
����������
�������

Citation: Koga, H.; Ouchi, S.;

Nakajima, Y. Editing Compression

Dictionaries toward Refined

Compression-Based Feature-Space.

Information 2022, 13, 301. https://

doi.org/10.3390/info13060301

Academic Editor: Khalid Sayood

Received: 14 April 2022

Accepted: 10 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Editing Compression Dictionaries toward Refined
Compression-Based Feature-Space

Hisashi Koga *, Shota Ouchi and Yuji Nakajima

Department of Computer and Network Engineering, University of Electro-Communications,
Tokyo 182-8585, Japan; ouchi@sd.is.uec.ac.jp (S.O.); ynakajima@sd.is.uec.ac.jp (Y.N.)
* Correspondence: koga@sd.is.uec.ac.jp

Abstract: This paper investigates how to construct a feature space for compression-based pattern
recognition which judges the similarity between two objects x and y through the compression ratio
to compress x with y (’s dictionary). Specifically, we focus on the known framework called PRDC,
which represents an object x as a compression-ratio vector (CV) that lines up the compression ratios
after x is compressed with multiple different dictionaries. By representing an object x as a CV, PRDC
makes it possible to apply vector-based pattern recognition techniques to the compression-based
pattern recognition. For PRDC, the dimensions, i.e., the dictionaries determine the quality of the
CV space. This paper presents a practical technique to modify the chosen dictionaries in order to
improve the performance of pattern recognition substantially: First, in order to make the dictionaries
independent from each other, our method leaves any word shared by multiple dictionaries in only
one dictionary and assures that any pair of dictionaries have no common words. Next, we transfer
words among the dictionaries, so that all the dictionaries may keep roughly the same number of
words and acquire the descriptive power evenly. The application to real image classification shows
that our method increases classification accuracy by up to 8% compared with the case without our
method, which demonstrates that our approach to keep the dictionaries independent is effective.

Keywords: compression-based pattern recognition; data compression; feature space; compression
dictionary

1. Introduction

With the prevalence of various new types of multimedia data in the big-data era, uni-
versal techniques to examine their characteristics at low cost without human intervention
have been demanded more. Typical statistical pattern recognition involves the statistical
modeling of data which accompanies the complicated configuration of parameters. There-
fore, it does not necessarily meet this demand. Deep learning requires many training data
and takes a long training time. Thus, it also does not satisfy the above demand.

By contrast, compression-based pattern recognition is a basically parameter-free ap-
proach toward automatic data analysis and can deal with any data types such as music,
genome, and images universally at low cost, once they can be represented as strings. In
principle, this approach measures the similarity between two objects x and y with the
compression ratio to compress x with y (’s dictionary). NCD (Normalized Compression
Distance) [1] is the most well-known representative of this technique and calculates the
distance between two objects. Thus, NCD is fit for pattern recognition techniques based
on the distance matrix such as spectral clustering [2] and agglomerative hierarchical clus-
tering. In fact, it is quite common in compression-based pattern recognition to illustrate
the clustering result as the Quartet tree [3] derived from the distance matrix. However,
pattern recognition techniques based on the distance matrix often suffer from the inherent
huge time complexity of O(n2), where n equals the number of data points. Moreover,
application of NCD to vector-based techniques such as the k-means clustering and the SVM
(Support Vector Machine) [4] classification is not immediate. Although the kernel trick can
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combine the SVM with NCD without representing objects as vectors [5], it will not generate
general-purpose feature vectors that may be applied to any vector-based machine learning
algorithms.

By contrast, Watanabe et al. developed a framework called PRDC (Pattern Representa-
tion on Data Compression) [6] in order to make use of the vector-based pattern recognition
techniques, where an object x is expressed as an N-dimensional compression-ratio vector
(CV) that lists the compression ratios to compress x with various N dictionaries. The per-
formance of PRDC is strongly influenced by the N dictionaries spanning the compression
vector space (CV space hereafter).

This paper proposes to modify the CV space for PRDC in order to enhance its quality.
First, we edit the N base dictionaries and guarantee that any pair of dictionaries have no
common words in order to make them independent from each other. Then, we reassign the
remaining words to the N base dictionaries, so that each base dictionary may consist of
roughly the same number of words. Our word reassignment still preserves the condition
that any two base dictionaries share no common words. Specifically, we develop two
types of word reassignment algorithms. The first algorithm REVIVAL does not change
the original N base dictionaries radically. Thus, the i-th final base dictionary consists of
a subset of the words held by the i-th original base dictionary. By contrast, the second
algorithm VOCAB actively gathers words from multiple original base dictionaries and
packs them into a single identical dictionary. The application to real image classification
shows that both of our two methods improve pattern recognition accuracy as compared
with the case without them.

This paper is organized as follows: Section 2 briefly reviews the related works on
compression-based pattern recognition. Section 3 presents our new method to edit the
dictionaries spanning the CV space. Section 4 describes the experimental evaluation and
the discussion. Section 5 concludes this paper.

We remark here that this paper expands the contents of our international conference
paper [7].

2. Literature Review: Compression-Based Pattern Recognition

This section summarizes the related works on compression-based pattern recognition.
The compression-based pattern recognition has the advantage that it can be applied to
general-purpose data such as Twitter data [8], music [9], image analysis [10,11], malware
detection [12], and bioinformatics [13]. Throughout this section, we assume that objects are
represented as one-dimensional strings.

2.1. Compression Distance

Originally, compression-based pattern recognition proposes to measure the dissimi-
larity between two objects without examining their minute structures. Let x and y be two
objects. For instance, NCD computes the distance between x and y as in Equation (1)

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} , (1)

where C(x) represents the size of the compressed version of x, and C(xy) signifies the
size of the file obtained by compressing the concatenation of x and y. The more common
substrings x and y share, the smaller NCD (x, y) becomes because we can compress xy more
compactly. According to [14], NCD implicitly maps x and y to a very high-dimensional
compression feature space, where the number of dimensions equals the number of words
in the compression dictionary. However, NCD does not produce feature vectors for x and y
after all.

NDD (Normalized Dictionary Distance) [15] and FCD [16] (Fast Compression Dis-
tance) pay attention to the dictionaries yielded by the compressors like LZW (Lempel–
Ziv–Welch) [17]. Different from NCD, both of them calculate the distance without the
overhead incurred in data compression because they compare the dictionaries of x and y
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directly without compressing x with y (’s dictionary). Here, the dictionary of x consists
of x’s substrings called words discovered when the compressor scans x. NMD [18,19]
(Normalized Multiset Distance) counts how often the words in the dictionary appear in the
object and exploits this information for the distance computation.

Recently, Field et al. [20] detected the boundaries in a data stream by measur-
ing the SLID (Sliding Information Distance) between two adjacent sections, where the
SLID measures the dissimilarity between the compression dictionaries extracted from the
two sections.

2.2. PRDC

PRDC represents an object as an N-dimensional compression-ratio vector (CV). First,
PRDC somehow decides a set of N base dictionaries {d1, d2 · · · , dN}, each of which is
responsible for one dimension at the CV space. Then, the CV for an object x denoted by
CV(x) is defined as

CV(x) =
(

C1(x)
lx

,
C2(x)

lx
, . . . ,

CN(x)
lx

)
. (2)

Here, lx indicates the length of x, while Ci(x) presents the size of x after compressed
by di. Therefore, Ci(x)

lx
becomes the compression ratio of x via di. Now that x is mapped to

CV(x), we can make use of any vector-based pattern recognition technique such as SVM.
PRDC relies on the LZW data compressor to derive dictionaries from strings.

For PRDC, the choice of N base dictionaries decides the performance of pattern
recognition. As is desired for any feature space, each dimension should exhibit different
properties. In [6], the developers of PRDC choose the base dictionaries as follows. Suppose
that we have M objects, i.e., M strings T = {t1, t2, · · · , tM} at hand. They first construct an
L-dimensional temporal CV space S by picking up L objects from T uniformly at random
and by creating L temporal dictionaries {d′1, d′2, · · · , d′L} from these L objects. Then, every
object x in T is converted to the temporal CV referred to as CV′(x) in S. Next, after
clustering the temporal CVs into N clusters in S, N representative objects are selected in
such a way that a single representative object is chosen per cluster. As for the clustering
in S, they implemented the k-means method [6,21]. Finally, these N objects provide the
N base dictionaries D = {d1, d2 · · · , dN} which define the final CV space FS. In this way,
PRDC expects to collect dictionaries of independent characteristics by selecting them from
separated clusters. However, we consider that this idea does not always produce a good
final CV space FS. Note that the axes in the temporal CV space S may be correlated,
as they are chosen simply at random. When this phenomenon occurs, the clustering is
performed on the shrunk S which actually has less than L dimensions, and FS will be
damaged and cannot realize adequate pattern recognition. As a comprehensive metaphor,
think of the clustering of pixel colors in one image. If we cluster the colors on the shrunk
two-dimensional color space composed of “Red” and “Green” only, the representative
colors will not realize effective color quantization.

From now on, we describe previous works other than PRDC that also construct a
feature space by making use of data compression. Whereas PRDC [6] seeks the base
dictionaries in an unsupervised way, Cilibrasi [22] chose them in a supervised way by
selecting the equal number of representative objects evenly from all the object classes.
That is, if one wants to obtain an N-dimensional CV space to address the classification
problem involving C classes, N

C objects are chosen per class. We refer to this method as
“SUPERVISED” hereafter.

Ting et al. [23] utilized a compression distance vector CD(x) for an object x, which
lists the NCDs between x and multiple reference objects. Since they adopt all available
objects as reference objects, the number of dimensions in CD(x) grows as large as the total
number of objects. To reduce the number of dimensions, [24] selects a moderate number of
anchors (that is representative objects) from all of the objects. In the same way as PRDC, the
compression distance vector spans a feature space based on data compression. However, it
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usually takes a longer time to generate CD(x) than to generate CV(x) because NCD must
create the compression dictionary online while compressing objects.

Coltuc [25] et al. proposed another compression distance vector to represent an image
x. In the compression distance vector for x, one coordinate value presents an NCD between
x and an image which transforms x with simple geometric transforms such as circular shift
and rotation. Unlike PRDC, their work assumes a specific pattern recognition task whose
purpose is to recognize images which modify x with filtering, histogram equalization, and
so on.

Finally, we refer to some previous works which correct the compression dictionaries.
In order to speed up pattern classification, Ting et al. [26] defined the mean dictionary for
multiple dictionaries, each of which originates from a training sample of the same class.
They introduced a fast greedy algorithm to approximate the mean dictionary. Similarly,
Contreras et al. [27] create a large dictionary per class by concatenating multiple dictionaries
extracted from the training samples of the same class. It is true that these two methods
construct a new dictionary by editing several known dictionaries. However, their goal
is not to establish a good CV space, but to refine the k-NN classifier founded upon some
compression distance.

3. Methods

Our research purpose is to construct a proper N-dimensional CV space. We consider
this problem under a restriction that, to generate one N-dimensional CV, the data compres-
sion can be executed at most N times. Without this restriction, it is possible to compute
a very high-dimensional compression vector by using a lot of dictionaries and to reduce
the vector dimension to N with a PCA (Principal Component Analysis [28])-like technique.
However, this approach spends too much time to compute an N-dimensional CV, as the
heavy data compression operation must be iterated many times. Hence, this approach is
not tolerable.

The core of compression-based pattern recognition has been to compute object-based
dissimilarity measures like NCD. PRDC and SUPERVISED, which utilize the CV space,
have also adopted this convention, such that one coordinate value of the CV for an object
o represents the similarity value (that is, the compression ratio) between o and the real
object associated with the axis of coordinates. The compression distance vector [23,24] also
follows the convention. Our main contribution is to quit this convention so as to make a
more useful CV space for pattern recognition. In particular, given a set of base dictionaries
acquired by some dictionary selection algorithm such as PRDC and SUPERVISED, we
devise a technique to edit them. As the result, in our scheme, one coordinate value of a CV
does not represent the similarity value between a certain pair of real objects anymore.

Figure 1 illustrates how we modify the given N base dictionaries D = {d1, d2, · · · , dN},
where N = 5. Assume that these N base dictionaries have been chosen by some dictionary
selection algorithm such as PRDC and SUPERVISED. First, to make the base dictionaries in
D independent from each other, our method modifies them, so that no two dictionaries
may have any common words. Section 3.1 will describe this process in detail. As described
later, since this process prioritizes dictionaries with smaller subscripts, di shall hold more
words than dj if i < j after the common words are deleted. Therefore, in the next step, we
further modify the assignment of words to dictionaries, so that all of the dictionaries may
consist of roughly the same number of words in order to enhance the expressive power of
each dimension. This function will be explained in Section 3.2. We develop two kinds of
word reassignment algorithms, that is, REVIVAL and VOCAB.
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Figure 1. Our proposed method.

3.1. Removal of Common Words

Let D = {d1, d2, · · · , dN} be the N base dictionaries chosen by some dictionary selec-
tion algorithm to build an N-dimensional CV space. Usually, at this point, each member of
D is generated by the data compression algorithm compressing some real object, and the
dictionary selection algorithm tries to keep the dimensions of CV space independent from
each other by choosing N objects of different features.

However, this strategy does not necessarily render the dimensions independent in
practice. No matter how different the chosen objects are at the object level, the correspond-
ing dictionaries can be correlated at the word level, as they share common words. That is,
many words in di are also likely to be contained in other dictionaries in D.

We mitigate this problem by editing the dictionaries, so that the dictionaries may
become dissimilar at the word level. Our method modifies the dictionaries from d1 to dN
incrementally one by one. That is, it modifies di+1 (for 1 ≤ i ≤ N− 1) after the i dictionaries
from d1 to di are amended. Let Ti+1 and Wi+1 denote the set of words in di+1 before and
after the modification, respectively. We examine every word w in Ti+1 and delete w, if w has
already appeared in {d1, d2, · · · di}. Therefore, Equation (3) holds. Since dj for 1 ≤ j ≤ i has
already been modified before di+1 is processed, not Tj but Wj appears on the right-hand
side of (3):

Wi+1 = Ti+1\ ∪i
j=1 Wj. (3)

After all the base dictionaries are modified, it is guaranteed that any two different dic-
tionaries in D never have any common words. Namely, for any j, k satisfying 1 ≤ j, k ≤ N,
j 6= k, Wj ∩Wk = φ. This proposition can be easily proved by induction. In this way,
our modification algorithm raises the independence among the N base dictionaries at the
word level.

Because the above algorithm behaves sensitively to the order of dictionaries, we sort
the N dictionaries in advance. Here, we arrange the dictionaries in descending order of
uniqueness in order to give higher priority to more unique dictionaries. We measure the
uniqueness of a dictionary d by counting the number of words in d that are also included in
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the other dictionaries in D. This quantity is symbolized as SWd and defined in Equation (4).
We regard d as more unique, as SWd becomes smaller:

SWd =
N

∑
j=1,dj 6=d

|Td ∩ Tj|. (4)

After all, the dictionaries are sorted in the increasing order of SWd. Thus, the most
unique dictionary that has the least words common to the other dictionaries becomes d1.

3.2. Word Reassignment

After removing all the common words, any two dictionaries become independent at
the word level. However, at this moment, it holds that di tends to consist of fewer words as
i increases because the common words between di and dj (i > j) were removed not from dj,
but from di. Hence, it is worried that the dictionaries with large subscripts cannot compress
objects well, so that the dimension with large subscripts in the CV space might not have
enough expressive power. To settle down this problem, we reassign the words among the
N dictionaries, so that all the dictionaries may hold roughly the same number of words. We
develop two word reassignment algorithms, both of which assure that no two dictionaries
have common words after the reassignment. The first algorithm is named “REVIVAL”,
since it revives some of the words into the base dictionaries which were driven out from
them in removing common words. The second algorithm initially creates a large vocabulary
by merging all of the remaining words in the N base dictionaries. Then, about the same
number of words out of the vocabulary are assigned to each base dictionary. The second
algorithm is named “VOCAB”. Note that, whereas REVIVAL preserves the structure of
base dictionaries which LZW extracts from real objects, VOCAB actively destroys it.

3.2.1. REVIVAL Method

di originally stored the word set Ti just after LZW extracted it from some real object.
Then, after the common words were removed, the word set was shrank to Wi. Namely, the
words in Ti\Wi were deleted from di.

Let M = ∑N
i=1 |Wi |

N . REVIVAL tries to assign M words evenly to the N base dictionaries
by reviving deleted words. REVIVAL manages a list U of base dictionaries for which the
deleted words have not been revived yet. At the beginning, all of the N base dictionaries
belong to U, i.e., U = {d1, d2, · · · , dN}.

REVIVAL repeats choosing the base dictionary in U with the fewest words and reviv-
ing deleted words for it, until all of the N base dictionaries have been processed. REVIVAL
is outlined as follows.

Step 1: The dictionary with the fewest words is selected from U.Let d be the dictionary
chosen here.

Step 2: Some words that were removed from d in the past are probabilistically revived and
added to d. To prohibit a revived word w from existing in multiple dictionaries
simultaneously, we delete w from the dictionary which was holding it just before.

Step 3: REVIVAL removes d from U. This removal of d from U means that d is fixed.
Therefore, any word in d never vanishes from d anymore. If U = φ after d is
removed, REVIVAL stops because all of the base dictionaries have already been
processed. Otherwise, REVIVAL goes back to Step 1.

REVIVAL is a randomized algorithm: Step 2 makes use of the probability to select the
words to be revived without bias. To realize Steps 2 and 3, REVIVAL manages two subsets
of Ti for each di (1 ≤ i ≤ N): The first subset CWi memorizes the words currently stored in
di. The second subset DWi contains the set of words which were deleted from di previously
but have a chance to be revived in the future. Before the execution of REVIVAL, CWi = Wi
and DWi = Ti\Wi.
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Suppose that REVIVAL picks di from U in the k-th iteration, where 1 ≤ k ≤ N. Then,
in the first k− 1 iterations, REVIVAL processes the dictionaries other than di. In these k− 1
iterations, whenever Step 2 revives a word w ∈ CWi into some dictionary dj(j 6= i), w must
be deleted from CWi because w cannot belong to di and dj at the same time. Moreover,
when Step 3 fixes some dictionary dh(h 6= i), the words belonging to dh must be excluded
from DWi to assure that they never disappear from dh subsequently. When the k-th iteration
processes di, Step 2 revives each word in DWi with a probability of M−|CWi |

|DWi |
. The expected

number of words in di after the k-th iteration equals

|CWi|+ |DWi| ×
M− |CWi|
|DWi|

= |CWi|+ M− |CWi| = M, (5)

as is stated at the beginning of this subsection.

3.2.2. VOCAB Method

VOCAB first creates a vocabulary V by merging all the words remaining in the N base
dictionaries, i.e., V = ∪N

i=1Wi. Then, VOCAB sorts the words in V in lexicographic order

and evenly assigns |V|N words to all the N base dictionaries in order. Thanks to this policy,
each base dictionary gathers words having similar prefixes.

By considering both REVIVAL and VOCAB, we can examine which is more effective
to keep the structure of base dictionaries obtained from some real objects like REVIVAL or
to discard it completely like VOCAB.

3.3. Implementation Details

Now, let us briefly mention the implementation details of REVIVAL. Because REVIVAL
removes some words from the compression dictionary, some prefix of a word in the
dictionary might not belong to the very dictionary. Note that this phenomenon never takes
place in the standard LZW.

We represent a dictionary for the LZW compression as a trie and attach to each node
in the trie a single bit which indicates if the word associated with the node is valid or not.
Then, we can delete the word by simply changing the bit of the node to ‘invalid’. See
Figure 2 for illustration in which the valid (invalid respectively) bit is expressed with the
figure ‘1’ (‘0’ respectively). String compression with this dictionary proceeds as follows.
To encode a string, we repeat seeking the longest word in the trie that matches the current
pointer of the string, as is the same as the standard LZW. Then, if this word is not valid, we
serially output the codes for all the single characters composing the word. For example,
suppose that the current string pointer begins with the phrase ‘dceb’. Then, the longest
matching word in the dictionary becomes ‘dce’ in Figure 2. Since this word is invalid, the
codes for ‘d’, ‘c’, and ‘e’ are outputted one by one.

d

a b c

b e

0

a

0

1

1

1

1 1

Figure 2. Trie representing a modified dictionary.
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4. Results

To examine the effectiveness of our dictionary editing method, we conduct experiments
on image classification. Be aware that, through these experiments, we do not intend to
argue that our method is comparable to the state-of-the-art methods devised in the research
community on image processing which use many sophisticated and dedicated image
features and image representation, e.g., [29]. In principle, compression-based pattern
recognition is suitable for new applications about which efficient handling methods are not
established. This paper deals with the known image dataset simply because we can easily
get the ground-truth and evaluate the algorithms objectively. Thus, what is important in
this paper is to show that our method goes beyond the previous compression-based pattern
recognition algorithms.

We test on the following two image datasets whose information is summarized in
Table 1.

1. The UC Merced land use dataset [29]: This dataset consists of 21 classes corresponding
to various land cover and land use types. We choose five classes { (a) forest, (b) river,
(c) intersection, (d) denseresidential, (e) building}, and randomly select 100 images for
each class. Thus, the experimental dataset consists of 5 × 100 = 500 images. Figure 3
shows the instance images for these five classes.

2. The Wang database [30]: This image database collects 1000 images from the Corel
photo stock database and consists of 100 images for 10 object classes {africa people,
beaches, buildings, buses, dinosaurs, elephants, roses, horses, mountains, foods}.
Figure 4 shows the four images out of this database.

Table 1. Datasets in our experiments.

Dataset UC Merced Land Use Wang

Number of images 500 1000

Number of classes 5 10

Class Name

1 forest africa people

2 river beaches

3 intersection buildings

4 denseresidential buses

5 building dinosaurs

6 elephants

7 roses

8 horses

9 mountains

10 foods

(a) forest (b) river (c) intersection (d) denseresidential (e) building

Figure 3. UC Merced land use dataset.
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bus horse rose building

Figure 4. Wang database.

To treat images in the compression-based pattern recognition, they must be converted
to one-dimensional strings beforehand: First, we transform a pixel in an image into a
character according to its Lab color in such a way that the Lab color space is quantized into
64 levels by dividing each color axis into four segments. Then, the image is represented as
a string by concatenating the characters in the scanning of the image row by row. This way
of raster-scan is called the Row-Major [31].

We implemented the whole of our method in C++ language with the g++ compiler.
We wrote the program code of the LZW algorithm by ourselves. We relied on the C++ API
of the OpenCV library to read images.

We measure the quality of a CV space with the preciseness of image classification
that is evaluated with the leave-one-out method as follows. Let A and C be the number of
images and class categories in the image database, respectively. For the UC Merced land use
dataset, we have A = 500 and C = 5, while A = 1000 and C = 10 for the Wang database.
A query image Iq selected from the A images is classified into one of the C classes with
the K-NN classifier that performs the K-NN similar image retrieval against the remaining
A− 1 images where K = 5. Let #correct be the number of query images categorized into
the ground-truth class. Then, the accuracy rate is defined as #correct

A .
The maximum number of words in an LZW dictionary is set to 4096.

4.1. Comparison of Accuracy Rate

We compare the recognition accuracy rate between the raw base dictionaries created
by the dictionary selection algorithm and those modified by our editing methods REVIVAL
and VOCAB. The experiment procedure proceeds as follows: First, an arbitrary dictionary
selection algorithm chooses the base dictionaries and lets them span the compression-based
feature space. Then, REVIVAL and VOCAB modify the chosen base dictionaries and span
the two other CV spaces with the modified dictionaries. Then, we compare the accuracy
rate of CV space between the raw base dictionaries and those modified by our methods
REVIVAL/VOCAB. To highlight the effect of word reassignment, we also prepare the
base dictionaries which simply exclude the common words from the raw base dictionaries
without reassigning words according to the procedure in Section 3.1. This method is named
as “NO_COMMON”.

We implement the two dictionary selection algorithms in the literature, i.e., PRDC [6]
and SUPERVISED [9]. Regarding PRDC, we let the temporal CV space have the same
number of dimensions as the final CV space. According to the notations in Section 2.2,
L = N. On the other hand, SUPERVISED is implemented in such a way that the N base
dictionaries are derived by randomly gathering N

C objects per class.
Figure 5 shows the accuracy rates achieved by various base dictionaries for the UC

MERCED dataset, when the dictionary selection algorithm is PRDC. In this graph, the
raw base dictionaries are assigned a legend “PRDC”. Figure 6 presents the result when
the dictionary selection algorithm is SUPERVISED. Again, the raw base dictionaries are
assigned a legend “SUPERVISED”. Here, we vary N, and the number of base dictionaries is
in the range from 5 to 35. Since both PRDC and SUPERVISED are randomized algorithms,
the average values over 10 trials are plotted.
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Figure 5. Accuracy rate for UC Merced land use dataset: PRDC.
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Figure 6. Accuracy rate for UC Merced land use dataset: SUPERVISED.

In both of the graphs, REVIVAL, VOCAB, and NO_COMMON are more accurate
than the raw base dictionaries except for the only case when N = 5 for VOCAB. Thus,
our approach to raise the independence among the base dictionaries by prohibiting any
common words definitely enhances the quality of the CV spaces.

For instance, for N = 35, the accuracy rate becomes 0.747 for REVIVAL, while PRDC
attains the accuracy rate of 0.666. Therefore, the performance gain of REVIVAL relative
to PRDC grows 11.2%. Similarly, the accuracy rates for REVIVAL and SUPERVISED
become 0.735 and 0.676 when N = 35, so that the relative performance gain becomes
10.9%. Remarkably, PRDC and SUPERVISED are hard to increase the accuracy rate by
augmenting the number of dimensions for N ≥ 20. These results are interpreted as follows:
The approach to choose various dictionaries based on the object-level dissimilarity fails
to enrich the variety of chosen dictionaries for large N values, since many words are
common to multiple dictionaries. By contrast, our method smartly keeps the dictionaries
independent of one another even for large N values by imposing the constraint that
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any word belongs to only one dictionary. In fact, for N = 10, the 10 dictionaries hold
about 26,900 words in total after the common words are removed, whereas they possess
4096× 10 = 40,960 words originally. Therefore, 40,960−26,900

40,960 × 100 ≈ 34% of the words in
the dictionaries are redundant and deteriorate the independence among dimensions.

Next, NO_COMMON is always defeated by REVIVAL except when the dictionary
selection algorithm is PRDC and N = 5. This result can be explained in the following way:
As stated in Section 3.2, in NO_COMMON, a base dictionary di stores a few words, if i is
sufficiently large. Since such di cannot compress objects well, the dimension associated
with di does not have rich expressive ability and is dominated by other dimensions with
smaller subscripts. To illustrate the above situation comprehensively, we examine the
variance over 500 compression vectors calculated from the 500 images in the UC Merced
dataset per dimension. The two pie charts in Figure 7 summarize the variance of each
dimension for REVIVAL and NO_COMMON, when N = 20. Starting from the top, the
pie charts arrange the variances of all the dimensions in counterclockwise order. For
NO_COMMON, the variance of di almost monotonically decreases as i augments. The
reason why the variance becomes low is that the compression ratio becomes large and close
to 1 for many objects. Thus, for instance, d1, d2, and d3 have by far larger variances than
the last 10 dictionaries and dominate them in compression vectors. Thus, the backward
dimensions are not very useful for pattern recognition. By contrast, REVIVAL suppresses
such dimensions whose variances are extremely high or low, since all the dictionaries have
the same number of words. Thus, the dimensions in the CV space cooperate better in
REVIVAL than in NO_COMMON.

Finally, REVIVAL outperforms VOCAB for the UC Merced Dataset. This result implies
that the base dictionaries are desirable to retain the structure of raw base dictionaries
derived from real objects rather than to destroy it completely. We will discuss this point
later after reporting the recognition accuracy for the Wang database.

(a) REVIVAL (b) NO_COMMON

Figure 7. Variance of coordinate values in compression-ratio vectors per dimension: Comparison
between REVIVAL and NO_COMMON. For NO_COMMON, more dimensions take very small
variances and are not descriptive than REVIVAL.

For the Wang database, Figures 8 and 9 illustrate the accuracy rate when the dictionary
selection algorithm is PRDC and SUPERVISED, respectively. To obtain exactly the same
number of base dictionaries from the 10 object classes, N is set to be a multiple of 10, when
we deal with SUPERVISED. In the same way as the UC Merced dataset,

• REVIVAL, VOCAB and NO_COMMON evidently achieve higher accuracy rates for
any N than the raw base dictionaries.

• REVIVAL outperforms NO_COMMON regardless of the dictionary selection algo-
rithm.
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Figure 9. Accuracy rate for Wang database: SUPERVISED.

However, this experiment gets one significant difference from the result with the
UC Merced dataset: VOCAB is the most accurate and excels to REVIVAL. We consider
that this difference is attributed to the nature of the pattern recognition task. For the UC
Merced dataset, we need to infer the class of land cover. This recognition task is very
similar to texture recognition. Thus, every part of an image is uniformly useful for class
recognition. On the other hand, the Wang database demands to recognize objects such
as horses, elephants, buildings, roses, foods, and buses. An image Ia with an instance of
these classes usually consists of the foreground and the background as in Figure 4, and
only the foreground is the objective of recognition. Here, a compression dictionary da,
which LZW generates from Ia, mixes the words from Ia’s foreground region and those
from Ia’s background region. Then, even if da compresses a test image Ib well, it does not
always mean that Ia’s foreground does exist in Ib because it is possible that Ib contains
Ia’s background only. In this way, da is not optimized for the detection of Ia’s foreground.
REVIVAL and NO_COMMON inherit this property, since they try to retain the structure of
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da. VOCAB uses a base dictionary which collects words whose prefixes are similar. In the
context of image processing, words with similar prefixes correspond to pixel sequences
with similar colors. Thus, the base dictionaries in VOCAB are tailored to recognize the
foreground or the foreground component of a uniform color. After all, VOCAB works
accurately, since some dimensions in the CV can measure the likelihood of existence for the
foreground (or foreground components).

Thus, the experimental results for our two datasets indicate that the optimal construc-
tion of base dictionaries depends on the recognition task.

4.2. Independence among Feature Dimensions

Regarding REVIVAL and PRDC, we evaluate how the feature dimensions are cor-
related quantitatively with the UC Merced dataset. For N = 10, we first generate the
compression-ratio vectors for all the 500 images. Then, we compute the Pearson correlation
coefficients between the two dimensions i and j satisfying 1 ≤ i, j ≤ N, i 6= j from the i-th
coordinate values and the j-th coordinate values for the 500 CVs. The matrix in Table 2
summarizes the result where the ij element shows the absolute value of the correlation
coefficient between the two dimensions i and j. In particular, the upper-right triangle
submatrix displays the correlation coefficients for REVIVAL, whereas the lower-left triangle
submatrix lists those for PRDC. This matrix reports the experimental result of a typical
single trial. The matrix elements greater than 0.6 are written in boldface. Obviously, there
are more figures in boldface in the lower-left submatrix than in the upper-left submatrix,
which means that more dimension pairs are correlated in PRDC than in REVIVAL. The
average value of correlation coefficients over all dimension pairs becomes 0.401 for PRDC
and 0.320 for REVIVAL. Thus, we suppose that the high accuracy rate of REVIVAL is gained
by increasing the independence among feature dimensions.

Table 2. Correlation coefficient between feature dimensions (absolute values); upper-right triangle
submatrix: REVIVAL, lower-left triangle submatrix: PRDC.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

d1 0.340 0.508 0.160 0.581 0.598 0.530 0.496 0.463 0.173
d2 0.011 0.509 0.536 0.824 0.114 0.218 0.045 0.275 0.213
d3 0.285 0.714 0.016 0.516 0.455 0.187 0.359 0.218 0.484
d4 0.199 0.387 0.118 0.539 0.242 0.234 0.148 0.142 0.120
d5 0.214 0.878 0.843 0.238 0.288 0.453 0.046 0.322 0.175
d6 0.540 0.074 0.143 0.476 0.168 0.664 0.133 0.675 0.252
d7 0.081 0.649 0.832 0.006 0.810 0.217 0.170 0.740 0.061
d8 0.650 0.268 0.160 0.116 0.114 0.718 0.166 0.217 0.045
d9 0.357 0.374 0.314 0.174 0.272 0.815 0.146 0.831 0.001
d10 0.386 0.650 0.585 0.160 0.648 0.361 0.725 0.591 0.563

4.3. Execution Time

We evaluate how efficient our method becomes by comparing the execution time for
the UC Merced dataset between REVIVAL and PRDC. The experimental platform is a PC
with Intel Core i7-3770 CPU @3.40 GHz, 16 GB memory Fixing N to 20, we report the
execution time for the next four procedures in Table 3.

• (Procedure 1) PRDC chooses the N base dictionaries D = {d1, d2, · · · , dN} at the
beginning.

• (Procedure 2) modifies the N dictionaries in D.
• (Procedure 3) After the N dictionaries are determined, the CVs are generated for all

the objects in the UC Merced Dataset.
• (Procedure 4) classifies every object in the dataset with the K-NN classifier in the

leave-one-out manner.

Note that (Procedure 2) is necessary only for REVIVAL, and PRDC skips it. The other
three procedures are performed by both REVIVAL and PRDC.
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Table 3. Comparison of execution time between REVIVAL and PRDC.

REVIVAL PRDC

(1) Selection of Initial Base Dictionaries [ms] 23,551 23,516

(2) Dictionary Modification [ms] 342 0

(3) Generation of CVs [ms] 25,734 24,358

(4) Object Classification [ms] 57 56

From Table 3, we can see that (Procedure 1) and (Procedure 3) dominate the total
execution time. These two procedures are quite time-consuming, as they perform the
LZW data compression many times. For example, to generate 20-dimensional CVs for
the 500 objects in the UC Merced Dataset, we must repeat the LZW data compression
500× 20 = 10,000 times. While the total execution time of REVIVAL is not very different
from that of PRDC, the cost of our dictionary editing in (Procedure 2) is negligible relative
to that of data compression in (Procedure 1) and (Procedure 3).

5. Conclusions

This paper studies the CV (compression-ratio vector) space for compression-based
pattern recognition. We present a technique to modify the given base dictionaries which
form the dimensions of the CV space. In particular, we edit the base dictionaries so that
any two different base dictionaries never may have any common words. This technique
increases the independence among the dimensions and raises the quality of the CV space.
Although the above idea is quite natural, it has not been addressed so far in the research
area of compression-based pattern recognition whose original concept is to evaluate the
similarity between two real objects with the compression ratio. We break away from this
concept and dare to modify the base dictionaries in order to make a refined CV space.
To further improve the recognition accuracy, we also adjust the assignment of words to
dictionaries after removing common words. In particular, we invent two methods REVIVAL
and VOCAB. Whereas REVIVAL maintains the structure of raw base dictionaries which
LZW extracts by compressing real objects to some extent, VOCAB dares to discard it
completely.

In the application to image classification, our approach to eliminate common words
from the base dictionaries achieved higher recognition accuracy than the base case without
it. We confirmed that our method surely reduces the correlation coefficients among the
dimensions of the CV space. We also showed that the word reassignment can improve the
recognition accuracy as compared with the approach to simply delete common words. The
experimental results with two image datasets show that the optimal word reassignment
depends on the pattern recognition task.

An important future work of this research is to pursue the relation between the optimal
word reassignment and the given dataset. Another research direction is to give a theoretical
analysis, which explains the reason why our algorithm works well.
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