −0.34 wBMI
1 −1 0.97 1 1 0.73 wDPF
−0.01 −0.01 0.01 −0.05 −0.03 −0.38 wAGE


≤
[ b1 b2 b3 b4 b5 b6
5.29 −5.31 3.02 0.63 0.36 −18.31

]
(12)

[
x1 x2 x3 x4 x5 x6 x7 x8

]
∗



Cestimate
−0.04 wNTP
−0.04 wGTT
−0.03 wDBP
0.04 wTST
0.01 w2SI
−0.02 wBMI
−1 wDPF
−0.02 wAGE


≤
[ b
−1.18

]
(13)

According to Equation (10), MTRE-PAN indicates that at depth 8, all the patients that
fall within this specific certain polygon are considered positive for diabetes. The original
Diabetes dataset includes 92 such patients, one of whom is shown in Table 11. Moreover,
based on the weights of the features in Equation (10), TST and 2SI do not contribute to the
positive prediction in this polygon, whereas the most predictive feature is DPF. This latter
feature represents the existence of a family history of diabetes for the patient and is known
to be a significant predictive factor for diabetes [37].

Table 11. Example patient in the positive polygon of Equation (10).

NTP GTT DBP TST 2SI BMI DPF AGE Label

2 128 78 37 182 43.3 1.224 31 positive

5. Discussion

The performance metrics used in the present study facilitate the comparison of the
characteristics of MTRE-PAN and TRE-PAN. Model parity measures the difference between
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the interpretable model and the target model without any distinction between certain
and uncertain polygons. This metric is subject to sudden changes in accuracy due to the
uncertain polygons being treated as though they are certain. This trend can be observed in
Tables 4–7. For example in Table 4, the model parity at depth 2 increases to 93% from its
previous value of 35% while the certain model parity remains at 0%. This means that all
of the nodes currently in the tree exceed the cutoff entropy and are uncertain. The model
parity stabilizes as the depth and certain model parity increase. When the total area of the
uncertain polygons diminishes, the variance of the model parity also diminishes since most
of the data which now reside within certain polygons will never be re-labeled.

Certain model parity increases as the depth of the tree in the interpretable model
increases. This metric includes an uncertain class label for the data that fall within uncer-
tain nodes. This intermediary class is always considered to be a miss when calculating
the certain model parity. Therefore, a given sample will not transition from a true posi-
tive/negative to a false positive/negative as the tree is expanded. However, this transition
can occur when model parity is used. The entropy of a given polygon may fall below the
cutoff entropy and become certain, and as a result, a sample might be falsely labeled. This
case does not affect certain model parity since the sample was considered falsely labeled
before the split occurred.

Overall the certain model parity is a better indicator of the convergence of the inter-
pretable model to the decision boundaries of the target model. A major difference between
MTRE-PAN and TRE-PAN can be observed for the Census data in Tables 6 and 7. Based
on certain model parity, MTRE-PAN at depth 3 approximates the target model as well as
TRE-PAN at depth 9. Similar trends can be observed for the other datasets.

The ultimate goal of global translation is to translate the target model into an inter-
pretable model. Therefore, boundary model parity is the most important metric because
it illustrates progress towards this goal. It is a test of the ability of the model to represent
the decision boundaries of the target model without the potential for easily interpretable
data to exaggerate the accuracy of the translation. Any interpretable model generated
by MTRE-PAN or TRE-PAN can achieve high levels of certain model parity. However, if
the decision boundaries are complex, the model will fail at shallow depths. This can be
observed when the Abalone (Table 4) and Diabetes models (Table 8) are compared. Both
datasets have the same number of dimensions (i.e., 8 input features each). However, the
decision boundaries for the diabetes dataset are more complex. Although both models
have similar certain model parity, the boundary parity for the diabetes model does not
converge easily.

The leaf count serves as an indication of the complexity when extracting information
from the interpretable models. Since MTRE-PAN is able to achieve certain model parity
comparable to TRE-PAN at shallow depths, it requires a significantly lower number of
nodes. For instance, when comparing Tables 6 and 7, MTRE-PAN requires only 4 leaf nodes
to represent the behavior of the target model nearly as well as TRE-PAN with 173 leaf
nodes. For every added level, the leaf count doubles.

Both TRE-PAN and MTRE-PAN build a tree that represents the target model. The
explanation in TRE-PAN is a decision tree which can be expressed as a set of rules [20,21].
However, this study shows that TRE-PAN has limitations, as it is unable to provide an
accurate explanation of the decision boundaries of the target model. In contrast, MTRE-PAN
seeks to directly represent the decision boundaries of the target model. This is accomplished
by translating these decision boundaries to a set of bounded linear estimators. One of the
main benefits of this approach is that it reduces the complexity traditionally associated
with providing a global explanation of the target model.

6. Conclusions

This paper proposes MTRE-PAN, a global translation model that can be used for
any target classification model. MTRE-PAN builds the explainable model as a hybrid
combination of a decision tree and SVM linear separators at each node. This explainable
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model organizes the feature space into a set of polygons that approaches the behavior of
the target model.

MTRE-PAN was inspired by TRE-PAN. The latter uses a decision tree to partition the
feature space, whereas the former uses linear hyperplanes. The performance of MTRE-
PAN was compared to that of TRE-PAN for three target classification models developed
using public domain datasets. The results show that MTRE-PAN achieves a higher parity
across all metrics at shallower depths. The study also shows that certain model parity
and boundary model parity are able to provide a better evaluation of the interpretable
model than the traditional model parity. Certain model parity quantifies the accuracy of
the interpretable model within low entropy regions. Boundary model parity specifically
uses data within a margin of the decision boundaries to test the ability of the interpretable
model to globally represent the decision boundaries of the target model.

MTRE-PAN has a higher computational complexity than TRE-PAN because it uses
linear SVM classifiers at each node. However, as the results show, TRE-PAN requires a
much deeper tree to achieve comparable results. The additional levels in the tree offset
the difference in computational complexity. This is especially true for highly non-linear
target models.

Future work includes the pruning of the MTRE-PAN interpretable tree model around
the decision boundaries. Dynamic pruning can help develop more compact global explana-
tion by pruning old constraints as new ones are added. MTRE-PAN can also be improved
by developing a loss function that is specific to each target model. This loss function
could use the probability distribution produced by the target model to locate the decision
boundaries. However, this will be at the cost of a more model-dependent methodology.
Finally, MTRE-PAN should be compared to other global interpretable models, and it its
ability to interpret biased data should be evaluated.
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