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Abstract: The mass of redundant and irrelevant data in network traffic brings serious challenges to
intrusion detection, and feature selection can effectively remove meaningless information from the
data. Most current filtered and embedded feature selection methods use a fixed threshold or ratio to
determine the number of features in a subset, which requires a priori knowledge. In contrast, wrapped
feature selection methods are computationally complex and time-consuming; meanwhile, individual
feature selection methods have a bias in evaluating features. This work designs an ensemble-based
automatic feature selection method called EAFS. Firstly, we calculate the feature importance or
ranks based on individual methods, then add features to subsets sequentially by importance and
evaluate subset performance comprehensively by designing an NSOM to obtain the subset with the
largest NSOM value. When searching for a subset, the subset with higher accuracy is retained to
lower the computational complexity by calculating the accuracy when the full set of features is used.
Finally, the obtained subsets are ensembled, and by comparing the experimental results on three
large-scale public datasets, the method described in this study can help in the classification, and also
compared with other methods, we discover that our method outperforms other recent methods in
terms of performance.

Keywords: cyber security; intrusion detection system (IDS); automatic feature selection; normalized
score of mixed (NSOM); ensemble method

1. Introduction

As technology advances, there are even more devices connected to the Internet and
data traffic on the network increases. This results in the Internet facing an increased attack
surface, increasing the possibility that the network will be destroyed and that this threat
will always be present [1]. The resulting risk of property damage and information leakage
caused by cyberattacks is becoming an important issue in need of a solution [2]. Intrusion
detection systems (IDSs) can identify network attacks, including unauthorized access,
denial of service attacks, etc. [3].

Anomaly-based detection, misuse-based detection, and hybrid detection are the most
common types of intrusion detection systems [4,5]. Traditionally, anomaly detection and
misuse detection have been studied from two perspectives [6]. Anomaly-based detection
first establishes a normal network access pattern and then accesses that are found to be
different from the normal pattern are judged to be anomalous. An anomaly-based IDS has
the advantage of being able to detect known attacks and 0-day attacks, and the disadvantage
is the high false alarm rate [7]. The misuse-based intrusion detection technique compares
the behavior of an attacker trying to compromise the system with the activity behavior of a
known user. It compiles a library of known malicious characteristics, which may then be
compared to detect known assaults [8]. An IDS that is based on misuse does not produce
a huge false-positive rate, but it does not discover new attacks and the feature database
needs to be continuously updated [4].
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As the network traffic continues to increase, the amount of data generated is getting
enormous, which increases the computational cost to some extent [9]. Furthermore, the data
contain redundant and irrelevant information, resulting in lower classification accuracies
and more false positives [10]. The process of selecting the most useful features for a model
is known as feature selection. It reduces the dimensionality and computational cost of the
data and improves the classifier’s performance, and it is more useful for visualization and
human understanding [10,11].

Currently, the main feature selection methods are based on filtered, wrapped, and em-
bedded methods [19]. The filtered method calculates the correlations between both features
and labels, as well as between features, before ranking the features and selecting the top-
ranked features as feature subsets [10]. Meanwhile, the wrapped method is a model-based
feature selection, which optimizes the search subset by evaluating the objective function
of the model to obtain the best subset [12]. The advantage of the filtered approach is that
it is computationally efficient while not relying on a specific classification algorithm; the
disadvantage is that the performance is slightly worse [13]. Wrapped methods have the
advantage of good performance but require a search of the feature space and face the prob-
lem of a long search time [14]. Embedded methods combine the classification process with
the feature selection process [15] and perform feature selection along with classification,
depending on the specific classification algorithm. Moreover, ensemble feature selection
models can address the bias of individual methods for feature evaluation and enhance the
performance of feature subsets [16–21].

This paper designs a novel intrusion detection framework that removes irrelevant and
redundant features to improve the model detection accuracy and reduce the training time.
The following is a list of our contributions.

1. This paper proposes an automatic feature selection method and designs a hybrid
normalized score of mixed (NSOM) for the comprehensive evaluation of a subset
performance. This method is able to select feature subsets dynamically and overcome
the drawback of fixed thresholds.

2. In this paper, an ensemble feature selection method is designed to improve the
performance of feature subsets in classification by the intersection and union of
different subsets.

3. The methodologies designed in this paper are validated on the UNSW-NB15, CIC-
IDS2017, and CSE-CIC-IDS2018 datasets and compared with the latest results. The out-
comes of the experiments suggest that our framework can produce better results.

The remainder of this work is constructed as follows. The development of the re-
search on feature selection-based intrusion detection systems is presented in the Section 2.
The method proposed in this research is detailed in full in the Section 3. The Section 4
contains the experimental results and analyses. In the Section 5, a summary of the entire
article is presented.

2. Related Work

In intrusion detection systems, as network attacks become more complex and network
traffic features become more numerous, it is easy to fall into dimensional disasters [10,22].
Selection is the method of determining a subset of features from the initial feature set
that can be classified correctly [23] by minimizing the number of features, decreasing the
computation time, and increasing model accuracy.

Bansal et al. [24] used XGBoost for data classification, and the experimental results
on the CIC-IDS2017 dataset showed that XGBoost was more accurate than other methods.
Fitni et al. [25] used the Spearman correlation coefficient to select important features from
the CSE-CIC-IDS2018 dataset and achieved an accuracy of 98.8% on the integrated model.
Lin et al. [26] utilized a Long Short Term Memory Network (LSTM) with the attention
mechanism incorporated to identify attacks and imbalance processing using SMOTE and
achieved 96.2% accuracy on the CSE-CIC-IDS2018 dataset.
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A wrapped method based on a swarm intelligence search was also applied to choose
the greatest subset. Chaouki et al. [27] applied a genetic algorithm to determine the optimal
subset, and experiments on the KDD CUP99 and UNSW-NB15 datasets showed that the
performance after feature reduction remained essentially the same as the original features.
Zhou et al. [28] combined correlation and bat optimization to classify using an ensemble
classifier with multi-classification accuracies of 99.81% on the NSL-KDD dataset, 99.52%
on the AWID dataset, and 99.89% on the CIC-IDS2017 dataset. Nazir et al. [29] proposed
a taboo search–random forest (TS-RF)-based wrapped feature selection method, which
can minimize the number of features and the number of false alarms while improving
the classification accuracy. On multiple datasets, Farahani et al. [30] suggested a Cross-
Correlation (CCFS)-based feature selection method, which was compared to the Cuttlefish
optimization method and mutual information, and the method achieved better results in
several metrics, such as accuracy and precision. Benmessahel et al. [31] combined the locust
swarm optimization (LSO) algorithm with a feedforward neural network. This contributed
to improving the algorithm convergence speed and reducing the possibility of falling into
local optima, achieving detection rates of 99.33% and 89.83% on the NSL-KDD and UNSW-
NB15 datasets, respectively. Vijayanand et al. [32] proposed a genetic algorithm-based
selection method that achieves better results for the evaluation of the CIC-IDS2017 dataset
by selecting the important features of each class of attacks.

For filtered and embedded methods, there are no clear criteria for determining the
subset size or threshold. On the KDD CUP99 dataset, Akashdeep et al. [33] selected features
based on information gain and relevancy. Then, the features were divided into a group of 10
by importance and taken as merged and intersected sets, respectively. Finally, they achieved
better results in the attack classes. Selvakumar et al. [34] combined filtered and wrapped
methods on the KDD Cup99 dataset and finally used the selected 10 features to improve
the detection performance while reducing the computation time. Kshirsagar et al. [35]
combined information gain and correlation by selecting 0, 0.25, and 0.5 thresholds, union
features greater than 0.5, intersecting features between 0.25 and 0.5, removing features less
than 0.25, and finally merging to obtain the selected subset. Krishnaveni et al. [21] used a
univariate integrated feature selection technique combined with the majority voting for
validation on the NSL-KDD dataset, based on 10–100% of the different proportions selected
for the experiment, and the accuracy and stability were improved. Osanaiye et al. [20]
used a multi-filtered approach to obtain different feature sequences and then selected
the features in the top third of the different approaches. Finally, based on the number of
occurrences of the features, a subset of features with at least three occurrences was obtained.
Muthamil et al. [36] first used multiple methods for selection and then selected the features
that were selected no less than three times as the input to the later classifier. Bhatia et al. [37]
selected the top one-third of features from different methods on the NSL-KDD dataset and
then combined them. Finally, the number of features was then reduced to 10 by determining
the best features subset according to the ant colony algorithm. Although the above studies
clarify the criteria for selecting subsets, they are not yet uniform, so metrics are needed to
measure subset sizes comprehensively.

The ensemble approach achieves better performance by integrating the results of mul-
tiple feature selection methods. Binbusayyis et al. [21] first selected the respective subset
of features using four filtered methods and then combined the features that were selected
more than three times to form a new subset, achieving an experimental accuracy of 95.87%
on the UNSW-NB15 dataset and 99.88% on the CIC-IDS2017 dataset. Femi et al. [38] com-
bined the CfsSubsetEval correlation model, the genetic algorithm-based wrapper model,
and the rule-based model serially. The final selected subset was input to an artificial neural
network (ANN) for classification. On the UNSW-NB15 dataset, the accuracy was 98.8%.
Karna et al. [39] used mutual information, Chi-square, and Pearson correlation coefficients
to combine a more stable subset of features. It achieved 99.16% accuracy on the CIC-IDS2017
dataset using 25 features. Shubhra et al. [40] used the maximum correlation–minimum re-
dundancy algorithm (mRMR), joint mutual information (JMI), and maximization of mutual
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information (CMIM) to select the top features and then combined them into a new feature
subset using frequency voting on the CIC-IDS2017 dataset with an accuracy of 99.25%.
Leevy et al. [41] evaluated seven methods and finally selected features that appeared more
than twice in these seven subsets, achieving a classification F1 score of 95.68% using Light-
GBM on the CSE-CIC-IDS2018 dataset. Ensemble feature selection methods are all used
to achieve stronger and more stable classification results by integrating various feature
selection approaches’ outcomes, where different integration strategies can also have an
impact on the classification results.

3. Materials and Methods

To increase the intrusion detection system’s identification capability and efficiency,
an ensemble automatic feature selection method (EAFS) is designed in this paper. The im-
portance or ranking of each feature is initially calculated using various base approaches
in feature selection, and then the features are added to the subset sequentially according
to their importance. An NSOM is designed to evaluate the subset performance compre-
hensively. After obtaining a subset for each method, the final feature subset is obtained by
ensembling the methods. Figure 1 illustrates the designed intrusion detection framework,
which consists of four main components.

• Data pre-processing: converting the raw data into the data format required by the clas-
sifier, as well as performing a series of operations such as numerical and normalization
of the data;

• Feature selection: to remove irrelevant and redundant features and improve model
performance, we implement an ensemble automatic feature selection method;

• Classifier training: to test the efficiency of the proposed strategy, RF and DT classifiers
are trained using selected subsets;

• Attack identification: to verify the effectiveness and generalization of the method, we test
it on multiple intrusion detection public datasets using a 5-fold cross-validation method.

Figure 1. Feature selection framework diagram.

3.1. Benchmark Dataset

The UNSW-NB15 dataset [42] is a collection of network traffic from the University of
New South Wales in Australia, and it contains a relatively complete set of normal activities
and nine types of attack activities. The dataset has a total of 47 feature variables, and the
last two columns are binary and multi-categorical labels, respectively.

The CIC-IDS2017 dataset [43] was collected by the Canadian Institute for Cybersecurity
Research at the end of 2017. The dataset includes the most recent cyberattacks, close to
real-world data. A total of seven types of attacks are implemented. The dataset has a total
of 2,830,743 records, each containing 78 different features.

The CSE-CIC-IDS2018 dataset [43] is collected on a larger network than the IDS2017
dataset, with a sample size of 10 million, and contains a more comprehensive set of attack
types. It contains seven attack scenarios. A total of 83 statistical features are generated, such
as duration, the number of packets, bytes, packet length, etc. Table 1 shows the distribution
of the three datasets mentioned above.
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Table 1. Statistics of UNSW-NB15, CIC-IDS2017, and CSE-CIC-IDS-2018 datasets.

UNSW-NB15 CIC-IDS2017 CSE-CIC-IDS-2018

Class Numbers Class Numbers Class Numbers

Benign 2,218,764 Benign 2,273,097 Benign 13,484,708
Exploits 44,525 DDOS 128,027 DDOS 1,263,933

Reconnaissance 13,987 DOS 252,661 DOS 654,300
DoS 16,353 Bot 1966 Bot 286,191

Generic 215,481 Patator 13,835 Brute Force 380,949
Shellcode 1511 Heartbleed 11 Infiltration 161,934
Fuzzers 24,246 Infiltration 36 Web Attack 928
Worms 174 PortScan 158,930

Backdoors 2329 Web Attack 2180
Analysis 2677

Total 2,540,047 Total 2,830,743 Total 16,232,943

3.2. Data Pre-Processing

Numeric and character-based features are included in the intrusion detection dataset,
and some features contain infinite and missing values. Because most machine learning
and deep learning methods can only work with numerical data, it is necessary to convert
non-numerical features in the dataset to numerical features so that they can be analyzed
and processed efficiently using methods such as machine learning [44].

For the three features of “proto”, “state”, and “service” in the UNSW-NB15 dataset,
the category features are sequential integers. The timestamp data in the CSE-CIC-IDS2018
dataset is removed.

Meanwhile, noise and duplicate data exist in the dataset. In the CIC-IDS-2017 dataset,
there are two identical columns, Fwd Header Length and Fwd Header Length.1, and this
paper removes the column feature of Header Length.1. For the CSE-CIC-IDS-2018 dataset,
there are 4 features in the file “Thuesday-20-02-2018_TrafficForML_CICFlowMeter.csv”,
which are Flow ID, Src IP, Src Port, and Dst IP, but there are no such features in other files,
so we will delete them for consistency.

Observing the dataset reveals that there are missing values and infinity values in the
file, which will directly affect the subsequent data processing. In this paper, missing values
are filled with 0, while infinity values are substituted with the column’s maximum value
plus one.

It also uses standardization techniques to standardize the data to a uniform range
and accelerate the data convergence [45]. As shown in Equation (1), the feature values are
scaled to a distribution with a mean of 0 and a standard deviation of 1 using this method.

x′ =
x− µ

σ
, (1)

where x is the initial value, x′ is the standardized value, and µ and σ are the mean and
standard deviation, respectively.

3.3. Feature Selection

In this paper, we compare the Pearson correlation coefficient (PCC), mutual infor-
mation (MI), mRMR, ET, and XGBoost algorithms, respectively. Among them, Pearson
correlation coefficient, MI, and mRMR are filtered methods, which can quickly obtain the
importance of features by calculating the relationship between features and labels; ET
and XGBoost methods are embedded methods, which depend on classification algorithms
to quickly evaluate the performance of subsets. Filtered and embedded methods can re-
duce computational costs when performing feature selection and are more efficient when
extended to high-dimensional datasets [16–21].

In the designed model, firstly, it calculates the variance of each feature, removes those
with zero variance as they are not beneficial for classification [27,46], and keeps those with



Information 2022, 13, 314 6 of 15

relatively high variance for the next step of feature selection. Then, it calculates the feature
importance for each method and saves them in the list in descending order of importance.
Thirdly, the prediction accuracy ACC for all features is calculated, which is used to limit
the size of the subset; this is the reason that if the accuracy of a subset is worse than the
accuracy using all features, then its performance is unlikely to be optimal. In the fourth step,
based on the ranked list, features are added to the subset sequentially using the forward
floating search method, starting with the most important features, and the performance
of each subset is evaluated until ACC is reached. The NSOM is meant to evaluate subset
performance by integrating three independent sub-objectives: subset accuracy, subset
number of features, and subset training time. Finally, the target subset is determined by
having the highest NSMO. Algorithm 1 uses a single feature selection approach to calculate
each characteristic’s importance and rank them in descending order. The automatic feature
selection method’s pseudo-code is Algorithm 2.

Algorithm 1 Feature ranking algorithm

1: Input:The training set F = { fi, i = 1, 2, . . . , I}, i is the number of features;Feature
selection method FS

2: Output:The ranked subset of features Frank
3: for i = 1 to I do
4: Var=VarianceThreshold(F)
5: if Fi = 0 then
6: F′ = Remove Fi from F
7: end if
8: end for
9: Initialize FS Method

10: Fit FS(F′)
11: Get Fimp # Get the important of each feature
12: Frank = sorted(Fimp)
13: return Frank

Algorithm 2 Automatic feature selection algorithm

1: Input:Frank,Feature ranked list;N is total numbers of features;ACC is original accuracy.
2: Output:Feature subset F
3: for Fi in Frank do
4: if f sacc<ACC then
5: add Fi into Fselected
6: evaluate Fselected get acci,timei,numi
7: add acci to f sacc
8: add timei to f stime
9: add numi to f snum

10: end if
11: end for
12: output f sacc, f stime and f snum
13: accN=normalization( f sacc)
14: timeN=normalization( f stime)
15: numN=normalization( f snum)
16: scoretemp=0
17: for i = 1 in range(len( f sacc)) do
18: according Equation (2), calculate scorei
19: if scorei > scoretemp then
20: scoretemp = scorei
21: F=Frank[: i]
22: end if
23: end for
24: return F
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In evaluating the subset performance, this paper does not use the commonly used
evaluation functions because they tend to measure only a single metric. To consider the
performance of subsets comprehensively, this paper designs a normalized score of mixed,
which contains the accuracy of a subset’s classification, the number of features in a subset,
and the training time of a subset. Firstly, classification accuracy is a metric that is available
for every evaluation function. In addition, feature selection’s objective is to use as few
features as feasible to improve classification performance, so the number of features is
included in the evaluation function in this study, hoping to reduce the number of features
in the subset. For classifiers, facing a large amount of data often consumes a lot of time
to train, so while reducing the number of features, this paper considers the training time
of the classifier to reduce the time cost. The NSOM designed in this paper is shown in
Equation (2).

NSOM = FS_accN − α · FS_numN − β · FS_timeN , (2)

where α and β are the weight coefficients between [0,1], respectively; FS_accN , FS_numN ,
and FS_timeN are the normalized subset accuracy, the number of features contained in
the subset, and the training time, respectively. After normalizing NSOM, it takes values
between [0,1]. The closer the NSOM is to 1, the greater the subset’s performance.

The optimal subset of features for each method is obtained after processing by
Algorithm 2. However, there is a certain bias in the importance of individual methods for
different features, which affects the final classification effect. The subsets derived from mul-
tiple feature selection approaches are combined in this article using an ensemble strategy
to eliminate this bias. Given F as a dataset, each sample in F has m features and a category
label. Two feature selection meta-approaches are chosen after assessing the performance of
several methods, and let the sequence obtained by the ith method for the features in order
of importance be Fi = (ai1, ai2, . . . , aim), then for the intersection of two feature subsets,
defined as follows: F(inter) = F1∩ F2, for the union of two feature subsets is defined as
F(union) = F1 ∪ F2. By combining the feature subsets, F(inter) contains some important
features commonly recognized by both methods, and F(union) contains features that can be
more effective by combining, and the effectiveness of the methods is verified on decision
trees and random forests classification algorithms.

4. Results and Analysis
4.1. Experimental Environment and Setup

The algorithm process designed in this paper is based on a Python implementation
using the scikit-learn toolkit to simulate experiments on a machine with an Intel(R) Core™
i9-9900KF CPU at 3.6GHz. The UNSW-NB15, CIC-IDS2017, and CSE-CIC-IDS2018 datasets
were used to test the model’s performance. The number of samples in the dataset used
in the experiments ranges from millions to tens of millions, covering different kinds of
attacks, which are in line with modern real-network scenarios and can be a good evaluation
of an IDS performance. All experimental results in this work are acquired using 5-fold
cross-validation to avoid the impact of randomness on the results.

4.2. Evaluation Metrics

The evaluation metrics used in this paper include accuracy (Acc), detection rate (DR), F1
score, and false alarm rate (FAR). The metrics are calculated as shown in Equations (3)–(6).

Acc =
TP + TN

TP + TN + FP + FN
, (3)

Precision =
TP

TP + FP
, (4)

DR = Recall =
TP

TP + FN
, (5)
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F1 = 2 ∗ Pr ecision ∗ Recall
Pr ecision + Recall

, (6)

FAR =
FP

FP + TN
, (7)

4.3. Automatic Feature Selection Performance Analysis

This study compares the suggested feature selection method against one that does
not include feature selection to assess its performance. Table 2 shows the performance
comparison on the UNSW-NB15, CIC-IDS2017, and CSE-CICIDS2018 datasets. On the
UNSW-NB15 dataset, the proposed method achieves 98.37% accuracy and a 98.31% F1 score,
and the training time is reduced by more than half. When compared to no feature selection
on the CIC-IDS2017 dataset, the proposed feature selection strategy will perform better,
while the time after feature selection is greatly reduced, especially on the DT classifier, which
is more than three times. The false alarm rate on the RF classifier is reduced to 0.085%.
Moreover, based on the CSE-CIC-IDS2018 dataset, the accuracy after feature selection
reaches 99.04%, especially in terms of training time, which is greatly reduced compared to
using all features. It is also evident that the designed feature selection approach is critical
for increasing the efficiency of large data detection.

Table 2. Classification performance based on the different dataset.

Classifier Acc(%) DR(%) F1(%) FAR(%) Training Time(s) Predicted Time(s)

Comparison of classification performance on the UNSW-NB15 dataset

RF 98.31 98.31 98.24 1.70 42 1.78
DT 98.19 98.19 98.14 1.83 14 0.09

RF 98.37 98.37 98.31 1.65 19 1.55
DT 98.30 98.30 98.25 1.72 6 0.09

Comparison of classification performance on the CIC-IDS2017 dataset

RF 99.90 99.90 99.90 0.10 139 2.21
DT 99.87 99.87 99.87 0.13 107 0.13

RF 99.92 99.92 99.91 0.09 79 1.80
DT 99.88 99.88 99.88 0.12 24 0.07

Comparison of classification performance on the CSE-CIC-IDS2018 dataset

RF 98.93 98.93 98.77 1.07 1596 21
DT 98.73 98.73 98.69 1.27 1127 0.83

RF 99.04 99.04 98.83 0.96 243 12
DT 99.03 99.03 98.83 0.97 40 0.30

In previous problems of selecting the number of subsets for features, in the face of
filtered and embedded methods, many used artificially set ratios to select features or those
based on fixed thresholds [18,20,33–37]. Such methods are significantly subjective and
require empirical knowledge, and they do not adequately consider the applicability to
different scenarios. The top 10% and 30% of features were chosen for comparison with
the regularly used selection ratios to demonstrate the efficiency of the method presented
in this research. Figure 2 compares the experimental results of the three datasets under
different proportions.
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Figure 2. Performance comparison with other selection strategies.

As can be seen from Figure 2, for the UNSW-NB15 and CIC-IDS2017 datasets, the per-
formance of the classifier is poor when the proportion reaches 10%, and the accuracy is even
lower compared to the original features, only 96.85% and 98.76%, respectively. This is be-
cause when only the top 10% of the features are selected, it is not enough to retain the most
critical features in the original dataset, and a part of the useful information is lost, leading to
the degradation of the classifier performance. In contrast, for the CSE-CIC-IDS2018 dataset,
the best performance has been achieved when 10% of the features are selected, which is
consistent with the feature subset selected by the method designed in this paper, and both
achieved the best performance with 99.04% accuracy. When the first 30% of the subset is
selected, the UNSW-NB15 and CIC-IDS2017 datasets are the same as the features selected
by the method designed in this paper, and the performance also remains consistent with an
accuracy of 98.37% and 99.91%, respectively. For the CSE-CIC-IDS2018 dataset, the effect is
significantly lower when the first 30% of the features are selected, which is because, for the
CSE- CIC-IDS2018 dataset, the best feature set can be selected quickly using the method
designed in this paper, and when further features are added, it is equivalent to adding
redundant information, resulting in a lower classification performance.

4.4. Ensemble Feature Selection Performance Comparison

In this section, to select the method with a better performance for the later ensemble
feature selection method, several commonly used feature selection methods are compared,
including five methods such as the Pearson correlation coefficient, mutual information,
mRMR, ET method, and XGBoost. Figures 3 and 4 reveal the obtained experimental results.

The above comparison reveals that for the UNSW-NB15 dataset, the best two of these
methods are the ET algorithm and the mRMR method, respectively. For the CIC-IDS2017
dataset, the XGBoost and ET algorithms achieve better results and lower false alarm rates,
so these two methods are chosen as the meta-methods for feature subset integration on
the CIC-IDS2017 dataset later in this paper. For the CSE-CIC-IDS2018 dataset, it is clear
that the subsets obtained using the two methods, the ET algorithm and mRMR algorithm,
respectively, achieved the best classification performance and maintained a low false alarm
rate. After identifying the two methods with the best performance on each dataset, this
paper combines the subsets obtained by these two methods and compares the performance
when taking the intersection and the union, respectively.
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Figure 3. Comparison of accuracy of different methods.

Figure 4. Comparison of false alarm rate of different methods.

Figures 5 and 6 compare the performance of the different combined approaches for
each dataset on the RF and DT classifiers, respectively. In Figure 5, the UNSW-NB15
dataset achieves a classification accuracy of 98.41% and all other metrics are better than
the original dataset. The CIC-IDS2017 dataset shows a slightly higher accuracy, detection
rate, and F1 score when compared to the dataset without feature selection, and the false
alarm rate decreases to 0.09%. On the CSE-CIC-IDS2018 dataset, the ensemble approach
achieved better results, especially the false alarm rate was reduced to less than 1%, reaching
0.96%. In Figure 6, for UNSW-NB15, the highest accuracy of 99.34% was achieved using
the ensemble feature subset and the false alarm rate was reduced to 1.69% compared
to the original dataset. Compared with these two separate methods, the accuracy was
improved by 0.12%. On the CIC-IDS2017 dataset, the ensemble method maintained a
similar classification performance compared to the original dataset. On the CSE-CIC-
IDS2018 dataset, the accuracy of the ensemble feature subset reached 99.03%, and the
detection rate was 99.03%, F1 score was 98.82%, and the false alarm rate was 0.97%,
respectively, compared to the accuracy of 98.73% on the original dataset.
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Figure 5. Using an RF classifier to compare the accuracy of several datasets.

Figure 6. Using a DT classifier to compare the accuracy of several datasets.

5. Discussion

We compare the effectiveness of the approach described in this research to earlier
studies to demonstrate its efficacy on the UNSW-NB15, CIC-IDS2017, and CSE-CIC-IDS2018
datasets. As the results show, we further demonstrate the effectiveness of the approach in
selecting the most useful information for intrusion detection in this paper. In Table 3, this
paper is compared with the latest research on the UNSW-NB15, CIC-IDS2017, and CSE-
CIC-IDS2018 datasets, and the comparison items shown include the feature selection
and classification techniques used, classification accuracy, and false alarm rate. For the
UNSW-NB15 dataset, this paper is compared to swarm intelligence search-based methods,
including GA [27], TS [29], and LSO [31], respectively, and the method designed in this
paper achieves the highest accuracy and the lowest rate of false alarms. In comparison with
ensemble strategies such as SCM3 [21] and RHF [38], the method in this paper also achieves
the highest accuracy, and although the false alarm rate of the RHF method is reduced to
1.3%, our method works better in terms of accuracy. Overall, the method in this paper has
more advantages.
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Table 3. Comparison of results on multiple datasets with the latest(%).

Dataset Reference Technology Acc DR F1 FAR

UNSW-NB15

Khammassi [27] GA-LR 81.42 - - 6.39
Nazir [29] TS-RF 83.12 - - 3.70

Benmessahel [31] LSO-FNN 95.42 99.33 95.98 9.40
Binbusayyis [21] SCM3-RF 95.87 97.40 - 7.40

Femi [38] RHF-ANN 97.60 - 97.70 1.30
This work EAFS-RF 98.36 98.36 98.31 1.65

CIC-IDS2017

Bansal [24] XGBoost 99.54 - - 0.237
Vijayanand [32] GA-SVM 99.85 - - 0.09

Zhou [28] CFS-BA 99.89 99.90 - 0.12
Binbusayyis [21] SCM3-RF 99.88 99.90 - 0.20

Karna [39] CPM-voting 99.16 - 99.17 -
Shubhra [40] EFW-SVM 99.25 99.52 - 0.007

This work EAFS- RF 99.92 99.92 99.92 0.08

CSE-CIC-IDS2018

Fitni [25] spearman 98.80 97.10 97.90 -
Lin [26] LSTM-Attention 96.20 96.00 93.00 -

Leevy [41] vote-LightGBM - - 95.88 -
This work EAFS- RF 99.04 99.04 98.83 0.96

For the CIC-IDS2017 dataset, the method in this paper achieved 99.92%, 99.92%,
and 0.08% for Acc, F1, and FAR, respectively. When compared to the classification results
obtained without the use of feature selection approaches, the accuracy of the classification
using the XGBoost [24] classifier is 99.54%, but the false alarm rate is 0.237%, which is nearly
three times higher than the false alarm rate of this paper. By comparing the swarm intelli-
gence search algorithms such as GA [32] and CFS [28], the method in this paper achieves
a higher accuracy and higher false alarm rate than these two methods. In comparison
with the ensemble feature selection strategies such as SCM3 [21], CPM [39], and EFW [40],
these three methods achieve 99.88%, 99.16%, and 99.25% accuracy, respectively, while the
accuracy of this paper reaches 99.92%, relative to the F1 value of 99.17% achieved by the
CPM method, which achieves an F1 value of 99.92%.

For the CSE-CIC-IDS2018 dataset, the method in this paper achieved 99.14%, 99.14%,
and 98.85% for Acc, DR, and F1, respectively. In the comparison with the classification
results without feature selection, the accuracy of the classification using LSTM [26] reached
96.2% and the detection rate was 96%. The classification accuracy, detection rate, and F1
values were 98.8%, 97.1%, and 97.9%, respectively, when using the feature selection method
with the Spearman correlation coefficient [25]. The classification F1 value was 95.68% when
the feature selection results were ensembled using the voting [41] integration strategy.
As seen in the table, the method proposed in this paper was able to achieve better results
than previous studies in these metrics that were compared.

Our proposed ensemble-based automatic feature selection method improves the clas-
sification performance while minimizing the training and prediction time, according to the
experimental data. The main reason for the better results of the method designed in this
paper is that, firstly, when selecting the best features for each dataset, the search range of
the subsets is reduced by the accuracy based on the full set, avoiding a large amount of time
consumption for a large-scale search. Secondly, the automatic feature selection method
designed in this paper can measure the performance advantages and disadvantages of
different subsets and integrate multiple metrics to evaluate the performance of subsets.
Third, the ensemble feature selection strategy takes into account the bias of different feature
selection methods for the same feature and obtains a subset with more general signifi-
cance. The above three reasons enable the method designed in this paper to select the
best subset and perform the classification prediction quickly and accurately in large-scale
data scenarios.
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6. Conclusions

For intrusion detection systems where the number of acquired traffic features is large
and redundant and irrelevant features tend to have a serious impact on the results, this
paper designs an ensemble-based automatic feature selection method, EAFS. Firstly, fea-
tures with zero variance are removed using a variance threshold. Next, the importance
or ranking of each feature is obtained using a separate feature selection method, and the
ranked features are gradually added to the subset selected. Then, the subset performance
is evaluated using the designed NSOM scores and the subset with the highest NSOM
value is taken as the final subset. Finally, the two methods with the best performance
on each dataset are obtained and the results are ensembled to reduce the bias of differ-
ent methods. Experiments are implemented on the commonly used intrusion detection
datasets, UNSW-NB15, CIC-IDS2017, and CSE-CIC-IDS2018, and after feature selection,
the final classification performance is improved compared to the original feature set. On the
UNSW-NB15 dataset, the classification accuracy and false alarm rate are 98.36% and 1.65%,
respectively. On the CIC-IDS2017 dataset, the classification accuracy, F1 value, and false
alarm rate are 99.92%, 99.92%, and 0.08%, respectively. On the CSE-CIC-IDS2018 dataset,
the classification accuracy, detection rate, and F1 value are 99.04%, 99.04%, and 98.83%.
The performance of our method also achieved good results in comparison with other works
of literature. In future research, we will continue to study automatic feature selection
and extend it to more selection methods, and we will also investigate the effectiveness of
lightweight classification models in time.
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