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Abstract: Scene classification is one of the most complex tasks in computer-vision. The accuracy of
scene classification is dependent on other subtasks such as object detection and object classification.
Accurate results may be accomplished by employing object detection in scene classification since
prior information about objects in the image will lead to an easier interpretation of the image
content. Machine and transfer learning are widely employed in scene classification achieving optimal
performance. Despite the promising performance of existing models in scene classification, there are
still major issues. First, the training phase for the models necessitates a large amount of data, which
is a difficult and time-consuming task. Furthermore, most models are reliant on data previously
seen in the training set, resulting in ineffective models that can only identify samples that are
similar to the training set. As a result, few-shot learning has been introduced. Although few
attempts have been reported applying few-shot learning to scene classification, they resulted in
perfect accuracy. Motivated by these findings, in this paper we implement a novel few-shot learning
model—GenericConv—for scene classification that has been evaluated using benchmarked datasets:
MiniSun, MiniPlaces, and MIT-Indoor 67 datasets. The experimental results show that the proposed
model GenericConv outperforms the other benchmark models on the three datasets, achieving
accuracies of 52.16 ± 0.015, 35.86 ± 0.014, and 37.26 ± 0.014 for five-shots on MiniSun, MiniPlaces,
and MIT-Indoor 67 datasets, respectively.

Keywords: scene classification; few-shot learning; computer vision; MIT-Indoor 67

1. Introduction

Scene classification (SC) is a complex task that relies on other sub-tasks, including
object detection (OD), object classification (OC), and texture classification. By employing
object detection in the scene classification, accurate results could be achieved as prior
knowledge about objects that exist in the scene will lead to an easier interpretation of the
image content. In contrast, semantic areas and knowledge about objects present in the
image may infer the scene type more precisely [1,2].

Machine learning is widely used in scene classification in both tasks: object detection
and object classification. Even though machine learning and deep learning achieved
optimal performance in simple tasks, such as object detection, which led to their usage
in more complex tasks, such as image scene classification, there is still a wide area of
improvement that could be performed. The models’ training phases need a significant
quantity of data, which is a challenging and time-consuming task. Furthermore, most
models rely on data from the training set, which results in useless models that can only
detect samples that are comparable to the training set. These limitations lead to the use of
few-shot learning in computer-vision tasks. Given the optimal performance of few-shot
learning in object detection, few attempts have been made in scene classification, including
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a few datasets for model evaluation. It is a fact that research in this area is still ongoing and
rising by the day, but it still faces a number of obstacles.

In this work, we propose a few-shot learning model that tackles the scene classification
challenge. By being generalized on three popular scene datasets, the model will overcome
the constraints of previously described models in scene categorization research regarding
the generalization of models and the classification accuracy.

Our proposed pipeline addresses the generalization of the scene classification task by
implementing a novel model that achieved unprecedented performance compared to the
previously reported models on three benchmarked datasets. Furthermore, the usability of
a new dataset rather than the used datasets to confirm the generalizability and validity of
our proposed model.

The rest of the paper is organized as follows. The following section gives a brief
literature review that highlights the limitations of scene classification research work. Then,
benchmark approaches, datasets, and evaluation metrics are presented. The proposed
model is then discussed. Experimental results obtained are then described. Finally, the
conclusion and direction for future work are presented.

2. Related Work

Scene classification is considered one of the most complex tasks in computer vision
research as it involves two other subtasks: object detection and object classification. The in-
terconnection between the aforementioned tasks makes it harder to achieve accurate results
in scene classification. Researchers apply the logistic solution by solving the two subtasks
with optimal performance, which will lead to accurate results in scene classification. Scene
classification approaches are divided into two categories: machine/deep learning algo-
rithms and few-shot learning algorithms. Machine learning and deep learning algorithms
seek to optimize model accuracy on specific datasets, whereas few-shot learning techniques
seek generalizability. The categories of scene classification approaches are presented in the
following sub-sections.

2.1. Machine Learning Approaches

Many attempts have been made at object detection using machine learning and deep
learning, as the goal of object detection is to create computational models and approaches
that give one of the most fundamental bits of data required by computer vision applications.
Furthermore, due to the adequateness of datasets and technologies in recent decades,
machine learning, and deep learning have been employed in computer vision to extract
knowledge and information from complex images [3]. Many attempts were made in the
era of scene categorization using diverse methodologies, as shown in Figure 1.

The first subtask is object detection, in which algorithms can be classified into three
main categories: traditional detectors, Conventional Neural Network (CNN)-based two-
stage detectors, and CNN-based one-stage detectors [4]. Initially, classical detectors were
inspired by P. Viola and M. Jones’ work 20 years ago, which designed a sliding window to
iterate over picture pixels and recognize faces in any window.

Furthermore, to increase accuracy, a Histogram of Oriented Gradient (HOG) is utilized,
which is computed on a dense grid of regularly spaced cells with overlapping local contrast
normalization (on “blocks”) [5–7]. The deep learning approach relies on the architecture of
Conventional Neural Networks (CNNs). It is an extension of the Neural Networks (NNs)
but with modifications in the connections between layers to ignore less important features
and include the vital features that will be used in the classification task. CNN is the most
used algorithm in deep learning that extracts the vital features from the image using the
Conventional layer that applies a filter to an image to produce a feature map that describes
the detection of features in the input. Then, it passes the output features to the pooling
layer that down-samples the feature map by sliding a two-dimensional filter over each
channel of the feature map and summing the features inside the filter’s region. The last
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layer is the fully connected layer which is the feed-forward layer that compiles the final
output as a probability assigned to each class of the input data representing the weights.

Figure 1. The distribution of publications and their citations over journals was collected using
“Machine learning in scene classification” as a search query on the PubMed database.

Moreover, as data and technology increased, CNN-based two-stage detectors were
adopted due to their capacity to extract critical information from complicated pictures.
Eventually, CNN-based one-stage detectors were utilized to achieve optimal accuracy in
object recognition algorithms such as Single Shot multi-box Detector (SSD) and You Only
Look Once (YOLO), which were extensively employed owing to their accurate time and
accuracy performance [8,9].

The second subtask is object classification, in which researchers seek to educate the
computer to mimic human brain functions by learning from past knowledge or experience.
The learning process begins with feeding the model training data including labels for each
image, and the model attempts to learn the pattern that maps the input images to their
labels. Then, we use unseen test images to evaluate the learned model.

For image classification, various models were employed initiated by Alex Krizhevsky
that was the primary designer of AlexNet. AlexNet rose to prominence after competing in
the ImageNet Large Scale Visual Recognition Challenge [10,11]. It had a top-5 mistake rate
of 15.3%. This was 10.8% less than the runner-up. The original paper’s main finding was
that the depth of the model was definitely necessary for its excellent performance. This
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was highly computationally expensive, but it was made possible by GPUs, or Graphical
Processing Units, during training. AlexNet has five convolutional layers, three max-
pooling layers, two normalization layers, two fully connected layers, and one softmax
layer. Convolutional filters and a nonlinear activation function ReLU are used in each
convolutional layer. To maximize pooling, the pooling layers are utilized. The input size is
mentioned at most of the places as 224 × 224 × 3 but due to some padding which happens
it works out to be 227 × 227 × 3.

In 2013, ZFNet came out on top in the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) with a substantial improvement over AlexNet. This work is a gold nugget
that serves as a foundation for numerous concepts, including deep feature visualization,
feature invariance, feature evolution, and feature significance. ZFNet is a modified version
of AlexNet that provides more accuracy.

The techniques differed significantly in that ZF Net utilized 7 × 7 filters whereas
AlexNet used 11 × 11 filters. The reasoning behind this is that they were losing a lot of
pixel information by using larger filters, which can be kept by using lower filter sizes in
the early conv layers. As they go deeper, the number of filters increases. This network,
like others, uses ReLUs for activation and was trained using batch stochastic gradient
descent [12]. In 2013, VGG was first proposed, and it finished second in the ImageNet
competition in 2014. In comparison to AlexNet and ZFNet, it is commonly utilized as a
basic design. VGG Net employed 3 × 3 filters, whereas AlexNet used 11 × 11 filters and
ZFNet used 7 × 7 filters. The authors explain that having small repetitive fields of small
filters as 3 × 3 filters offers an effective receptive field of 5 × 5, and 3–3 × 3 filters give a
receptive field of 7 × 7 filters, but utilizing this we can train the network with a much less
number of hyper-parameters [12].

In 2014, numerous excellent models were created, including VGG, however, GoogleNet
emerged as the winner of the ImageNet competition. GoogleNet developed an inception
module, which comprises skipping network connections to produce a tiny module, which
is replicated throughout the network. GoogleNet employs nine inception modules and
removes all fully connected layers by average pooling to reduce the size of the network
from 7 × 7 × 1024 to 1 × 1 × 1024. This saves a large number of parameters [12].

The Microsoft ResNet protocol has 152 layers. The authors demonstrated empirically
that when more layers are added, the error rate should decrease, in contrast to “simple nets,”
by adding a few layers that lead to larger training and test mistakes. On an 8 GPU computer,
it took two to three weeks to train. One apparent reason why residual blocks increase
classification is the direct step from one layer to the next, and intuitively employing all of
these skip steps builds a gradient highway where the gradients computed may directly
alter the weights in the first layer, making updates have a greater effect [13]. ResNet-50,
another version of ResNet is a convolutional neural network that is 50 layers deep and
developed by some researchers from the Microsoft research group. The architecture is
designed to overcome the theory of vanishing gradient phenomena in models, such as
AlexNet and VGG. The input layers of this network are made up of many residual blocks,
and the operating idea is to optimize a residual function. Furthermore, ResNet won first
place in ILSVRC and COCO 2015 competitions [12,13].

The pre-trained version of the network is trained on more than a million images
from the ImageNet dataset. The pre-trained network can classify images into 1000 object
categories, such as keyboard, mouse, pencil, and many animals. As a result, the network
has learned rich feature representations for a wide range of images. The network has an
image input size of 224-by-224.

Other versions of ResNet architecture were proposed including ResNet-50 (Places
architecture) which is the same architecture as ResNet-50 but is trained on the places dataset,
ResNet-101 which is a convolutional neural network that is 101 layers deep, and Squeeze-
and-Excitation (SE) ResNext 101 is a convolutional neural network that is 101 layers deep.
The pre-trained version of the network is trained on more than a million images from the
ImageNet dataset. Recently, various approaches and variants of the ResNet model were
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implemented and show a better performance than the original architecture [14–16]. The
architectures are shown in Table 1 below.

Table 1. Summary of machine learning models for image processing and scene classification.

Year Model Number of Layers Developed by Top5-Error Rate # of Parameters

1998 LeNet 8 Yann LeCun et al. NA 60 thousand

2012 AlexNet 7 Krizhevsky, Geoffrey Hinton, llya Sutskever 15.3% 60 million

2013 ZFNetO NA Matthew Zeiler and Rob Fergus 14.8% NA

2014 GoogLeNet 19 Google 6.67% 4 million

2014 VGG Net 16 Simonyan, Zisserman 7.3% 138 million

2015 ResNet 152 Kaiming He 3.6% 60.4 million

2017 Inception-ResNet NA Szegedy, Christian et al. 3.08% 55.9 million

2018 ResNet 50 Jiang, Yun et al. NA 25.6 million

2020 ReXNet_2.0 NA Zhou, Daquan et al. NA 19 million

2021 SENet 101 Srinivas, Aravind et al. NA 49 million

2021 ResNet 152 Wightman, Ross et al. NA 60 million

2.2. Few-Shot Learning Approaches

Few-shot learning arises to solve the existing limitations of machine learning ap-
proaches. Despite the optimal performance of the existing machine and deep learning
models in image understanding and scene classification, there are still major issues. First,
the training phase for the models necessitates a large amount of data, which is a difficult
and time-consuming task. Furthermore, most models are reliant on data previously seen
in the training set, resulting in ineffective models that can only identify samples that are
similar to the training set.

Few-shot learning can be categorized into three main approaches: data, similarity,
and learning. The data approach exploits prior knowledge about the structure and the
variability of the data, which enables the construction of viable models through a few
samples. This category involves the Pen-Stroke models which are the smart interface
that automatically extracts and refines pen strokes from images of hand-drawn sketches,
and neural statistician, a variational autoencoder extension that can learn a method for
computing unsupervised representations, or statistics, of datasets. For each dataset, the
network is trained to create statistics that embody a generative model. As a result, the
network is capable of learning from fresh datasets efficiently for both unsupervised and
supervised tasks. Researchers demonstrate that networks can learn statistics for grouping
datasets, transferring generative models to new datasets, picking representative dataset
samples, and categorizing previously unknown classes. The model is referred to as a neural
statistician, which refers to a neural network that can learn to generate summary statistics
of datasets without being supervised [17,18]. Although the similarity approaches tend
to learn patterns in training data that, even when not visible, tend to distinguish various
classes traditional machine learning models cannot distinguish between classes that are
not present in training datasets, whereas few-dimensional ML models can. Few-shot
learning strategies allow machine learning models to distinguish between classes that are
not represented in the training data. This category can be classified into two major classes,
models that discriminate between two unseen classes, and models that discriminate against
multiple unseen classes. The models that discriminate between two unseen classes are
Siamese networks, and triplet networks [19,20]. In Siamese networks, an input image of
a person is used to determine the encodings of that image, after which the same network
is utilized without any weights or biases updates to predict the encodings of an image
of a different person. Then, researchers compare the two encodings to see if there’s any
similarity between the two images. These two encodings serve as a representation of the
images’ latent features. Similar features/encodings can be found in images of the same
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person. Researchers may use this to compare and determine whether the two images depict
the same person or not. On the other hand, triplet networks rely on the concept of similarity
and dissimilarity in the Triplet Loss architecture aids in learning distributed embedding. It
is a type of neural network design in which many parallel networks with shared weights are
trained. Input data are transmitted through one network during prediction time to produce
distributed embedding representations of input data. The goal is to build three identical
networks with the same neural net design and weights that they can share. All of the
networks, I repeat, should have the same underlying weight vectors. The deep network’s
last layer contains a D-number of neurons for learning D-dimensional vector representation.
Weight vectors are adjusted during backpropagation utilizing shared architecture, and
anchor, positive, and negative images are sent over their respective networks. Any network
is utilized to compute the vector representation of input data during prediction time.

For the category of the models that can disseminate among more than two classes,
Matching networks in which each image from the support and the query set is fed to
a CNN that outputs embedding for them, then each query image is classified using the
softmax of the cosine distance from its embedding to the support-set embedding, and the
Cross-Entropy Loss on the resulting classification is backpropagated through the CNN.
Matching networks learn to compute image embedding in this way. MN can classify images
using this method even if it has no prior knowledge of the classes. Matching networks
compute attributes of the images that are relevant to discriminate across classes because
the classes are distinct in each episode. In a normal classification, on the other hand, the
algorithm learns the traits that are unique to each class [21].

The other approach in this category is prototypical networks, matching networks and
prototypical networks (PN) are comparable. However, there are minor changes that aid
the algorithm’s performance. PN actually outperforms MN in terms of results. The PN
procedure is nearly the same, except that the query image embedding is not compared
to every picture embedding in the support set. Prototypical networks, on the other hand,
present a different strategy. You must create class prototypes in PN. They are basically class
embedding created by averaging the embedding of this class’s images. Only these class
prototypes are compared to the query image embedding. In addition, PN uses Euclidean
distance rather than cosine distance. It is regarded as a critical component of the algorithm’s
advancements [22].

Finally, in the learning category in which meta-learning is introduced; meta-learning
deciphers these limitations as it does not require a large number of training samples and it
generalizes the model to be learned and evaluated in novel classes as never seen before [23].

Meta-learning is based on the premise that if a child has seen one or two pictures of a
cat, he will be able to classify new pictures proficiently, reflecting the theory of learning by
experience. Meta-learning also incorporates the concept of “learning to learn”. The branch
of meta-learning known as few-shot Learning (FSL) is observing a dramatic increase in
research. Additionally, known as low-shot learning (LSL), it is a form of machine learning
problem in which the training dataset contains only a small amount of data. The model is
trained using well-defined episodes representing various classification tasks. The training
set is split into two subsets (train; test) in each iteration to update the gradient and obtain
the best weights for the learning process. Few-shot learning aims to generate a semi-
generalized model that is able to classify novel classes using a low number of the training
set and overcome the data collection and the time-consuming training process.

Based on the literature review, the few-shot learning algorithms development history
is illustrated in Figure 2.
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Figure 2. The development history of few-shot learning and its classes.

The best results in object recognition and classification reflect the accuracy of scene
classification. Although machine learning is extensively used, it is still limited to data-driven
models that cannot be generalized. The researchers’ goal is to create a model that can do a
task independently of the dataset utilized. A popular approach to this problem is few-shot
learning. There have been a few attempts to use few-shot learning for scene categorization
tasks. Although the best results were obtained, they lacked generalizability since the
researchers employed a produced dataset instead of testing their model on a benchmark
dataset [24,25]. Therefore, in this work, we directed our research to scene classification
comparing benchmark models versus the proposed model over benchmarked datasets.

3. Materials and Methods

In this work, we provide some insights into the generalizability of few-shot learning
models for the scene classification task. We assessed our models using several metrics,
including accuracy, as expressed by Formula (1).

Accuracy =
True positives + True Negatives

True positives + False positives + True Negatives + False Negatives
(1)

Additionally, the formula is implemented throughout 1000 test iterations, with the
ultimate accuracy measured using Formula (2) [23].

Accuracy = avg(Σn=1:1000(accuracy))± 1.96× std(Σn=1:1000(accuracy))/sqrt(1000) (2)
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3.1. Datasets

The models were tested and evaluated using three benchmarked datasets: MiniSun,
MiniPlaces, and MIT-Indoor 67 [25–27].

3.1.1. MiniSun Dataset

The MiniSun dataset contains 100 classes randomly chosen from Sun397 with 100 im-
ages of size 84 × 84 pixels per class. It is split into 64 base classes, 16 validation classes, and
20 novel classes [25].

3.1.2. MiniPlaces Dataset

The MiniPlaces dataset contains 100 classes randomly chosen from Places with 600 im-
ages of size 84 × 84 pixels per class. It is split into 64 base classes, 16 validation classes, and
20 novel classes [25].

3.1.3. MIT-Indoor 67 Dataset

The MIT-Indoor 67 dataset contains 67 indoor categories and a total of 15,620 images.
The number of images varies across categories, but there are at least 100 images per category.
All images are in jpg format. The images provided here are for research purposes only [27].

3.2. Benchmarked Models
3.2.1. Conv4

The Conv4 model’s architecture consists of four conventional layers, four batch nor-
malization, four activation layers, and flatten and softmax layers [28].

3.2.2. Conv6

The Conv6 model’s architecture consists of six conventional layers, six batch normal-
ization, six activation layers, and flatten and softmax layers [28].

3.2.3. Conv8

The Conv8 model’s architecture consists of eight conventional layers, eight batch
normalization, eight activation layers, and flatten and softmax layers [29].

3.2.4. ResNet12

The ResNet-12’s architecture is made up of four depth three blocks with 3 × 3 kernels
and shortcut connections. At the end of each block, a 2 × 2 max-pool is applied. The depth
of the convolutional layer begins with 64 filters and is doubled after each max-pool [14,15].

3.2.5. MobileBlock1

The MobileBlock1 model’s architecture is made up of a conventional layer, a batch
normalization layer, and a Relu activation layer, which is then flattened with another Relu
layer and lastly the final Softmax layer [25].

3.2.6. MobileConv

The MobileConv model’s architecture consists of two conventional layers, two batch
normalization, two Relu activation layers, and flatten and softmax layers [25].

3.2.7. Proposed Model Pipeline

The proposed data processing model GenericConv contains four critical sequential
processes (data pre-processing; feature extraction; model training and model evaluation).

The first step is to read the data from the path directory and then perform feature-wise
normalization to each image using Equations (3) and (4) [30].

Image =
Image − mean(Image)

adjusted_stddev(Image)
(3)
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adjusted_stddev (Image) = max(stddev(Image),
1

sqrt(Image.NumElements())
) (4)

The second step is to apply feature extraction from the images using conventional
neural networks that select and learn the crucial parameters from the input images. Fur-
thermore, the model training process is applied by extracting the features from each image
recursively and learning the pattern that matches the image to its label. Finally, the last
step entails model evaluation by testing the model with unseen images and evaluating the
results based on reference results, as shown in Figure 3.

Figure 3. The pipeline of the proposed model GenericConv.

3.2.8. Proposed Model

The proposed model GenericConv architecture consists of three conventional layers,
three max-pooling layers, a dropout layer followed by an average-pooling layer and a
flatten layer then a dense layer with a relu activation, and finally a dense layer with softmax
activation, as shown in Figure 4.

Figure 4. The architecture of the proposed model GenericConv.

The architecture of the proposed model is inspired by the best-performed architecture
that was previously reported in scene classification MobileBlock1, and MobileConv. The
architectures reported performing well on the benchmarked datasets. The architecture
employs the CNN layers to extract the crucial features with the lowest parameters and
depth compared to the aforementioned architectures, which will lead to gaining the most
accurate results in the least training time taking memory management into consideration.

The architecture is designed by implementing a conventional layer that is a linear
process that, like a regular neural network, involves multiplying a set of weights with the
input. The multiplication is done between an array of input data and a two-dimensional
array of weights, called a filter or a kernel, because the approach was created for two-
dimensional input. The filter is smaller than the input data, and the dot product is the
sort of multiplication used between a filter-sized patch of the input and the filter. A dot
product is the element-wise multiplication of the input and filter’s filter-sized patches,
which are then summed to produce a single value. A popular method for ordering layers
within a convolutional neural network that may be repeated one or more times in a given
model is to add a pooling layer after the convolutional layer. A summary version of the
features discovered in the input is the outcome of applying a pooling layer and constructing
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downsampled or pooled feature maps. They are beneficial because slight changes in the
location of the feature in the input that the convolutional layer detects result in a pooled
feature map with the feature in the same place. Although the training data are too small
even one or five shots that may lead to model overfitting, a drop-out layer is added to
prevent the model from overfitting. The drop-out is working by randomly setting the
outgoing edges of hidden units (neurons that make up hidden layers) to 0 at each update
of the training phase. This resulted novel combination of layers is benchmarked against
other models to be tested and evaluated.

3.2.9. Proposed Model Hyperparameters

The proposed model hyperparameters are explained in Table 2.

Table 2. The proposed model’s hyperparameters.

Learning Rate Meta Step Size Inner Batch Size Evaluation
Batch Size Meta Iterations Inner Iterations Evaluation

Iterations Shots Classes

0.003 0.25 25 25 2000 4 5 1/5 5

The hyperparameters are chosen using random hyperparameter optimization based
on the comparison performed to other models (which use the same hyperparameters) to
omit any variability in the experiment.

4. Results

Robust experiments were used to analyze and show the performance of the proposed
GenericConv model in comparison to benchmarked models. Benchmarked datasets were
utilized to demonstrate the generalizability of our model at various sizes. The accuracies
were tracked across three datasets (MiniSun, MiniPlaces, and MIT Indoor-67) to monitor
the model’s performance as the model depth and the number of parameters increased.

4.1. Mini-Sun

The proposed model GenericConv outperformed the best-reported accuracy on MiniSun
datasets as the MobileConv architecture achieved 47.5 ± 0.0158 as the best accuracy for
five-shot five-ways classification, while MobileBlock1 achieved 30.86 ± 0.013 as the best
accuracy for one-shot five-ways accuracy, our model achieved 52.16 ± 0.015 for five-shots
five-ways and 32.72 ± 0.014 for one-shot five-ways accuracy with a significant increase in
accuracy as 0.098, and 0.060 increase for five-shots and one-shot, respectively, as shown in
Table 3.

Table 3. Five-ways accuracies on MiniSun.

Backbone Model Parameters Fine-Tuning Optimizer 5 Shots 1 Shot

MobileNetV2

Reptile SGD

20.16 ± 0.011

Conv4 39.14 ± 0.015 26.03 ± 0.013

Conv6 33.42 ± 0.0155 24.58 ± 0.012

Conv8 29.32 ± 0.012 21.48 ± 0.011

ResNet-12 20.16 ± 0.015

MobileBlock1 40.12 ± 0.015 30.86 ± 0.013

MobileConv 47.5 ± 0.0158 30.72 ± 0.013

Proposed GenericConv 52.16 ± 0.015 32.72 ± 0.014

4.2. Mini-Places

The proposed model GenericConv outperformed the best-reported accuracy on Mini-
Places datasets as the MobileConv architecture achieved 34.64 ± 0.014 as the best accuracy



Information 2022, 13, 315 11 of 13

for five-shot five-ways classification, our model achieved 35.86 ± 0.014 for five-shots five-
ways and 23.80 ± 0.012 for one-shot five-ways accuracy with a significant increase in
accuracy as 0.035 for five-shots five-ways, while Conv4 is still the best accuracy in one-shot
five-ways on the MiniPlaces dataset as mentioned in Table 4.

Table 4. Five-ways accuracies on MiniPlaces.

Backbone Model Parameters Fine-Tuning Optimizer 5 Shots 1 Shot

Conv4

Reptile SGD

27.9 ± 0.014 29.62 ± 0.013

Conv6 19.84 ± 0.007 21.42 ± 0.009

Conv8 25.2 ± 0.011 21.14± 0.004

ResNet-12 20.16 ± 0.011

MobileBlock1 20.1 ± 0.001

MobileConv 34.64 ± 0.014 26.36 ± 0.013

Proposed GenericConv 35.86 ± 0.014 23.80 ± 0.012

4.3. MIT Indoor-67

The MIT-Indoor is used to ensure the benchmarking and generalization of our model
compared to benchmarked models. Conv4 architecture achieved 28.7 ± 0.013 accuracies for
five-shot five-ways classification, and 22.0 ± 0.012 for one-shot five-ways which decreased
by 0.42, and 0.09 for five-shots, and one-shot, respectively, when we utilized Conv6 and
deepened the model. To trace and confirm this behavior, we deepened the model one
more fold by employing Conv8 architecture that achieved 22.18 ± 0.005 for five-shot five-
ways, and 20.1 ± 0.003 for one-shot five-ways classification, a final confirmation step was
performed by deepening the model more by employing ResNet-12 architecture which
overfitted on the dataset. Meanwhile, the proposed model GenericConv outperformed
all the aforementioned models by achieving 37.26 ± 0.014 accuracies on five-shot five-
way classification, and 24.82 ± 0.013 accuracies on one-shot five-way classification with
a variance of 0.92, and 0.0088 for five-shot and one-shot classification compared to the
best-reported accuracy as shown in Table 5.

Table 5. Five-ways accuracies on MIT-Indoor 67.

Backbone Model Parameters Fine-Tuning Optimizer 5 Shots 1 Shot

Conv4

Reptile SGD

28.7 ± 0.013 22.0 ± 0.012

Conv6 20.16 ± 0.003 20.0 ± 0.0014

Conv8 22.18 ± 0.005 20.10 ± 0.003

ResNet-12 20 ± 0.00011 20 ± 0.00011

MobileBlock1 34.1 ± 0.014 24.6 ± 0.012

MobileConv 33.18 ± 0.014 23.82 ± 0.012

Proposed GenericConv 37.26 ± 0.014 24.82 ± 0.013

5. Conclusions

Scene classification is considered one of the most complex tasks in computer vision
research as it involves the interconnection of object detection and object classification tasks.
Few attempts were made by researchers to apply few-shot learning for scene classification
tasks. The finest findings were obtained, but they lacked generalizability. Our proposed
pipeline addresses the generalization of the scene classification task by implementing
a novel model that achieved unprecedented performance compared to the previously
reported models on three benchmarked datasets.

The proposed model GenericConv achieved 52.16 ± 0.015 for five-shots five-ways
and 32.72 ± 0.014 for one-shot five-ways accuracy with a significant increase in accuracy as
0.098, and 0.060 increase for five-shots and one-shot, respectively, than the reported results
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on the MiniSun dataset, while our model achieved 35.86 ± 0.014 for five-shots five-ways
with a significant increase in accuracy as 0.035 for five-shots five-ways than the reported
results on the MiniPlaces dataset. Furthermore, our proposed model outperformed all
the aforementioned models by achieving 37.26 ± 0.014 accuracies on five-shot five-way
classification, and 24.82 ± 0.013 accuracies on one-shot five-way classification with a variance
of 0.92, and 0.0088 for five-shot and one-shot classification compared to the best-reported
accuracy on the Indoor-67 dataset. Furthermore, we aim to develop a Graphical User Interface
(GUI) that is able to perform scene classification regardless of user programming experience.
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