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Abstract: Semantic segmentation on Landsat-8 data is crucial in the integration of diverse data,
allowing researchers to achieve more productivity and lower expenses. This research aimed to
improve the versatile backbone for dense prediction without convolutions—namely, using the
pyramid vision transformer (PRM-VS-TM) to incorporate attention mechanisms across various
feature maps. Furthermore, the PRM-VS-TM constructs an end-to-end object detection system
without convolutions and uses handcrafted components, such as dense anchors and non-maximum
suspension (NMS). The present study was conducted on a private dataset, i.e., the Thailand Landsat-
8 challenge. There are three baselines: DeepLab, Swin Transformer (Swin TF), and PRM-VS-TM.
Results indicate that the proposed model significantly outperforms all current baselines on the
Thailand Landsat-8 corpus, providing F1-scores greater than 80% in almost all categories. Finally, we
demonstrate that our model, without utilizing pre-trained settings or any further post-processing,
can outperform current state-of-the-art (SOTA) methods for both agriculture and forest classes.

Keywords: deep learning; pyramid vision transformer; Landsat-8; satellite image; attention

1. Introduction

Recently, the relevance of remote sensing’s semantic segmentation has increased. In
particular, autonomous semantic segmentation has been investigated in the context of
remote sensing research [1–3]. Over the years, a whole spectrum of autonomous driv-
ing, automated mapping, and navigation applications have been achieved. For instance,
computer technology has transformed deep learning (DL). Besides, numerous procedures
exist among current convolutional neural networks (Convnets/CNNs), viz., dual attention
deep fusion semantic network [4] and self-attention for semantic segmentation [5]. Due to
their potential, they have gained a lot of attention. By applying remote sensing data, exact
semantic segmentation can be attained. However, there are concerns regarding accuracy.

In the fields of agriculture and urban segmentation, there are considerable deep
neural network models [2,6], such as global convolutional networks with large kernel im-
provements [7], Deeplab image segmentation [8], mask R-CNN [9], Bilateral segmentation
network [10], and Criss-cross attention [11]. These deep architectures, which are made
up of layered convolution blocks, have been designed for semantic recognition. Due to
processing costs, the use of kernel maps has declined.

It is acknowledged that encoder networks can learn more meaningful visual theories
within a steadily increasing receptive area. This situation remains challenging because of
a region’s limited size in the input that provides the characteristics. Transformers focus
their self-attention on these receptive fields, requiring dense, high-resolution predictions.
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This effort was motivated by the fact that architecture has not comprehensively employed
different feature maps from the convolutional layer or any attention blocks.

According to dense image undertakings of semantic segmentation and detection,
several works use ViT models. ViT is a deep learning model that concentrates on im-
age identification and uses an attention mechanism. Due to image classification, some
ViT models incorporate a transformer model and non-overlapping image patches. ViT
is able to achieve an impressive speed swap on practically all image visualization work-
loads, corresponding to prior networks. ViT’s results on image visualization schemes are
promising. Our proposed method, the vision transformer [12] or ViT, regarding these
improvements [13–17], is the most relevant. However, ViT is inappropriate for low-
resolution kernels and a quadratic increase in image size sophistication. DeiT [18] offers
several training strategies to improve and receive efficient outcomes, even when utilizing
the ImageNet-1K corpus. Herein, this paper focuses on general-purpose implementations
rather than semantic segmentation. ViT [19,20] models appear to offer the best performance–
accuracy trade-offs with such strategies as computer vision.

It is noted that prior transformer networks frequently incurred substantial computa-
tional expenses. For example, costs amassed by the pyramid vision transformer (PRM-VS-
TM) [21] were quite huge. SwinTF, on the other hand, was able to overcome computational
problems: expenses were proportional to the size of the image. SwinTF is seen to have
increased the model’s accuracy by controlling it regionally and boosting receptive fields
that are favorably associated with visual inputs. SwinTF is most efficient, exhibiting SOTA
performance—e.g., MeanIoU and average precision in COCO object detection and ADE20K
image labeling.

In this paper, the adaptable backbone for dense prediction without convolutions
known as "PRM-VS-TM" has been improved by enhancing (E) and incorporating attention
mechanisms that apply across various feature maps via “E-PRM-VS-TM”. Many problems
had to be overcome in devising a refined shrinking pyramid and spatial-reduction attention
(SRA) method, enabling PVT to adapt and learn high-resolution and multi-scale features.
Similarly, an end-to-end object-detected procedure can be constructed without convolutions
and handcrafted components, e.g., dense anchors and non-maximum suppression.

The effectiveness of this work is demonstrated by the experimental results on satellite
semantic segmentation collections, including the Landsat-8 remotely sensed data (Thailand).
Results prove that E-PRM-VS-TF can override prior encoder–decoder networks [22] when
employing satellite images associated with transformer models [19,21] after acquiring
Precision, Recall, and F1 scores, consecutively.

2. Data Collection

There is just one primary data source in our trials: Thailand’s Landsat-8 data, covering
the area of Nan Province. Nan is located in upper-northern Thailand, bordering Lao’s
Sainyabuli Province. Nan Province in northern Thailand is a beautiful place with a rich
environment, history, and culture. With its tranquil environment and natural charms, the
region has grabbed the hearts of both locals and tourists. The picturesque Old Town of Nan
City and the magnificent hiking trails and lookouts in Doi Phu Kha National Park are well
worth visiting in Nan Province.

The province is located in the secluded Nan River valley, flanked by wooded moun-
tains in the west and the Luang Prabang Range in the east. The tallest mountain is Phu
Khe, which stands at 2079 m and is located northeast of Nan, near the Laos border. The
total forest area of the province is 7436 sq km (2871 sq mi), accounting for 61.3 percent of
the total land area.

Land uses consist of agriculture, forest, urban, water, and miscellaneous; and are
represented by yellow, green, red, blue, and brown in Figure 1. In this experiment, the
Landsat-8 data comprised 1220 datasets divided into 800 training, 220 validation, and 200
testing sets.
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(a) (b)

Figure 1. The sample of input image (a) and the target label (b) from the Landsat-8 corpus.

3. Proposed Method
Pyramid Vision Transformer-Based Semantic Segmentation

In Figure 2, the enhanced pyramid vision transformer (E-PRM-VS-TM) follows a
sequence-to-sequence vector with transformers [21,23] along with a corresponding output
vector with input vector fabrication, i.e., the natural language processing (NLP) network.

The previous SwinTF model [19] concentrates on the associations between two tokens
or image patches with the rest of the tokens being computed. SwinTF concentrates on the
quadratic complexity of image patches’ numbers, which results in an improper amount of
images, thereby requiring a large number of tokens when reaching the softmax layer.

Transformers have been recognized for their exceptional long-range modeling re-
siliency. The vision transformer (ViT) [24] has had tremendous success in picture segmenta-
tion as the first pure transformer for vision. Such transformers operate “object detection”
and offer a learnable query-based approach for instantly retrieving entity data. ViT trans-
formers employ a dual-path transformer having a global memory path and are efficient
in semantic segmentation. ViT transformers utilize a hierarchically organized transformer
encoder with no positional encoding and a lightweight MLP decoder that deliver excellent
performance while reducing computation time. The efficient transformer design can cover
many perspectives, such as attention patterns or low-rank approaches.

A transformer network is fit for multi-object segmentation and very-high resolution im-
ages. ViT focuses on image recognition, utilizing the mechanism of attention. Accordingly,
the transformer network can decide the four crises by referring to ConvNet designs.

Compared to the encoder output, the targeted-feature map is much larger. We ought
to perform row/column-wise positional encodings when aligning the query sequence with
the row/column flattened key/value sequence. While the aforementioned expresses the
mechanism of depicting standard positional encodings with flattening, applying the equiv-
alent concept of row/column-wise expansion is also manageable to expand comparable
positional encodings.

Our purpose is to present the pyramid’s frontend into the transformer network to forge
multi-scale feature maps for dense prediction, e.g., image segmentation. In Figure 2, an
overview of “E-PRM-VS-TF” is illustrated. A 1D vector embeddings sequence: z ∈ RL×C

as input, where L represents the vector’s length and C denotes the hidden kernel size.
Consequently, the image sequence is obliged to adjust the image’s input layer, x ∈ RH×W×3,
into Z.

In Figure 3, the output of attention is described. NLP concerns the interaction between
computers and human language in order to process and analyze a large amount of matured
language. Accordingly, the SwinTF, as described in Figure 2 allows a 1D sequence of
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vector embeddings z ∈ RL×C as input: L is the length of the vector, and C is the hidden
kernel size. The image sequence is consequently obliged to modify an input layer of image
x ∈ RH×W×3 into Z.

The traditional SwinTF model [19] focuses on the relationship between a token (image
patches); the other tokens are calculated. ViT focuses on the quadratic complexity concern-
ing the number of image patches. It is unsuitable for many image problems, requiring an
immense set of tokens for the softmax layer.

Figure 2. The architectural structure of our proposed E-PRM-VS-TF.

To construct the ground truth per mask for semantic segmentation, the segmentation
map for each image is decomposed into a set of N ground truth label-mask pairs. This
procedure adopts the loss from classification and mask to optimize the probabilities to train
our model. According to each layer I, the input to self-attention is represented as a triplet
of (query, key, value), and computed from the input Zl−1 ∈ RL×C as in Equation (1) below:

query = Zl−1WQ, key = Zl−1WK, value = Zl−1WV (1)

where WQ/WK/WV ∈ RC×d denote the learnable weights of three linear projection vectors
and d represents the dimension of (query, key, value). Self-attention (SA) (Figure 3) is
denoted as:

SA(Zl−1) = Zl−1 + so f tmax(
Zl−1WQ(ZWK)

T
√

d
)(Zl−1WV) (2)
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MSA clearly calculates a reckoning with m self-supporting SA actions and projects
their concatenated outputs: MSA(Zl−1) = [SA1(Zl− 1); SA2(Zl− 1); . . . ; SAm(Zl− 1)]WO.
Where WO ∈ Rmd × C. d is typically set to C/m. An MLP module transforms the output of
MSA with a residual skip as the output layer and expressed it as:

Zl = MSA(Zl−1) + MLP(MSA(Zl−1)) ∈ RL×C. (3)

A global pooling layer from each branch was utilized to acquire globally contextual
data in order to place it via a linear transformation ahead of the bilinearly upsampling
process to fit the feature dimension. The short path duplicates the input feature and pastes it
when all the textual information indicates an output. All developed features are preferably
attached to generate the final segmentation map. Dimensionality is reduced using a learned
linear transformation and results in a row-wise positional encoding that aligns with row-
wise flattening due to a similar code from each row. The related column-wise flattening can
use a similar column-wise positional encoding.

Grouping and pooling complement each other. In the group, each query approaches a
tiny portion of the flattened sequence at its earliest level. In the pool, each query approaches
a small part of the flattened sequence at its actual level. On the other hand, the query uses
pooled features in the pooling to access the entire sequence at a coarse level. Output can
balance computational costs and representation ability by combining both.

Subsequently, more analogies between our model and other SOTA networks were
constructed. In comparison, our proposed method can be employed as an adaptable plug-in
decoder for highly-accurate, dense predictions of semantic segmentation.

Lastly, a low-power instrument was applied to create a model inferring declining
resource utilization. In other words, the efficient network designs regarding deep learning
methods are sufficient to preserve computing resources, promoting deep learning tech-
niques in remote sensing strategies. A normalized layer was operated prior to MSA and
MLP modules. Z1, Z2, Z3, . . . , ZLe were defined as the transformer vectors’ weights.

Figure 3. The visualization of attention: each cell reveals the cosine similarity between its embedding
and other pairwise embeddings.

For deep learning and environmental configurations, the first 70% of training iterations,
i.e., 0.25 stochastic depth dropout was employed; for the last 20%, the dropout ratio
increased to 0.6. As regards the multi-scale flipping examination, testing scales of 0.5,
0.75, 1.0, 1.25, 1.5, and 1.75 were provided together with random horizontal flips using
typical techniques, as described in the literature throughout all the experiments’ training,
e.g., [12,19,23,25]

Regarding the deep learning (DL) environmental setup, “PyTorch v0.12” was created
as an end-to-end open-source platform. All experiments were performed on computer
systems with the Intel® Xeon® Scalable 4210R (10 core, 2.4 GHz, 13.75 MB, 100 W), 256 GB
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of memory, and the NVIDIA GeForce RTX™ 2080 Ti Integrated with 11GB GDDR6 352-bit
memory interface ×2 cards.

A learning rate (LR) schedule with stochastic gradient descent (SGD) was implemented
to optimize loss function ensuring sufficient smoothness. For all the trials on the three
datasets, sequentially, weight decay and momentum were sealed to 0.15 and 0.85. As for
the Thailand Landsat-8 corpus, the initial LR was set to 0.0001. Finally, batch normalization
was used in the fusion layers, and batch size of 16 was selected. The images were shrunk to
a side length of 496 pixels.

4. Experimental Results

According to Table 1, the proposed E-PRM-VS-TF is compared to its counterparts:
DeepLabV3 [8], Swin-TF [12,19,23], and PRM-VS-TF [21]. Improved decoder layers in the
proposed model have delivered the highest F1-score (81.44%), better than the results from
the baselines i.e. 79.82%, 78.08%, and 77.66%, respectively. Recall exhibits the highest
score with 81.11%, indicating the more influential class discrimination. For example, water
class in Figure 6f reveals a similar pattern as found in the label image and the comparative
PRM-VS-TF (Figure 6b,e). Inconsistent channel results are found in DeepLabV3 and SwinTF
(Figure 6d,e). A drawback was witnessed in the precision score when the proposed model
revealed 0.96 less performance than the PRM-VS-TF (82.75% vs. 81.79%). This result was
expected when the segmented result delivers a high recall score. Nevertheless, there was
no influence on the remotely sensed image segmentation. On the other hand, the proposed
E-PRM-VS-TF can overcome the other two comparative models. In Table 2, E-PRM-VS-TF
outperforms all models when considering the average accuracy of each segmented class.

Table 1. Effect on the testing dataset of Thailand Landsat-8 challenge dataset.

Frontend Model Precision Recall F1

Baseline DenseNet-201 DeepLabV3 [8] 79.27% 76.38% 77.66%
ViT SwinTF [12,19,23] 78.49% 77.71% 78.08%
ViT PRM-VS-TF [21] 82.75% 78.87% 79.82%

Proposed ViT E-PRM-VS-TF 81.79% 81.11% 81.44%

Table 2. Effects on the testing dataset of the Thailand Landsat-8 challenge for each class with the
proposed procedures in terms of AverageAccuracy.

Model Agri Forest Misc Urban Water

Baseline DeepLabV3 [8] 86.78% 89.67% 66.48% 82.64% 66.90%
SwinTF [12,19,23] 86.76% 88.94% 73.39% 91.98% 72.70%
PRM-VS-TF [21] 87.89% 88.91% 76.65% 93.31% 74.48%

Proposed Method E-PRM-VS-TF 89.83% 89.28% 79.68% 94.50% 75.50%

In Figures 4 and 5, training accuracy and the loss values of both PRM-VS-TF and
our proposed E-PRM-VS-TF are displayed. The proposed E-PRM-VS-TF demonstrates
smoother curves in training and validation (Figure 5) compared to the baseline (Figure 4).
The enhanced decoder layers can improve the upsampling performance, expanding the
feature’s original resolution, resulting in precise feature detection and higher segmentation
accuracy.

In Figures 6–8, the segmentation sub-scenes of the Thailand Landsat 8 corpus of
the proposed and baseline models are provided. Each row in the figures represents the
test-set samples. Column a illustrates the input and column b illustrates the label image.
The baseline models (DeepLabV3, Swin-TF, and PRM-VS-TF) and our proposed model
(E-PRM-VS-TF) are subsequently represented in columns c, d, e, and f. In Figure 6, the
focus is on urban and water classes. The prediction from the proposed model indicates
higher potential than its counterparts. Notice the urban class segmentation in the middle



Information 2022, 13, 259 7 of 11

row: E-PRM-VS-TF (f) predicted a similar result to the label image (b). The water class
also produced an identical outcome, as seen in the label image; the channels are smoothly
merged. Other channel predictions display some inconsistent predictions.

(a) (b)

Figure 4. The learning curves of the baseline, “PRM-VS-TF”, on the Thailand Landsat-8 corpus; x
refers to epochs and y refers to different measurements: (a) plot of model loss (cross-entropy) from
training and validation corpora and (b) performance plot on the validation corpus.

(a) (b)

Figure 5. The learning curves for the proposed approach, “E-PRM-VS-TF”, on the Thailand Landsat-8
corpus; x refers to epochs and y refers to different measurements: (a) plot of model loss (cross-entropy)
on training and validation corpora and (b) performance plot on the validation corpus.

As shown in Figure 7, all models performed well with the forest class, since they
exhibit the same pattern, as shown in the label image. In Table 2, AverageAccuracy results
are identical to the predictions in Figure 7, revealing no significant difference. As for
column f, E-PRM-VS-TF reveals higher performance along the edge in the segmented area.

The miscellaneous class (row 3 in Figure 8) was well predicted by the proposed model
(column f) and outperformed all replications. Concerning the results from DeepLabV3 and
Swin-TF (row 3, columns c and d), confusions of segmentation are shown. PRM-VS-TF, i.e.,
column e, was able to produce proper segmentation for the miscellaneous class, although
the prediction for the urban class was still inadequate.
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Figure 6. Comparison between the proposed method and baselines: focusing on the urban (red) and
water (blue). The proposed method exhibits consistency in channels’ consequences.

Figure 7. The performance of the forest (green) prediction reveals no significant difference between
any models.

Figure 8. In the first two rows, the proposed method demonstrates sufficient performance for the
urban predictions (red). In the third row, the miscellaneous results (brown) predicted by the proposed
model (column f) outperform all replications.
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In Figures 9 and 10, the entire Landsat-8 corpus segmentation scene representing the
north-eastern and central regions predictions of E-PRM-VS-TF is shown. All classes were
precisely predicted, and were much improved from previous counterparts’ segmentations.

Figure 9. The entire scene’s prediction by “E-PRM-VS-TF” displays the forest and agriculture
distinctions in the northern region of Nan Province.

Figure 10. The zoomed predictions of the proposed method distinguishing urban from agriculture in
the central region of Nan Province.

Another ingrained limitation of transformers in sequential tasks is the lack of recursive
computation, and the deep model depth bounds the number of transformations possible
on the input. Such drawbacks impact tasks that require careful tracking of a world state or
modeling hierarchical structures.

5. Conclusions

In this study, E-PRM-VS-TF, an enhanced transformer backbone for dense prediction
of semantic segmentation tasks was implemented. The E-PRM-VS-TF architecture can
refine features and deliver more coverage, increasing the accuracy of agriculture, forest,
miscellaneous, urban, and water classes. Hence, both the progressive shrinking pyramid
transformer’s decoder and the spatial-reduction attention layer were much improved, en-
abling it to achieve higher resolution and multi-scale feature maps. Extensive experiments
on semantic segmentation benchmarks verified that our model is more robust than the well-
designed CNNs under equivalent parameters. Results revealed that the “E-PRM-VS-TF”
model significantly transcended all baseline F1 score. It was Thailand’s Landsat-8 challenge
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dataset winner, surpassing 80% in F1-scores. Moreover, E-PRM-VS-TF achieved accuracy
transcending 89% in almost all classes.
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The following abbreviations are used in this manuscript:

CNNs Convolutional Neural Networks
DeiT Data-efficient Image Transformers
DL Deep Learning
E Enhanced
Param Parameters
PRM Pyramid
PRM-VS-TF Pyramid Vision Transformer
R-CNN Region-based Convolutional Neural Networks
SwinTF Swin Transformer
TU Transitions Up
TD Transitions Down
ViT Vision Transformer
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