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Abstract: Routing security attacks in Vehicular Ad hoc Networks (VANETs) represent a challenging
issue that may dramatically decrease the network performances and even cause hazardous damage
in both lives and equipment. This study proposes a new approach named Multivariate Statistical
Detection Scheme (MVSDS), capable of detecting routing security attacks in VANETs based on
statistical techniques, namely the multivariate normality tests (MVN). Our detection approach consists
of four main stages: first, we construct the input data by monitoring the network traffic in real time
based on multiple metrics such as throughput, dropped packets ratio, and overhead traffic ratio.
Secondly, we normalize the collected data by applying three different rescaling techniques, namely
the Z-Score Normalization (ZSN), the Min-Max Normalization (MMN), and the Normalization by
Decimal Scaling (NDS). The resulting data are modeled by a multivariate dataset sampled at different
times used as an input by the detection step. The next step allows separating legitimate behavior from
malicious one by continuously verifying the conformity of the dataset to the multivariate normality
assumption by applying the Rao–Ali test combined with the Ryan–Joiner test. At the end of this step,
the Ryan–Joiner correlation coefficient (R–J) is computed at various time windows. The measurement
of this coefficient will allow identifying an attacker’s presence whenever this coefficient falls below a
threshold corresponding to the normal critical values. Realistic VANET scenarios are simulated using
SUMO (Simulation of Urban Mobility) and NS-3 (network simulator). Our approach implemented in
the Matlab environment offers a real time detection scheme that can identify anomalous behavior
relying on multivariate data. The proposed scheme is validated in different scenarios under routing
attacks, mainly the black hole attack. As far as we know, our proposed approach unprecedentedly
employed multivariate normality tests to attack detection in VANETs. It can further be applied to any
VANET routing protocol without making any additional changes in the routing algorithm.

Keywords: VANET; AODV; SUMO; NS-3; black hole attack; detection; multivariate normality

1. Introduction

Intelligent Transportation Systems (ITSs) are one of the significant facets of a smart
city used to intelligently monitor and regulate vehicle traffic by means of various commu-
nication types and networks such as Vehicular Ad hoc Networks (VANETs) [1]. VANETs
are a subcategory of Mobile Ad hoc Networks (MANETs), wherein nodes are intelligent ve-
hicles with sophisticated on-board technology and innovative features such as GPS, sensor
equipment, radars, etc. Vehicles in VANETs communicate in a self-organized mode without
using any fixed infrastructure support for message dissemination; this means that vehicles
act as routing nodes in multi-hop mode [2]. VANETs are deployed for various reasons
including minimizing the risk of car accidents, optimizing vehicle flows by reducing travel
time, and avoiding traffic congestion situations. VANETs can also provide information and
entertainment applications to road users. Given that VANETs are a subset of MANETs, they
share all of their characteristics [3]. Nonetheless, VANETs have certain distinctive features.
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The first and the most problematic feature is the high and predictable mobility. Vehicles
travel at high speeds and their motions are predictable as vehicles typically follow a mobil-
ity pattern regulated by road topology. Furthermore, VANETs face severe delay constraints,
particularly in times of emergency when timely delivery of messages is a critical issue. Last
but not least, nodes in VANETs are not limited in terms of power transmission and have
high computational abilities [4]. VANETs pose many challenges due to the open and shared
wireless channel, the fast movement, and the frequent disconnections of vehicles. In this
study, we will mainly focus on a critical research challenge, specifically the routing security
attacks [5]. We consider the black hole attack [6] which is among the most devastating
attacks in VANETs. Hence, the core interest of this paper is to propose a new approach
named Multivariate Statistical Detection Scheme (MVSDS) to detect routing security attacks
against the AODV routing protocol by applying multivariate statistical techniques, namely
the Multivariate Normality (MVN) tests [7–9]. In our detection approach, the first step
consists of constructing the input data by monitoring the network traffic over time and
measuring multiple performance metrics such as throughput, dropped packets ratio, and
overhead traffic ratio. These performance indicators are highly affected when the attacks
are launched [10]. The second step consists of rescaling the obtained data by applying
three different rescaling techniques, namely the Z-Score Normalization (ZSN), the Min-Max
Normalization (MMN), and the Normalization by Decimal Scaling (NDS) [11]. The output
is modeled by a multivariate dataset used as an input by the detection scheme.

The detection step allows identifying legitimate behavior as opposed to malicious
behavior by continuously verifying the conformity of the dataset to the multivariate nor-
mality assumption. We combined two methods: the multivariate normality test proposed
by Rao and Ali [12] and the Ryan–Joiner univariate normality test [13]. At the end of this
step, the Ryan–Joiner correlation coefficient (R–J) is computed at various time windows.
The measurement of this coefficient will allow identifying the attacker’s presence whenever
this coefficient falls below a threshold representing the normal critical values.

The main contributions of the present research work are summarized as follows:

1. Propose a new approach capable of detecting black hole attack in real time and
without performing any updates in the routing algorithm operations.

2. Generate multivariate datasets by monitoring the vehicular traffic and simultaneously
measuring multiple network metrics. Further, the impact of the black hole attack on
these metrics is assessed.

3. Detect the occurrence of attacks by continuously verifying the conformity of the
datasets to the multivariate normality assumption by computing correlation coeffi-
cients and comparing them against thresholds representing the normal critical values.

4. Demonstrate the relevance of employing data rescaling techniques in improving the
data sensitivity to the normality conformity analysis, by comparing the outcomes of
different rescaling techniques: Z-Score Normalization (ZSN), Min-Max Normalization
(MMN), and Normalization by Decimal Scaling (NDS).

5. Evaluate the proposed scheme using more realistic scenarios based on a realistic
mobility model.

To demonstrate the applicability of the proposed approach, implementation of MVSDS
with black hole attack is presented. Two scenarios are simulated: one normal AODV
without attacks and a second with AODV under black hole attack. The simulation of these
scenarios is conducted by combining two simulators: the road traffic generator SUMO
(Simulation of Urban Mobility) [14] and the network simulator NS-3 [15]. SUMO is used to
create mobility trace files based on a real map extracted from OpenStreetMap. These trace
files are then used as input by the network simulator NS-3.

The findings reveal that our approach implemented in the Matlab environment [16]
can detect AODV abnormal behavior in a real time by involving multiple network traffic
characteristics simultaneously. It can further be applied to any VANET routing protocol
without making any additional changes in the routing algorithm. The simulation results
are promising since our approach needs fewer computational requirements with a high
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capability to analyze multiple network traffic characteristics simultaneously. As far as we
know, our approach may offer an innovative solution for the detection of routing security
attacks in VANETs.

This manuscript is organized into seven sections: In the next section, we introduce
the background information. In Section 3, we present the related works of the previous
literature. Section 4 describes the proposed approach, while the implementation details are
given in Section 5. Section 6 provides an analysis of the results. Concluding remarks and
future research directions are given in Section 7.

2. Background

This section is divided into four subsections. First, the AODV routing protocol is
presented. Second, the functioning of the black hole attack is described. Details about the
multivariate normality methods used in this study are then given. Finally, an overview of
the data rescaling techniques is introduced.

2.1. AODV Routing Protocol

The Ad Hoc On-Demand Distance Vector (AODV) protocol [8] is one of the most
extensively deployed reactive protocols in wireless ad hoc networks owing to the fact that
it has fewer computational requirements since the route is initiated and maintained only
when needed. AODV supports unicast, multicast, and broadcast communications. AODV
is also loop free because it uses the destination sequence numbers, which are time stamps
indicating the freshness of a route. The key mechanisms implemented in AODV are path
discovery, reverse-path setup, and route maintenance.

AODV performs route discovery using two types of messages, namely the Route Re-
quest (RREQ) and the Route Reply (RREP). Whenever a source node needs to communicate
data to a destination. It broadcasts an RREQ to all its neighboring nodes in an expanding
ring lookup procedure until reaching the destination node or an intermediate node with a
path to the targeted node. That node delivers unicast response to the source node through
the RREP message in the reverse path. When the source node receives the RREP message,
it starts the data transmission.

In AODV route maintenance mechanism, nodes maintain only active routes. Indeed,
nodes periodically exchange HELLO messages with their neighbors in order to identify
the link’s state and inform about the freshness of the path. If any link is broken during the
data transmission, a Route Error (RERR) message is sent to all other nodes affected by the
broken link, including the source node. When the source node receives the RERR message,
it launches a new route discovery process.

2.2. Black Hole Attack

The black hole is one of the severe security attacks that may occur against the AODV
routing protocol [6]. It is an active attack wherein a rogue node waits for neighboring
nodes to send a route request (RREQ) message. When the malicious node receives an
RREQ message, this latter, instead of forwarding discovery packets to neighboring nodes,
interrupts the route discovery process by instantly sending a fake route reply message
(RREP) with the maximum sequence number. Consequently, the source node presumes
that route discovery is accomplished and immediately starts the forwarding of data packets
to the malicious node believing that the optimal path is through this malicious node. The
malicious node then captures all routing packets and drops them. An example of this attack
is illustrated below (Figure 1), where node (Vs) wants to communicate with the destination
(Vd). The shortest path is Vs–V1–V2–Vd, the rogue node (Black hole) claims to have the
shortest path and it unicasts a fake RREP in the reverse path. Afterward, the suspected
node completely drops all the data packets forwarded to it. As a result, the overall network
performance degrades, and the process of information dissemination is interrupted.
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2.3. Multivariate Normality Tests (MVN)

Normality tests are mainly employed in statistics to test whether the distribution
of an observed dataset follows strictly or approximatively a normal distribution and
to calculate the probability that a random variable underlying the dataset is normally
distributed [9]. Several methods have been outlined in the literature to help assess this
assumption. They can be categorized into two groups: the univariate normality tests (UVN)
and the multivariate normal tests or MVN for short. The former consists of one random
variable, while the second assesses whether multidimensional data made up of multiple
random variables follow a multivariate normal distribution. Checking for multivariate
normality assumption is an important task because instead of comparing the distribution
of one variable against a univariate normal distribution, they are comparing the joint
distribution of several variables against a multivariate normal distribution. However,
checking the assumption of normality of multivariate data is more complex compared
to a univariate one. In the statistical literature, numerous tests are available for testing
multivariate normality. As far as we know, there is no standard or best test for evaluating
this assumption. The three most widely used MVN tests include the Mardia test, the Henze–
Zirkler test, and the Royston [9]. Details on MVN methods can be found in various review
studies such as [17]. In our study, we employed the test proposed by Rao and Ali [12] which
is one of the overall tests used to assess normality of a multivariate dataset. According to
Rao and Ali [12], the test they proposed appears to be more sensitive than some others in the
datasets they have examined. Further, it can easily transform the multivariate conformity
analysis to a univariate one and enable users to have accurate results in their work.

Given a set of observations X1, . . . , Xn denoted by X, where each observation is
described by a row vector of p variables. The dataset is thus represented by a matrix Xn ×
p. According to Rao and Ali, each observation vector Xi (i = 1, . . . . . . , n) is replaced by a
vector defined as follows:

Yi = S− 1/2
(
Xi − X

)
; i = 1, . . . . . . , n (1)

where X and S are the sample mean and variance-covariance matrix, respectively.
The authors Rao and Ali proposed to transform all the Xi’s variables to a single

variable. All the N = n * p observations of the vectors Yi are considered as a sample of size N
from a univariate distribution. After that, any well-known test for univariate normality can
be applied to check the normality of the resulted univariate sample (Ryan–Joiner, Anderson–
Darling, Kolmogorov–Smirnov tests, etc.) based on the N independent observations. Our
study opted for the Ryan–Joiner univariate normality test [13]. The Ryan–Joiner test is a
univariate test consisting of the calculation of the correlation coefficient between the sample
data and their normal scores. A comparative study of UVN tests in favor of the Ryan–Joiner
test is given in the study [18].
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The Ryan–Joiner correlation coefficient is defined as follows:

R− J = ∑ Yibi√(
Yi −Y

)2
∑ bi

2
(2)

or
R− J = ∑ Yibi√

s2(N − 1) ∑ bi
2

(3)

where Yi are ordered observations with i = 1, 2, . . . , N, s2 the sample variance and bi are
normal scores of the ordered data.

According to [13], the empirical critical values are given for different significance
levels α: 0.10, 0.05, and 0.01:

R− Jcritical = 1.0071− 0.1371√
N
− 0.3682

N
+

0.7780
N2 ; f or α = 0.10 (4)

R− Jcritical = 1.0063− 0.1288√
N
− 0.6118

N
+

1.3505
N2 ; f or α = 0.05 (5)

R− Jcritical = 0.9963− 0.0211√
N
− 1.4106

N
+

3.1791
N2 ; f or α = 0.01 (6)

where N is the number of observations in the sample dataset. In our study, the significance
level is α = 0.05.

2.4. Data Rescaling Techniques

Prior to applying the statistical methods cited above, it is vital to proceed to data
rescaling because of the fact that input variables are measured at different scales. This
might create biased data analysis. Thus, input data must be transformed or rescaled such
that the effect of one attribute cannot dominate the others [11]. This implies transforming
the original data to fall within a smaller or standard range such as [−1, 1] or [0, 1].

The most common normalization techniques available in literature are Z-Score Nor-
malization, Min-Max Normalization, and Normalization by Decimal Scaling.

Let V be a numeric variable with n observed values v1, v2, . . . , vn.

• Z-Score Normalization

The mean and standard deviation measures are used to rescale the data such that
resultant features have zero mean and a unit variance [11]. Each instance of the data vi is
transformed into v′i as follows:

v
′
i =

vi − µ

σ
(7)

where µ and σ denote the mean and standard deviation of the i-th original value of the
variable V, i = 1, . . . . . . . . . . . . , n, respectively.

• Min-Max Normalization

The min-max rescaling technique maps each value vi of V to v′i in the range [0, 1] by
computing the new value as follows:

v
′
i =

vi −minV
maxV −minV

(8)

where vi is the i-th original value of the variable V, i = 1, . . . . . . . . . . . . , n, minV and maxV
are respectively the minimum and the maximum computed over all the values of the
variable V. For every variable, the minimum value of that variable gets transformed into 0
and the maximum value gets transformed into 1.

If = minV; then v′i = 0
If = maxV; then v′i = 1
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• Normalization by Decimal Scaling

This technique normalizes each variable by determining its maximum value, which is
equal to moving the decimal points of the instance values. The approach is appropriate for
data with logarithmic variations in variables [11].

Each instance vi of the given data is rescaled into v′i as follows:

v′i =
vi

10j (9)

where j = log10(max(vi)).
In our study, we applied these three techniques to the original data generated in our

study and their outcomes are compared [11].

3. Related Works

Numerous studies in the literature have proposed methods to detect and countermea-
sure the black hole attack in VANETs. In one paper [19], a secure version of the AODV
routing protocol was evolved to detect the black hole attack, relying on improvements of
the RREQ and RREP routing packets. Further, cryptography function-based encryption and
decryption were included to check the legitimacy of the source and the destination nodes.
The reliability of the proposed approach was tested in terms of the following performance
metrics: drop packets, end-to-end delay, packet delivery ratio (PDR), and routing request
overhead. The researchers outlined that their proposed algorithm outperformed the origi-
nal version of AODV. However, the improved version suffers from higher overheads and
requires modifications of the AODV routing protocol‘s current version. Authors of [20]
presented an intelligent scheme for black hole attack detection called IDBA that uses four
main parameters: the sequence number, the hop count, the packet delivery ratio, and the
end to end delay. First, an algorithm was proposed to pre-calculate the so-called thresholds
regarding the future actions of the black hole based on the two first parameters, while a
second algorithm was presented to compute thresholds for the two other performance
metrics. The detection process floods alarms whenever these parameters are out of the
predefined thresholds. The proposed IDBA was compared against AODV under black hole,
Intrusion Detection System, and EAODV algorithms and showed its outperformance.

A new approach for protecting VANET from black and gray hole attackers was de-
veloped in [21] named dual attack detection for black and gray hole attacks (DDBG). The
suggested DDBG method employs the connected dominating set (CDS) method and two
extra characteristics: the energy and the node’s absence from the blacklist. The CDS tech-
nique is an efficacious, distinct, and confined method for recognizing nearly connected
dominating sets of nodes within a small range. The selected IDS nodes broadcast a kind
of status packet inside a size of the dominant set in order to obtain complete behavioral
information from their nodes. Later, IDS nodes utilize the DDBG approach to examine the
behavioral data obtained to identify malicious nodes and put them on the blacklist if the
activity is suspicious. The authors of [22] suggested a novel IDS to detect black hole attack
in mobile ad hoc networks based on a hybrid approach that makes use of both Adaptive
Fuzzy Neuro Inference System (ANFIS) and Particle Swarm Optimization (PSO). The PSO
is used to increase the efficiency of ANFIS by changing the membership functions and
then reducing the error. The ANFIS predictions allow the attacker’s future behavior to be
modeled and detected. A database is extracted from the network by creating a neighbor
table, which captures all the neighbors’ activities. Afterward, the input parameters are
calculated using this database. The authors used NS-2 simulation to demonstrate the
effectiveness of their approach.

Authors of [23] proposed a heuristic strategy for identifying black hole attacks in
MANETs. The approach is based on a fake RREQ message format similar to RREP, which is
frequently employed to transmit faked packets in the AODV route discovery mechanism.
Hence, a black hole is entrapped by replying to the requested fake destination IP address,
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which never existed in the network. This allowed for the identification of single and
cooperative black hole intrusions.

In their paper [24], the authors presented a new intrusion detection system (IDS) for
mitigating black hole attack. This solution, based on the two algorithms Integrated Cross
Interio (ICI) and Preset Time Interval Algorithm (PTIA), enables the security of routing
nodes by eliminating malicious activities. One of the most challenging tasks is to reduce
routing costs while improving performance by reducing reaction time.

Another study [25] proposed an innovative clustering algorithm (CH election algo-
rithm) and an intrusion detection framework based on game theory. By establishing stable
vehicular clusters with greater communication among member vehicles, the proposed clus-
tering technique maintains the IDS framework’s stability. After that, strategies for electing
the CH and a collection of agent nodes for each cluster are used. In order to conduct the in-
trusion detection operation in a distributed manner, the proposed IDS architecture employs
agent nodes, CHs, and RSUs operating at three distinct levels of the vehicular network.

In [26], researchers introduced a new algorithm consisting of three stages for detecting
black hole. In the first stage, RSU serves as a certificate authority (CA) which keeps and
provides a public and private key as well as certificates for the vehicles. Before launching
any communication, vehicles must be approved by the RSU. The source transmits after-
ward the RREQ along with the correct certificate, nonce encryption, and the destination’s
public key.

Authors of [27] implemented a modified version of the AODV routing protocol named
SVODR to detect and mitigate the black hole attack in VANETs. They introduced a mod-
ified structure of both the RREQ and the RREP control packets by incorporating an En-
crypted Random Number to the source and destination. A legitimate destination node
is tested using the destination vehicle packet sequence number and the function (encryp-
tion/decryption) performed by the source or destination vehicle. Researchers tested the
efficiency of their solution by conducting a comparison study with IDS in VANET.

In Table 1, we summarize various proposed detection techniques with regard to black
hole attack.
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Table 1. Proposed techniques in literature to detect black hole attack.

Author
Year

Detection
Technique Context Simulator Performance

Parameters

Routing
Protocol’s
Updates

Data
Rescaling

Multivariate
Statistical
Analysis

Limitations

Kumar
et al., 2021 [19]

Improved RREQ and
RREP routing packets VANET NS-2

drop packets, end-to-end
delay, packet delivery ratio

(PDR), routing request
overhead

yes no no

More overhead caused by the
extensive routing protocol

modifications and additional
routing messages.

Hassan et al., 2020 [20]
Intelligent black hole

attack detection scheme
(IDBA)

VANET NS-2
sequence number, hop count,
packet delivery ratio and end

to end delay
no no no

The computation of four thresholds
simultaneously leads to higher
processing time and additional

overhead.

Ali Zardari et al., 2019 [21] The CDS approach and
IDS nodes MANET NS-2

detection rate, packet
delivery ratio, throughput,

routing overhead, delay
no no no

Throughput and packet delivery
ratio are negatively affected with

the huge amount of generated
routing overhead.

Moudni et al., 2019 [22]

Adaptive Fuzzy Neuro
Inference System with

Particle Swarm
Optimization (PSO)

MANET NS-2
/MATLAB

detection rate (DR) and false
alarm rate (FAR) no no no

Needs substantial computation
time since additional tables are

created to records all the activities
of the neighbors.

Delkesh et Jabraeil
Jamali, 2019 [23] Heuristic approach MANET

VANET NS-2 throughput, packet loss rate,
end-to-end delay yes no no

May not operate in case the black
hole attacker consults its routing

table before sending back a reply to
the source node, since the

algorithm is based on sending
forged packets in the route

discovery.

Vinayagam et al., 2019 [24]
Novel Integrated Cross

Interio (ICI)
For IDS

MANET NS-2

communication efficiency
ratio, average transmission
delay, average throughput,

destination utilization index,
neighbor utilization index

no no no

The various stages of the proposed
routing models are not

multi-threaded, which increases the
computation cost.

Subba et al., 2018 [25]
A game theory based

multi layered intrusion
detection framework

VANET NS3, SUMO detection rate and false alarm
rate no no no

Dynamic clustering algorithm is
required to take into account the

high mobility of vehicles.
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Table 1. Cont.

Author
Year

Detection
Technique Context Simulator Performance

Parameters

Routing
Protocol’s
Updates

Data
Rescaling

Multivariate
Statistical
Analysis

Limitations

Tyagi Dembla, 2018 [26] ES-AODV VANET NCTUns

throughput, packet collision,
packets dropped, packet
delivery ratio, end to end
delay, routing overhead

yes no no

Increased routing overhead and
bandwidth due to the process of
key generation in ECC algorithm

and their storage with certificate of
vehicles.

Purohit et al., 2017 [27]
Secure Vehicular on

Demand Routing
(SVODR)

VANET NS-2 PDR, throughput, NRL and
average path length yes no no

The need for employing additional
fields for cryptographic functions if
implemented with other protocols

results in significant routing
overhead and E2E latency.

Our method MVSDS VANET
NS-3

SUMO
Matlab

throughput, dropped packets
ratio, overhead traffic ratio no yes yes

The advantage of our detection
scheme is that no modifications in
the routing algorithm operations
are performed. This results in no
additional overhead, so less time
and costs are needed. However,

other routing attacks such as
cooperative black hole, worm hole

will be addressed in future
research work.
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4. The Proposed Detection Scheme

This section describes the proposed approach called Multivariate Statistical Detection
Scheme (MVSDS) for detecting routing security attacks in VANETs by using statistical
techniques based on multivariate normality (MVN) tests. Indeed, our proposed detection
approach allows separating legitimate behavior from malicious behavior by following four
main steps explained below and depicted in Figure 2.
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4.1. Step 1: Real Time Traffic Monitoring

Our proposed approach is based on the idea that malicious activities have performance
characteristics that are significantly different from the normal ones. Thus, the first step of
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our approach consists of constructing the input data by monitoring the vehicular network
traffic over time. This monitoring system is deployed in every receiving node and consists
of the measurements of three key traffic metrics, namely throughput, dropped packets
ratio, and overhead traffic ratio.

4.2. Step 2: Input Data Rescaling

The process of constructing the data used in our detection scheme starts with capturing
the network traffic and ends with the data rescaling step. At this stage, the three rescaling
techniques, namely the Z-Score Normalization (ZSN), the Min-Max Normalization (MMN),
and the Normalization by Decimal Scaling (NDS) are applied to compute the new values
of each variable contained in the original data. The output data get updated continuously
over a certain time interval. The generated data are modeled by multivariate datasets
sampled at different times.

4.3. Step 3: Multivariate Normality Test

The goal of this stage is to verify the conformity of the dataset to the multivariate
normal distribution by applying the Rao–Ali multivariate statistical test. Indeed, the
multivariable samples obtained from the previous step are transformed to univariate
samples for each time window. The resulting datasets are one dimension that will be used
as input by the UVN normality test, namely the Ryan–Joiner test. Hence, the Ryan–Joiner
is employed to compute the R–J correlation coefficient in each time window continuously.
Based on the values of this correlation coefficient, the attack detection step is performed.

4.4. Step 4: Attack Detection

In the previous step, the Ryan–Joiner test is applied to measure the R–J correlation
coefficient. The values of this correlation coefficient will allow us to determine the probabil-
ity that an attacker is present or not, so that observations with R–J values that fall below
a threshold value representing the R–J normal critical value will identify an abnormal
behavior. The threshold values are computed using formulas in Equation (4), Equation (5),
or Equation (6) given in Section 2.3.

- If R− Jcalculated ≥ R− Jcritical , the assumption of normality is approved and conse-
quently, we can conclude the absence of malicious behavior.

- If R− Jcalculated < R− Jcritical , the normality assumption is rejected and we detect
the existence of a routing attack. A notification is generated as soon as the R–J
coefficient value is below the pre-defined threshold corresponding to Ryan–Joiner the
critical values.

5. Simulation Setup and Implementation
5.1. Simulation Setup

The purpose of this sub-section is to present the details of the simulation environment.
In this study, we conducted realistic VANET simulations by combining two simulators: the
road traffic generator SUMO (Simulation of Urban Mobility) and the network simulator
NS-3. SUMO and NS-3 are used to simulate realistic VANET scenarios.

SUMO is a free, open, and microscopic simulator implemented in C++. It is used to
simulate unlimited network size and number of vehicles. It offers the ability to configure
vehicle types, traffic lights, vehicle speeds, and multi-lane roads; it also supports the lane-
changing model, as well as generating automatic time schedules for traffic lights. SUMO
also supports the import formats, such as OpenStreetMap. We executed a set of Python
command lines on SUMO in order to generate realistic vehicle trace files that are then used
as an input by the network simulator, NS-3. In our study, the simulation zone was extracted
from OpenStreetMap, consisting of a map of El Jadidacity, Morocco given in Figure 3. The
.osm file generated is interfaced to SUMO to get the mobility.tcl file with details of each
node (vehicle), including the number of vehicles, position, speed, and direction.
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Based on Linux, the system is set up and configured in Ubuntu environment. The
simulation parameters are tabulated in Table 2.

Table 2. Simulation settings.

N Parameter Value

1 Network simulator NS3.29
2 Mobility simulator SUMO-0.32.0
3 Propagation model friisLoss model
4 Number of vehicles 100
5 WiFi channel YansWifi
6 Mac and Physic layer IEEE 802.11p
7 Transmission power 33 dbm
8 Simulation time 100 s
9 Traffic type CBR (constant bit rate)
10 Packet size 1024 bytes
11 Routing protocol AODV

In what follows, we explain the various parameters depicted in Table 2 used in per-
forming VANET scenarios to evaluate the proposed detection scheme in the next sections.

Our simulations are implemented using version 3.29 of the simulation environment
NS-3. The 802.11p standard is used on the MAC/PHY sub-layers, and the channels are
modeled using the YansWiFiChannel with friisLoss propagation model. The transmission
power is fixed to 33 dbm. The simulations run for 100 s with a total of 100 vehicles
distributed over the imported simulation zone. Ten source nodes simultaneously generate
Constant Bit Rate (CBR) traffic with fixed size packets of 1024 Bytes. Packets are routed
using AODV routing protocol. Further, User Datagram Protocol (UDP) is used as the
transport layer protocol.

5.2. Implementation of the Proposed Scheme

The first step in our detection scheme lies on the network traffic monitoring where the
following traffic parameters are used:

• The throughput (TH) expressed in kilobits per second (Kbps), which is defined as a
measure of the total amount of bytes successfully transmitted from source node to
destination per unit time.

• Dropped packets ratio (DPR) defined as the ratio between the numbers of dropped
packets to the total number of transmitted packets.

• Overhead traffic ratio (OTR) which refers to the ratio between the total number of
control packets generated by the AODV routing protocol during route discovery and
route maintenance to the total number of transmitted packets.
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We monitor the network traffic over a time interval fixed at one second (1 s), and
measure the three metrics, i.e., throughput, dropped packet ratio, and overhead traffic
ratio denoted by TH, DPR, and OTR respectively. These measurements are collected and
tabulated in CSV files, which are later converted into the form of datasets used by the
Matlab environment. The generated multivariate datasets are raw data where columns
represent the measurements of the variables TH, DPR, and OTR during the simulation time
and rows are observations of these variables.

The rescaling techniques (ZSN, MMN, and NDS) are applied to compute the new
values of each variable denoted by (NewTH, NewDPR, and NewOTR). The datasets are
sampled at different times separated by time window (tw). In practice, we consider tw = 5 s;
this means that his process is triggered continuously, i.e., at T = 10 s, T = 15 s, T = 20 s,
T = 25 s, etc., where the datasets correspond to the T last collected samples.

The multivariate normality test, namely the Rao–Ali multivariate statistical test, is
employed to transform the multivariable samples to univariate ones. Afterwards, the
Ryan–Joiner test is applied to measure the R–J correlation coefficient. The values of this
correlation coefficient allow us to determine the probability that an attacker is present or
not, so that observations with R–J values that fall below a threshold value representing
the R–J normal critical value identify an abnormal behavior. The threshold values are
computed using formulas in Equation (4), Equation (5), or Equation (6) given in Section 2.3
with α = 0.05 chosen as the significance level.

The calculations are performed using a program that we have implemented in the
Matlab environment. This program takes as an input the dataset retrieved from the previous
step (step 2) and calculates the observed values of the R–J coefficient using formulas in
Equations (2) and (3). Based on the results of step 3, the presence of an attacker is detected
whenever the R–J values fall below a threshold value representing the R–J normal critical
values with α = 0.05 .

6. Results and Discussion

This section starts with an analysis of the influence of black hole attack on the con-
sidered network metrics mainly: throughput (TH), dropped packets ratio (DPR), and
overhead traffic ratio (OTR). Further, an evaluation of the proposed scheme is performed
by simulating two scenarios of AODV routing protocol: one normal AODV without attacks
and a second with AODV black hole attack. Analysis and discussion of the obtained results
are also presented.

6.1. Analysis of the Network Traffic under Black Hole Attack

In this part, we simulated a scenario of AODV routing protocol using the simulation
settings defined in the previous section (Table 2). In this scenario, 100 vehicles are involved
with 10 random CBR connections over a simulation duration of 100 s. This scenario is
divided into two parts. In the first part, i.e., from the simulation start time until the sixtieth
seconds, all vehicles behave normally with no malicious activities. During the second part
of this scenario, one malicious node is activated at the sixtieth second which is concerned
with the black hole attack. The results of the traffic monitoring in terms of throughput (TH),
dropped packets ratio (DPR), and overhead traffic ratio (OTR) before and after initiating
the black hole attack are given in Figures 4 and 5.
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Figure 5. Overhead traffic ratio (OTR) monitoring.

Figures 4 and 5 illustrate the results of monitoring the network traffic regarding
the three performance metrics considered in this study. Figure 4 shows the throughput
variations per unit time and the dropped packet ratio, respectively. While Figure 5 depicts
the overhead traffic ratio. Each figure shows how each performance metric varies per unit
of time in both cases: the normal case and when the black hole attack is launched.

Examining these figures, we notice that the network characteristics are generally stable
in the normal case (absence of black hole attacker). The small differences recorded are due
to the dynamic environment and the high mobility of vehicles in VANETs. In contrast,
these characteristics change significantly when the black hole attack is initiated. Indeed,
we observe that the AODV routing protocol performance in terms of throughput degrades
under the black hole attack. This degradation shows that most data packets have not been
successfully transmitted from source to destination. These outcomes are logical since in
the black hole attack, the malicious node acts by sending a fake route reply pretending to
have the shortest path to the destination and subsequently drops the entire data packet
forwarded to it. Similarly, in Figure 5, it can be seen that the dropped packet ratio increases
severely from the time the attack is launched. Again, these variations are explained by
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the presence of the attacker node that tries to drop all the packets rather than delivering
them to their intended destination. The variations in Figure 6 reveal a noticeable increase in
the overhead traffic ratio after launching the attack in the sixtieth second compared to the
normal situation. This finding can be justified by the fact that the number of successfully
transmitted packets is lower than the number of routing control packets generated by the
AODV routing protocol under black hole attack. As a result, the values of the overhead
traffic ratio, which is defined as the ratio between the total number of control packets
generated by the AODV routing protocol during route discovery and route maintenance
to the total number of transmitted packets goes up. Conclusively, we can say that black
hole attack severely affects the AODV performances and disturb the correct execution of
the routing operations. These findings cope with our previous study [10], where it was
confirmed that AODV performances are highly influenced by the introduction of routing
attacks against AODV routing protocol.
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Figure 6. Results of the R–J coefficient calculations in the normal scenario (scenario 1).

6.2. Evaluation of the Proposed Scheme

In this part, the purpose is to evaluate the proposed approach and demonstrate its
applicability to the AODV routing security attack in VANETs. We consider two different
scenarios of the AODV routing protocol (scenarios 1 and 2):

1. Scenario 1: normal AODV without attacks

In this case, the experiments are performed according to the simulation parameters
exhibited in Table 2. The total vehicles involved are 100 vehicle nodes comprising 10
random source–destination pairs. These pairs simultaneously generate CBR traffic with
fixed size packets of 1024 Bytes. Packets are routed using normal AODV routing protocol.
In this way, all nodes are legitimate vehicles and no black hole node has been taken. The
total time for the simulation was configured to 100 s.

2 Scenario 2: AODV with black hole attack

In this simulation scenario, we implement one malicious node that acts as the black
hole attacker. The remaining nodes are legitimate vehicles that behave normally and
broadcast genuine messages to the other vehicles in the network.

The steps described in the previous flowchart (Figure 2) are executed and the R–J
coefficient values are computed accordingly. The following figures (Figures 6 and 7) depict
the results. These figures show the curves obtained after applying the proposed detection
scheme for both scenarios: scenario 1 and scenario 2.
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Figure 7. Results of the R-J calculations in the black hole scenario (scenario 2).

Figure 6 represents the results of applying our approach MVSDS (Multivariate Sta-
tistical Detection Scheme) in the normal scenario (the absence of black hole attack). This
figure shows the plots of the calculated R–J values for non-rescaled and rescaled data with
Min-Max Normalization (MMN), Z-Score Normalization (ZSN), and Normalization by
Decimal Scaling (NDS) techniques. The objective is to illustrate the importance of data
rescaling techniques for attack detection schemes in VANETs. Thresholds used for attack
detection corresponding to the critical values of the Ryan–Joiner method are also plotted.

From this figure, it can be seen that the R–J values start with lower values than in
the first seconds of the simulation. These values are logical since the AODV routing
protocol uses the route discovery mechanism before launching the data transmission. As
the simulation advances, it can be seen that the observed R–J values increase and we
observe that the overall R–J values of the multivariate data are higher than the critical
values at various times of the simulation. This outcome suggests that the R–J values without
black hole attack confirm the multivariate normality assumption.

Furthermore, we note from the plots that the R–J values computed after applying
the data rescaling techniques are higher than those computed on the original data for
almost the three data rescaling techniques. These findings stipulate that applying the data
rescaling techniques improve the data sensitivity to the multivariate normality assumption.
This can be extremely helpful in accurately identifying the malicious activities in our
detection scheme.

From Figure 6, it is also seen that the Min-Max technique performs better, since all
points in its plot exceed the R–J calculated for the original data followed by the Decimal
Scaling technique. The calculated R–J values by applying the Z-Score technique show quite
inferior values as we progress in the simulation.

In conclusion, the key point to note is that our detection scheme performs better when
applying the data rescaling techniques, particularly the Min-Max technique.

In contrast, when the black hole attack is initiated in the network (scenario 2), the
computed values of the R–J coefficient had lower values than the critical values at various
times of the simulation. Figure 7 below shows the results of these calculations.

Based on Figure 7, we note that in the beginning of the simulation, the R–J values were
approximatively very close to the critical values for the non-rescaled data as well as with the
Min-Max and Decimal Scaling techniques. However, as we progressed in the simulation,
these values decreased noticeably and all the points fell under the critical values in both
cases: with and without applying the data rescaling techniques. These outcomes reveal
that the data traffic gathered at different times consisting of three variables, namely the
throughput, dropped packets ratio, and overhead traffic ratio, are not from a multivariate
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normal distribution. This conclusion leads to the rejection of the multivariate normality
assumption and subsequently confirms the presence of malicious behavior.

From the above figure, it was also observed that applying the three data rescaling
techniques resulted in R–J coefficient values higher than those calculated on the original
data. We note that from the 15th second of the simulation time, the overall values exceed
the R–J values computed on the original data.

Additionally, the plots show that the Max-Min technique gave better results in terms
of sensitivity to the normal distribution followed by the DSN technique, since all the points
in their plots are beyond those of the non-rescaled data. In contrast, it was observed on the
ZSN curve that not all the points exceeded those of the non-rescaled data.

In conclusion, we argue that applying data rescaling techniques can be considered an
essential prerequisite for many attack detection tasks but it is often ignored. Further, the
question of which technique is more effective still remains. In our study, it is outlined that
the Max-Min technique gives better results in comparison with the non-rescaled data and
the two remaining techniques.

An important conclusion that can be made is that our approach can detect abnormal
activities in a simple manner with no updates to the routing protocol operations. Further,
all statistical measurements are bounded in time, i.e., correspond to each particular time
window, which gives meaningful results when monitoring the network traffic in real time.

7. Conclusions

Vehicular Ad hoc Networks are subjected to many vulnerabilities and security attacks
because of their open and decentralized features. Black hole attack is one of the most
serious attacks that affect the data availability in VANETs. In this paper, we proposed a
new approach capable of detecting black hole attack in real time and without performing
any updates in the routing algorithm. The findings reveal that the present study may
provide an unprecedented approach that uses the multivariate normality tests to detect
routing security attacks in VANETs. We tested our detection scheme in a more realistic
environment using a realistic traffic model. The real time monitoring of the network traffic
is a big advantage of our approach since time is a critical factor in detecting incidents in
the VANETs.

Further, our approach relies on the multivariate concept, which is very useful in the
context of our study. VANETs are highly dynamic, and their behavior must be characterized
by more than one variable rather than an individual one. In that regard, our approach has
the ability to distinguish legitimate behavior from malicious behavior based on multiple
network characteristics simultaneously. We involved three main important network metrics
that had not been previously combined for black hole detection, namely the throughput,
the dropped packets ratio, and the overhead traffic ratio. It is also worth noting that our
research demonstrated the relevance of employing data rescaling techniques (ZSN, MMN,
and NDS) in improving the data sensitivity to the normality conformity analysis. Further
in-depth details regarding these techniques can be tried in the future to get more insights
into the differences between these methods and others from the literature.

To the best of our knowledge, this is the first study that combines rescaling techniques
with multivariate data traffic for routing security attack detection. As a next step, additional
experiments should be undertaken to provide further evaluation of the proposed scheme,
including testing other routing security attacks. The proposed detection scheme can be
enhanced by integrating other performance metrics and implementing a reaction scheme
to countermeasure the routing attacks.
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