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Abstract: Maximum distance separable (MDS) codes have the maximum branch number in cryp-
tography, and they are generally used in diffusion layers of symmetric ciphers. The diffusion layer
of the Advanced Encryption Standard (AES) uses the circulant MDS matrix with the row element
of {2; 3; 1; 1} in F28 . It is the simplest MDS matrix in F4

2n , recorded as A = Circ(2; 3; 1; 1). In this
paper, we study the more extensive MDS constructions of A in F4

2n . By transforming the element
multiplication operation in the finite field into the bit-level operation, we propose a multivariable
operation definition based on simple operations, such as cyclic shift, shift, and XOR. We apply this
multivariable operation to more lightweight MDS constructions of A and discuss the classification of
the MDS clusters. We also give an example of the MDS cluster of A. Without changing the structure,
elements, and the implementation cost of the known MDS matrix, the number of existing MDS
transformations is expanded to n2/2 times that of its original. The constructions in this paper provide
rich component materials for the design of lightweight cryptographic algorithms.

Keywords: block cipher; MDS diffusion layers; circulant matrices; branch number; equivalence class

1. Introduction

The design of modern cryptographic algorithms generally follows the principles
of confusion and diffusion [1]. Diffusion layers are critical components of symmetric
ciphers. It is an important means to achieve complex relationships between plaintexts and
ciphertexts. By using the diffusion layer, each bit of the plaintext will affect multiple bits
of the ciphertext, thus ensuring the security of the cryptographic algorithm. Maximum
distance separable (MDS) codes have the maximum number of branches, so they are often
used in cryptography to construct optimal diffusion layers of block ciphers, stream ciphers,
and hash algorithms. For instance, the diffusion layer of the Advanced Encryption Standard
(AES [2]) uses the simplest MDS matrix over F24n , which is a circulant MDS matrix with
a row element of {2; 3; 1; 1} in F28 , recorded as A = Circ(2; 3; 1; 1). The diffusion layer
of SM4 [3] uses the MDS transformation based on a 32-bit rotational-XOR operation. In
cryptographic literature, numerous papers [4–17] have studied various aspects of MDS
diffusion layers, including their structure, from mathematical viewpoints on rings and
fields, as well as minimizing their implementation costs in software and/or hardware
applications. For example, Mirzaee et al. [12] placed lightweight multiplication on MDS
matrices in fields; Xiang et al. [14,15] proposed MDS matrices as the best implementations
produced by various algorithms up to now and [16,17] provided some nonlinear MDS
diffusion layers.

Currently, for known MDS matrices on F2n , the operations and quantities are limited
by irreducible polynomials in the finite field. In order to obtain more MDS diffusion layers
from MDS matrices on fields, it is necessary to change the matrix form or component
element, such by as replacing specific elements of the matrix with different primitive
elements in the finite field so as to construct different MDS transformations [18]. For
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these simple MDS matrices, the manner by which to construct many more, and more
extensive, MDS transformations, without changing their forms, component elements, and
implementation costs, is of particular significance for the enrichment of the cognition of
MDS and the improving of the adaptability of MDS diffusion layers.

This paper studies the more extensive MDS construction that is based on the circulant
MDS matrix Circ(2; 3; 1; 1) (abbreviated as A). With the aid of introducing a parametric
map, defined by transforming the multiplication operation of A elements in F2n into bit-
wise multivariable operation with cyclic shift and XOR, we extend the operation of matrix
A to obtain more 4× 4 MDS diffusion layers. We use the definition of the multivariable
parametric map to obtain more MDS constructions based on A, and we propose the con-
nection between MDS clusters and the equivalence classification. Then, examples of the
MDS cluster based on A over F4

28 are given. All such MDS constructions proposed in this
paper have equally low-cost implementations, and the number of MDS is expanded to n2/2
times that of the original construction. These constructions we proposed can be widely
applied to the design of lightweight cryptographic algorithms which is for the purpose of
constraining resources, such as IoTs and wireless communication environments.

This article is organized as follows: In Section 2, we give preliminary notations and
definitions. Section 3 provides theoretical conclusions and examples for more extensive
MDS constructions of A, and Section 4 is devoted to the conclusion.

2. Notations and Definitions

The binary digit 0 or 1 is called “1 bit” or “bit”. Without losing generality, we specify
that the most significant bit of data is always on the far left of its binary digits, and the
lowest significant bit of data is always on the rightmost of its binary digits.

Let F2n be the finite field with 2n elements and Fn
2 be the n-dimensional linear space

over F2. We denote the multiplication in F2n by · and the addition in F2n by ⊕. The
operation “<<< t” represents the left cyclic shift for t bits, and “&” denotes bitwise and
operation. x|t denotes the t-th bit of x. “×” is the ordinary multiplication function.

For any X = (x0, x1, . . . , xn−1) ∈ Fm
2n , the weight (denoted by wt(X)) of X over F2n is

defined as
wt(X) = |{i : 1 ≤ i ≤ m, xi 6= 0}|.

Let F be a map on Fm
2n . The branch number (denoted by Brn(F), or Br(F)) of F over F2n

is defined as
Brn(F) = min

X,Y∈Fm
2n , X 6=Y

{wt(X⊕ Y) + wt(F(X)⊕ F(Y))}.

Definition 1. Let F be a map on Fm
2n . F is called MDS (over F2n ) if Br(F) = m + 1.

In this paper, we investigate the 4× 4 circulant MDS matrix Circ(2; 3; 1; 1) used in the
diffusion layer of AES, which is an MDS transformation with the simplest matrix form on
F4

28 . Its implementation cost is less than 92 XOR logic gates [14]. The circulant MDS matrix
Circ(2; 3; 1; 1) on F4

2n is denoted as A.

A =


2 3
1 2
1 1
3 1

1 1
3 1
2 3
1 2


Let X = (x0, x1, . . . , x3) ∈ F4

2n be the input, and Y = (y0, y1, . . . , y3) ∈ F4
2n be the

output; then, the operation of A is expressed as follows:
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
y0
y1
y2
y3

 =


2 3
1 2
1 1
3 1

1 1
3 1
2 3
1 2




x0
x1
x2
x3


that is,

y0 = 2·x0 ⊕ 3·x1 ⊕ 1·x2 ⊕ 1·x3

y1 = 1·x0 ⊕ 2·x1 ⊕ 3·x2 ⊕ 1·x3

y2 = 1·x0 ⊕ 1·x1 ⊕ 2·x2 ⊕ 3·x3

y3 = 3·x0 ⊕ 1·x1 ⊕ 1·x2 ⊕ 2·x3

where both xi and yi are n-bit, and 3·xi = 2·xi ⊕ xi, i ∈ {0, 1, 2, 3}.
According to the general understanding, the operations of matrix A are multiplication

and addition in F2n . For a map f on F2n up to the choice of the monic irreducible poly-
nomial of degree n, the double multiplication on F2n recorded as xtime f (x) = 2·x has a
representation as follows:

Lemma 1. Suppose that f = xn + a0xn−1 + a1xn−1 + · · ·+ an−2x + 1 is a monic irreducible
polynomial of degree n, where ai ∈ F2, i = 0, 1, . . . , n− 2. Let an−1 = 0, and the corre-
sponding coeffcient (a0, a1, · · · , an−1 ) is denoted as α in F2n . Then,

xtime f (x) = (x <<< 1)⊕ ((x <<< 1)
∣∣∣n−1 × α) , x ∈ F2n . (1)

According to Equation (1), the operation of matrix A can be written in the following
Equation (2), with a left cyclic shift and XOR operations based on a parameter α.

Let z0 = x0 ⊕ x1, z1 = x1 ⊕ x2, z2 = x2 ⊕ x3, z3 = x3 ⊕ x0; then, the operation of A is
also expressed as follows:

y0 = (z0 <<< 1)⊕ x1 ⊕ x2 ⊕ x3 ⊕ ((z0 <<< 1)|n−1 × α)
y1 = (z1 <<< 1)⊕ x2 ⊕ x3 ⊕ x0 ⊕ ((z1 <<< 1)|n−1 × α)
y2 = (z2 <<< 1)⊕ x3 ⊕ x0 ⊕ x1 ⊕ ((z2 <<< 1)|n−1 × α)
y3 = (z3 <<< 1)⊕ x0 ⊕ x1 ⊕ x2 ⊕ ((z3 <<< 1)|n−1 × α)

(2)

Whether the operation in Equation (2) is an MDS transformation depends on α.

Definition 2. The data α ∈ F2n is called the MDS-generating element of A on F4
2n , or for short,

the MDS-generating element of A, if α makes Equation (2) into an MDS transformation.

Obviously, the n-bit data (a0, a1, · · · , an−2 , 0) corresponding to every monic irre-
ducible polynomial xn + a0xn−1 + a1xn−1 + · · ·+ an−2x + 1 in F2n is the MDS-generating
element of A. It can be predicted that the number of MDS-generating elements of A is not
less than the number of monic irreducible polynomials of degree n, which is indeed the
case, as shown in Example 1.

Since the MDS-generating elements of A can be obtained according to the operations
form of Equation (2), which is no longer limited to irreducible polynomials of degree n in
F2n , it is necessary to redefine xtime f (x) = 2·x, that is, to define the xtimeα(x) operation
for parameter α in F2n as follows:

xtimeα(x) = (x <<< 1)⊕ ((x <<< 1)|n−1 × α) (3)

Next, we show how to generate more MDS transformations using each MDS-generating
element of A.
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Let hi,j(α) : Z×Z× F2n → F2n be a parametric function with two parameter vari-
ables (i, j) about the input α ∈ F2n . We parametrically extend the operation rule of the
xtimeα(x) of Equation (3) and introduce xtimehα

i,j
(x).

Definition 3. Let t = (x <<< i) and tn−1−j = (x <<< i)|n−1−j, x = (x0x1 . . . xn−1) ∈ Fn
2 .

xtimehα
i,j
(x) is defined as

xtimehα
i,j
(x) = (x <<< i)⊕ ((x <<< i)

∣∣∣n−1−j × hi,j(α)) (4)

where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1.

Now we use the xtimehα
i,j
(x) operation defined in Equation (4) to replace the 2·x

operation in A. Then, we obtain Equation (5), which is parametric with 3 parameter
variables, (i, j, α) ∈ Z×Z× F2n for A, denoted by Ahα

i,j
.

Let the input be X = (x0, x1, x2, x3) ∈ F4
2n , and the output be Y = (y0, y1, y2, y3) ∈ F4

2n ; let

z0 = x0 ⊕ x1, z1 = x1 ⊕ x2, z2 = x2 ⊕ x3, z3 = x3 ⊕ x0.

Then, Y = Ahα
i,j
(X) is defined as follows:

y0 = (z0 <<< i)⊕ x1 ⊕ x2 ⊕ x3 ⊕ ((z0 <<< i)
∣∣n−1−j × hi,j(α))

y1 = (z1 <<< i)⊕ x2 ⊕ x3 ⊕ x0 ⊕ ((z1 <<< i)
∣∣n−1−j × hi,j(α))

y2 = (z2 <<< i)⊕ x3 ⊕ x0 ⊕ x1 ⊕ ((z2 <<< i)
∣∣n−1−j × hi,j(α))

y3 = (z3 <<< i)⊕ x0 ⊕ x1 ⊕ x2 ⊕ ((z3 <<< i)
∣∣n−1−j × hi,j(α))

(5)

According to the definition of Ahα
i,j

, set (i, j) = (1, 0), h1,0(α) = α, then Ahα
1,0

is the
operation of A in Equation (2). Note that the MDS diffusion layer of AES is the operation of
A in F28 with the irreducible polynomial f = 0× 11b, that is, h1,0(α) = 0x1a in Equation (5).

In this paper, let h1,0(α) be an identity transformation of α.

3. Extended Constructions and Theoretical Aspects of the Known MDS

In order to determine whether Ahα
i,j

generates an MDS transformation of A on F4
2n , we

have Theorem 1.

Theorem 1. Let (i, j, α) ∈ Z× Z× F2n , where 0 ≤ i, j < n. If i is an even number, then Ahα
i,j

cannot generate an MDS.

Proof of Theorem 1. According to the definition of Y = Ahα
i,j
(X), let X = (x0, x1, x2, x3) ∈ F4

2n ,

Y = (y0, y1, y2, y3) ∈ F4
2n , and x0 6= 0, x1, x2, x3 = 0. Suppose that (x0 <<< i)

∣∣n−1−j = 0 ;
then, we have

y0 = (x0 <<< i), y1 = x0, y2 = x0, y3 = x0 ⊕ (x0 <<< i).

For y3, while i is an even number, if we can find some x0 6= 0 satisfying
x0 ⊕ (x0 <<< i) = 0, then Br

(
Ahα

i,j

)
≤ 4. According to Definition 1, we know that

Ahα
i,j

cannot generate an MDS.

Let x0 = (x0,0, x0,1, . . . , x0,n−1) ∈ Fn
2 , (x0 <<< i = (x0,i, x0,i+1, . . . , x0,n−1, x0,0, . . .,

x0,i−1), we have

x0 ⊕ (x0 <<< i)
= (x0,0, x0,1, . . . , x0,n−1−i, x0,n−i, x0,n−i+1, . . . , x0,n−1)⊕

(x0,i, x0,i+1, . . . , x0,n−1, x0,0, x0,1, . . . , x0,i−1).
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Now, we define the following permutation (denoted by P) constructed by the corre-
sponding bits’ n positions of the binary sequence of the rightmost operand in the operation
shown above.

P : (0, 1, . . . , n− 1)→ (i, i + 1, . . . , n− 1, 0, 1, . . . , i− 1)

Because i is an even number, for P there exist two or more permutable subgroups
with element x0,σ 6= x0,l , in which the subscripts σ and l mean that x0,σ and x0,l belong to
different subgroups, respectively.

Suppose (x0 <<< i)
∣∣n−1−j = x0,l = 0 . For P, we choose the permutable subgroup

which contains element x0,l and another permutable subgroup with element x0,σ 6= x0,l .
Let us investigate the following two cases:

(1) If l = 2k and x0,2t+1 = x0,σ, 0 ≤ k ≤ n/2, 0 ≤ t ≤ n
2 − 1,

(2) If l = 2k + 1 and x0,2t = x0,σ, 0 ≤ k ≤ n
2 − 1, 0 ≤ t ≤ n/2.

Since x0,l = 0, if x0,2t+1 = x0,σ = 1, or x0,2t = x0,σ = 1, and let the other bits be 0, then
x0 6= 0, and we have y3 = x0 ⊕ (x0 <<< i) = 0. �

According to the proof of Theorem 1, if i is an odd number, then the permutable sub-
groups of P degenerate into a full permutation which contains all elements
(x0,0, x0,1, . . . , x0,n−1). In this case, if x0 ⊕ (x0 <<< i) = 0, then we can derive that
x0,i = x0,l = 0, or x0,i = x0,l = 1, where i = 0, 1, · · · , n− 1. Then, we have Corollary 1.

Corollary 1. Let i be an odd number. If x 6= 0 ∈ Fn
2 and wt(x) 6= n, then x ⊕ (x <<< i) 6= 0.

Lemma 1. Let i = 2k + 1, 0 ≤ k ≤ n
2 − 1, 0 ≤ j ≤ n− 1 in hi,j(α). If hi,j(α) makes Ahα

i,j
an

MDS, for the input x 6= 0 ∈ F2n 0 ≤ l ≤ n− 1, let

t0 = (x <<< i)⊕ ((x <<< i)
∣∣∣n−1−j−l × (hi,j(α) <<< l))

t1 = x ⊕ (x <<< i)⊕ ((x <<< i)
∣∣∣n−1−j−l × (hi,j(α) <<< l)),

then t0 6= 0 and t1 6= 0.

Proof of Lemma 1. Let β = hi,j(α), where i is an odd number; then, we have Equation (6),
x 6= 0.

t0 = (x <<< i)⊕ ((x <<< i)
∣∣∣n−1−j−l × (β <<< l))

t1 = x ⊕ (x <<< i)⊕ ((x <<< i)
∣∣∣n−1−j−l × (β <<< l))

(6)

According to Corollary 1, we know x ⊕ (x <<< i) 6= 0 if (x <<< i)
∣∣∣n−1−j−l = 0 .

Then, we just need to prove Equation (7) if (x <<< i)
∣∣∣n−1−j−l 6= 0 .

t0 = (x <<< i)⊕ ( β <<< l) 6= 0
t1 = x ⊕ (x <<< i)⊕ ( β <<< l) 6= 0

(7)

Note that Ahα
i,j

is an MDS; if (x <<< i)
∣∣n−1−j 6= 0 , then (x <<< i) ⊕ β 6= 0 and

x ⊕ (x <<< i)⊕ β 6= 0. So, we have Equation (8).

t0 <<< l = (x <<< i + l)⊕ ( β <<< l) 6= 0
t1 <<< l = (x <<< l) ⊕ (x <<< i + l)⊕ ( β <<< l) 6= 0

(8)

Let w = (x <<< l) 6= 0, based on Equation (8), we can obtain Equation (9) if

(w <<< i)
∣∣n−1−j 6= 0 (that is (x <<< i)

∣∣∣n−1−j−l 6= 0).
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t′0 = t0 <<< l = (w <<< i)⊕ ( β <<< l) 6= 0
t′1 = t1 <<< l = w ⊕ (w <<< i)⊕ ( β <<< l) 6= 0

(9)

In Equation (9), we can replace the input x with w.
Now, we have t0 6= 0 and t1 6= 0. �

According to Lemma 1, we have Theorem 2.

Theorem 2. Let i = 2k + 1, 0 ≤ k ≤ n
2 − 1, 0 ≤ j ≤ n− 1 in hi,j(α). If hi,j(α) makes Ahα

i,j

an MDS, for any 0 ≤ l ≤ n− 1, assign hi, (j+l)mod n(α) = (hi,j(α) <<< l), then Ahα
i,(j+l)mod n

is an MDS.
Next, we give the construction of composite permutation ϕ based on the constructed
permutation ϑ and inverse permutation ϑ−1, and the transformational relations between
hi0,j(α) and hi1,j(α).

Theorem 3. Let ie = 2ke + 1, 0 ≤ ke ≤ n
2 − 1, 0 ≤ j ≤ n− 1 in hie ,j(α) with e ∈ {0, 1}. If

each of hie ,j(α) makes Ahα
ie ,j

an MDS, respectively, then there exists a map ϕ: F2n → F2n satisfying

hi1,j(α) = ϕ
(

hi0,j(α)
)
.

Proof of Theorem 3. Now, we construct a map ϑ on F2n : for every α and τα = ϑ
(

hi0,0(α)
)
,

let parameters
(
i, j, hi,j(α)

)
:= (i1, 0, τα) be related to Equation (5), which makes

Br
(

Ahτα
i1,0

)
= 5 hold, and conversely, for every α and σα = ϑ−1( hi1,0(α)

)
, let parame-

ters
(
i, j, hi,j(α)

)
:= (i0, 0, σα) be related to Equation (5) which makes Br

(
Ahσα

i0,0

)
= 5 hold.

Suppose hik ,0(α) = (t0, t1, . . . , tn−1) ∈ Fn
2 with k ∈ {0, 1}; next, we construct a kind of

map Pik : Fn
2 → Fn

2n ; this means

(t0, t1, . . . , tn−1) →
(1× ik × t0, (2× ik)mod n)× t1, . . . , ((n− 1)× ik)mod n× tn−2, 0)

Then, we use Pik to define the following permutation ϑ(F2n → F2n ) and its inverse
permutation ϑ−1(F2n → F2n ) about data elements in Fn

2 :
(a) Let the binary digits of hi0,0(α) be the n-bit input element of Pi0 , the positions of the

data in the sequence H1 := (1× i1, (2× i1)mod n), . . . , ((n− 1)× i1)mod n), 0), which is
the same with all non-zero data mapped from Pi0 to Fn marked as 1; the other positions are
marked as 0, then we can obtain an n-bit position identification value aboutH1, denoted
by τα ∈ F2n , and define ϑ

(
hi0,0(α)

)
= τα;

(b) Let the binary digits of hi1,0(α) be the n-bit input element of Pi1 , the positions of
the data in the sequenceH0 := (1× i0, (2× i0)mod n), . . . , ((n− 1)× i0)mod n), 0) which
is the same with all non-zero data mapped from Pi1 to Fn marked as 1; the other positions
are marked as 0; then we can obtain an n-bit position identification value forH0, denoted
by σα ∈ F2n , and define ϑ−1(hi1,0(α)

)
= σα.

For all the 0 ≤ j ≤ n− 1, by combining the permutation ϑ constructed above with the
left cyclic shift operation of Theorem 2, the composite transformation ϕ from ϑ and “<<<”
is obtained, and we have Theorem 3. �

Theorem 3 is the crucial theorem of the current paper. In the latter part, we provide
some concrete instances based upon Theorem 3. By combining Theorem 2 and Theorem 3,
we obtain Theorem 4.

Theorem 4. For every parameter of each group (i, j ) ∈ Z× Z, i = 2k + 1, 0 ≤ k ≤ n
2 − 1,

0 ≤ j ≤ n− 1, there exists a mapping hi,j : F2n → F2n , which maps each generating element
α ∈ F2n one by one to hi,j(α) ∈ F2n , such that Ahα

i,j
is an MDS.
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According to the previous conclusions, for every given parameter group (i, j) := (I, J),
Ahα

i,j
traverses all MDS-generating elements to make the MDS cluster partition of A, and we

can obtain the MDS cluster {Ahα
i=I,j=J

} of A. For every given parameter group (i, α) := (I, V).
Ahα

i,j
traverses all 0 ≤ j ≤ n− 1 values to make the MDS cluster partition of A, and we can

obtain the MDS cluster {Ahα=V
i=I,j

} of A. Regarding the qualities, we have Proposition 1.

Proposition 1. Let i = 2k + 1, 0 ≤ k ≤ n
2 − 1, 0 ≤ j ≤ n− 1, and α be an MDS-generating

element of A in F2n . For all α, the parameter variable (i, j) generates an MDS equivalence
class division of A.

We know that the number of n-order monic irreducible polynomials is (n) = 1
n ∑

d|n
µ(d)2

n
d ,

n ≥ 1, and µ(n) is an Mertens function. On the basis of Theorem 4, we have Corollary 2.

Corollary 2. According to the number of all possible values of i and j, the number of the
MDS (denoted by M(n)) constructed by Ahα

i,j
of A in F2n satisfies M(n) ≥ n

2 ∑
d|n

µ(d)2
n
d ,

where n ≥ 2. Then, the number of existing MDSs is expanded to n2/2 times that of
the original.

Note that the number of the monic irreducible polynomials of degree 8 defined in F28 is
equal to 30 by the formula N(n). According to computer searching, there are 36 generating
elements of A in F2n , which shows that Equations (2) and (5), defined by the bit-level
operation, expand the operational connotation of A in F2n .

According to the MDS-generating elements of A in F28 , by Theorem 4, we obtain that the
total number of MDSs constructed by the operation Ahα

i,j
of A in F28 is 1152 (= 4 × 8 × 36).

Example 1. All 36 MDS-generating elements {h1,0(α)} of A in F28 are listed below.
0x04, 0x16, 0x1a, 0x1c, 0x2a, 0x2c, 0x38, 0x3e, 0x40, 0x4c, 0x54, 0x5e,
0x62, 0x64, 0x68, 0x70, 0x76, 0x7a, 0x86, 0x8a, 0x8c, 0x9e, 0xa2, 0xa8,
0xb0, 0xba, 0xbc, 0xc2, 0xce, 0xd0, 0xd6, 0xdc, 0xe6, 0xf2, 0xf4, 0xf8.

Once we determine the generating elements of A in F2n , for all operation Ahα
i,j

of A in
F2n , by Theorem 2 and Theorem 3, we can obtain the transformational relations between
clusters of

{
hi,j(α)

}
, and derive the total number of MDSs from A.

Example 2. Based on the 36 data points {h1,0(α)} in Example 1, respectively, we can obtain
the derived 36 data points {h3,0(α)} in F28 , as shown below:

0x40, 0x58, 0x1a, 0x52, 0x8a, 0xc2, 0x92, 0xda, 0x04, 0x46, 0x54, 0x5e,
0x8c, 0xc4, 0x86, 0x94, 0xdc, 0x9e, 0x68, 0x2a, 0x62, 0x7a, 0xa8, 0xa2,
0xb0, 0xba, 0xf2, 0x2c, 0x6e, 0x34, 0x7c, 0x76, 0xec, 0xbc, 0xf4, 0xb6.

Regarding the map ϑ definition of Theorem 3, one could verify the correctness of the
derived data set shown in Example 2. Then, we show the verification process for the first
2 elements in Example 1, and the other cases are similar.

1. For the first element h1,0(α) = 0x04 in Example 1, let its binary bits (0 0 0 0 0 1 0 0) be
the input of map Pi0 ; then, the output is (0 0 0 0 0 6 0 0). For H1 := (3 6 1 4 7 2 5 0),
the same with all non-zero data (only “6”) mapped from Pi0 to F8 are marked as 1, the
other positions are marked as 0; then, we can obtain the n-bit position identification
value (0 1 0 0 0 0 0 0) as h3,0(0x04) = ϑ(h1,0(0x04)) = 0x40.
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2. For the second element h1,0(α) = 0x16 in Example 1, let its binary bits (0 0 0 1 0 1 1 0)
be the input of map Pi0 ; then, the output is (0 0 0 4 0 6 7 0). ForH1 := (3 6 1 4 7 2 5 0),
the same with all non-zero data “4, 6, 7” mapped from Pi0 to F8 are marked as 1; the
other positions are marked as 0. Then, we can obtain the n-bit position identification
value (0 1 0 1 1 0 0 0) as h3,0(0x16) = ϑ(h1,0(0x16)) = 0× 58.

4. Conclusions

The circulant MDS matrix used in the diffusion layer of the AES algorithm is sim-
ple and efficient. Based on the known lightweight MDS matrix on F4

2n , by constructing
permutation-based parameters, we can obtain a large number of lightweight parametrical
MDS transformations, which expands the design idea of MDS from static to dynamic
and increases the number of MDSs from a single one to a large batch at one time. The
constructions in this paper provide rich component materials for the design of lightweight
cryptographic algorithms, which have low-cost implementations for the purpose of con-
straining resources, such as IoT and wireless communication environments.
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