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Abstract: Shadow removal is a fundamental task that aims at restoring dark areas in an image where
the light source is blocked by an opaque object, to improve the visibility of shadowed areas. Existing
shadow removal methods have developed for decades and yielded many promising results, but most
of them are poor at maintaining consistency between shadowed regions and shadow-free regions,
resulting in obvious artifacts in restored areas. In this paper, we propose a two-stage (i.e., shadow
detection and shadow removal) method based on the Generative Adversarial Network (GAN) to
remove shadows. In the shadow detection stage, a Recurrent Neural Network (RNN) is trained to
obtain the attention map of shadowed areas. Then the attention map is injected into both generator
and discriminator to guide the shadow removal stage. The generator is a dual encoder-decoder
that processes the shadowed regions and shadow-free regions separately to reduce inconsistency.
The whole network is trained with a spatial variant reconstruction loss along with the GAN loss
to make the recovered images more natural. In addition, a novel feature-level perceptual loss is
proposed to ensure enhanced images more similar to ground truths. Quantitative metrics like PSNR
and SSIM on the ISTD dataset demonstrate that our method outperforms other compared methods.
In the meantime, the qualitative comparison shows our approach can effectively avoid artifacts in
the restored shadowed areas while keeping structural consistency between shadowed regions and
shadow-free regions.

Keywords: attention mechanism; dual encoder-decoder; shadow removal

1. Introduction

The presence of shadows in images is one of the main challenges for various computer
vision tasks, such as object detection and tracking [1,2]. Many shadow removal methods [3–6]
have been proposed to restore shadowed regions to shadow-free regions. With the rapid de-
velopment of deep learning, Convolutional Neural Networks(CNNs) and Recurrent Neural
Networks(RNNs) have been widely used in the detection and removal of shadows [7–9] and
achieved remarkable performance. However, most of these methods use one shared network
to process both shadowed areas and shadow-free areas, making some restored shadow areas
inconsistent with the surroundings in terms of color, brightness, and textures. Since the
information contained in different regions is unequal, it is irrational to use a shared network.

In this paper, we propose a novel two-stage framework based on the Generative
Adversarial Network (GAN) to enhance shadowed images. Firstly, we introduce an effec-
tive attention mechanism in the generator to utilize the contextual information of shad-
owed regions. Specifically, an Attentive-Recurrent Network (ARN) consisting of residual
blocks [10], Long Short-Term Memory (LSTM) [11], and convolutional layers, is proposed
to generate the attention map of shadowed areas. Then, the original shadow image concate-
nated with the attention map is fed into two encoder-decoder networks to remove shadows.
The attention map is also used to compute a spatial variant loss [12] so that the generator
pays more attention to shadows. In addition, to make the generated image more similar to
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the ground truth, we apply a perceptual loss at the feature level to constrain the output
and the ground truth. Finally, the generated shadow-free image will be delivered into a
discriminator composed of seven convolutional blocks and a linear layer for adversarial
training. Some examples processed by our approach can be found in Figure 1.

Figure 1. Some shadowed images and the corresponding results produced by our approach. The first
column and the third column are the shadow images, while the second column and the fourth
column are the results generated by our method. Our predicted images are natural, in which the
corresponding lit region of each shadow region is more similar to its surroundings.

Our network is trained and tested on the widely used the Image Shadow Triplets
dataset(ISTD) [9] which contains shadow images, masks, and shadow-free images as
shown in Figure 2. To the best of our knowledge, this study is the first work to recover the
shadow image with high consistency between shadowed regions and shadow-free regions.
We highlight our contributions as follows:

• We design a two-stage network, in which the result of shadow detection is regarded as
the attention map to guide the shadow removal. In particular, the attention map is used
to compute the spatial variance loss [12] so that the network can focus more on shadows.

• Novel dual encoder-decoder modules are proposed to process shadowed regions
and shadow-free regions separately in order to reduce the inconsistency. The input of
encoder-decoder modules is the concatenation of the attention map and shadowed image.

• A feature-level perceptual loss is applied to ensure the similarity between the gener-
ated image and the ground truth.

Figure 2. Some samples from the Image Shadow Triplets dataset (ISTD) [9]. The first column is the
shadowed image, the second column represents the ground truth, and the last column is the mask of
shadows. The purpose of our work is to restore a shadowed image into a shadow-free image and
keep it similar to the ground truth as much as possible.
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The rest of this paper is organized as follows. We review some related works in
Section 2. Section 3 describes the details of our approach for shadow removal. Then, we
present the experimental results to evaluate the superiority of the proposed method in
Section 4. Finally, we conclude the paper in Section 5.

2. Related Work
2.1. Shadow Detection

The traditional shadow removal methods are based on physical modeling of illu-
mination and color [13–15]. They learn the shadow properties through hand-crafted
features such as color [16–18], texture [17–19], and edges [16,19,20] on annotated shadow
images. These methods can be classified into two categories: decision tree [16,19] and
SVM [17,18,20]. Due to the difficulty of designing and choosing hand-crafted features, they
can only process simple situations.

Because of the powerful learning ability of the convolution network, more and more
methods [21–25] are based on it. These methods outperform previous approaches greatly.
Khan et al. [26] introduced deep CNNs to automatically learn features for shadow re-
gions/boundaries. Vicente et al. [27] trained stacked-CNN using a large dataset with noisy
annotations. Hu et al. [7] proposed a novel network for shadow detection by harvesting
direction-aware spatial context, in which the direction-aware attention mechanism is in-
troduced in a spatial recurrent neural network (RNN). The study [28] further extended [7]
on more datasets to evaluate the performance. These methods only consider shadow
regions, thus, they omit the consistency of the whole image. Unlike the previous methods,
we introduce an attention mechanism in shadow detection, which can make use of the
contextual information and focus on the shadow edge simultaneously.

2.2. Shadow Removal

Early works are motivated by physical models of illumination and color. For instance,
Finlayson et al. [13,14] provided illumination-invariant solutions that work well only on
high-quality images. More recently, there are some methods [29–32] to remove shadows
using deep networks. Khan et al. [5,26] adopted CNN to detect shadows followed by
a Bayesian model to remove shadows. Qu et al. [8] developed three sub-networks to
extract features from multiple views and remove shadows. Wang et al. [9] used two Condi-
tional Generative Adversarial networks (CGAN) to detect shadows and remove shadows,
respectively. Hu et al. [7] explored the direction-aware spatial context to detect and re-
move shadows. However, these methods have problems in some situations. Because the
shadowed regions and shadow-free regions are trained together, some image properties
between shadowed areas and shadow-free areas like color, texture, and illumination are
inconsistent. In contrast, our method processes the two regions separately to make the
image more natural.

Our proposed method is also based on generative adversarial networks. However,
compared with the existing mainstream deep learning methods [7,8], our proposed method
is more concerned with solving the inconsistency in the shadowed and shadow-free re-
gions. A dual encoder-decoder structure is used in the generation phase to reduce the
inconsistency by processing the shadowed and shadow-free regions separately.

3. Proposed Method

Figure 3 shows the overall architecture of the network. As we can see, the network
contains two essential parts: the generator and the discriminator. The generator aims
to remove shadows to enhance the input image. Specifically, the generative part can be
divided into two stages: shadow detection and shadow removal. We utilize the detection
result as the attention map to guide shadow removal. Finally, the enhanced image and the
attention map are fed into the discriminator for adversarial training. We detail the whole
network as described below.
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Figure 3. The architecture of our proposed network. The generator consists of an Attentive Recurrent
Network (ARN) and two contextual autoencoders. The discriminator contains seven convolution
layers and a fully connected layer.

3.1. Generative Netwoks

As we can see in Figure 3, an Attentive-Recurrent Network (ARN) is used as the
detection network. Meanwhile, the removal network is a dual autoencoder following the
encoder-decoder architecture. The detection result is regarded as the attention map and
concatenated with the input image as prior. After that, the concatenated results are fed into
the autoencoder so that the autoencoder will focus on the shadowed regions to produce a
better restored image.

3.1.1. Attentive-Recurrent Network

As shown in Figure 4, each block (of each time step) in ARN comprises five layers of
ResNet [10], a convolutional LSTM [11] unit, and convolutional layers for generating the
2D attention maps. The shortcuts in residual blocks can avoid vanishing gradients and
overfitting since they acquire more features than the normal convolution units. In order
to improve the detection performance, we use LSTMs to focus on spatial information and
contextual relations of shadows.

The value of generated attention map is between 0 and 1. The higher the value is,
the greater attention it suggests. Unlike the existing detection methods, attentive networks
can concentrate on spatial features and contextual relations. We empirically assume that
the network delivers higher performance if we share the attention weights rather than
using different weights. In order to make the weight of each block can be shared, we make
the output of LSTM in each block as input to the LSTM of the next block. In each part of the
ARN, the ith attention map will be fed to the (i + 1)th part with the shadow image. More
details can be seen in Figure 4.

We set the initialized value of the first attention map to 0.5 when training. For each
block in ARN, we concatenate the attention map with the shadow image and then feed
them into the next block. Particularly, the later attention maps have larger values indicating
the increase in confidence. The loss function is defined as the sum of mean squared error
(MSE) between the output attention map and the binary mask at all time steps shown in
Formula (1).

LATT({A}, M) =
N

∑
t=1

θN−tLMSE(At, M) (1)

where At means the attention map of step t. When t is 1, the input of the ARN block is the
shadow image stacked with an initial attention map whose value is 0.5. We set the total
time step N to 3 and θ to 0.8. In fact, a higher N will produce a better attention map, but it
will need more memory.
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Figure 4. The architecture of our attentive-recurrent network. The input is a shadowed image, and the
output of each ARN is fed to the next ARN. A1, A2, and A3 are the attention maps of each ARN.
The color means the attention weight of different regions.

3.1.2. Contextual Encoder

The contextual encoder is used to convert the shadow image into a clean image.
The existing methods use the same network to process shadowed and shadow-free areas.
However, the initial information on the two areas is different. Therefore, it is unreasonable
to treat the shadow regions and other regions in the same way. To solve this problem,
we apply two separate networks with the same structure, which contains 16 Conv-Relu
blocks, to generate the result. Additionally, we also use three skip connections to prevent
overfitting and retain more details. The input of the autoencoder is the concatenation of
the last attention map and the shadow image. It is worth noting that the restored areas
(shadowed regions in the original image) in the output of encoder 1 and non-shadowed
areas (shadow-free regions in the original image) in the output of encoder 2 are fused to
obtain the final enhanced image. The network architecture can be seen in Figure 5.

We use a reconstruction loss to make the whole image similar to the ground truth
as below:

LRES( Ī, Igt) = LMSE( Ī, Igt) (2)

where LMSE( Ī, Igt) means the mean square error [33] between the generative result and the
ground truth.

In order to make our networks concentrate on the shadow region and the surrounding
structures, we further use the attention map MATT to compute the spatial variant loss [12]
as Formula (3). The attention maps from the attentive-recurrent network are not only
detection of shadows, but also spatial locations and their relative order by considering
confidence on both known and unknown pixels.

LSVL(MATT ; Ī, Igt) = MATT
⊙

LMSE( Ī, Igt) (3)

We also introduce a perceptual loss at the feature level as Formula (4) to measure the
global discrepancy between the autoencoder’s output and the ground truth. The features
are extracted by a well-trained VGG-16 [34].

LVGG( Ī, Igt) = LMSE(VGG( Ī), VGG(Igt)) (4)
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The loss function of generative network is:

LG = 10−2LGAN( Ī) + LATT(A, M) + LSVL(MATT ; Ī, Igt) + LVGG( Ī, Igt) (5)

Figure 5. The architecture of the autoencoder. It contains two encoder-decoders with three skip
connections. The final output will be used to compute LMSE, LRES, LSVL.

3.2. Discriminative Network

The purpose of the discriminative network is to distinguish whether the image is fake
or real. We set the generated image concatenated with the attention map as fake (0), and the
ground truth concatenated with the mask as real (1). Our discriminative network contains
seven 3 × 3 convolution layers and a fully connected layer with a sigmoid activation
function. The result of the discriminator is 0 or 1, which means fake or real, respectively.
Figure 6 shows the structure of the discriminator.

Figure 6. The architecture of the discriminator. The input of the network is the generation con-
catenated with attention map or the ground truth concatenated with the mask. The output of the
discriminator is 0/1, which means fake or real.

The loss function in the discriminative network is defined as:

LD = min
G

max
D

EIgt∼Pclean [log D(Igt)] + EI∼Pshadow [log(1− D(G(I)))] (6)

where G represents the generative network, and D represents the discriminative network.
Igt is the ground truth, and I means the input shadowed image.
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3.3. Implement Details

The VGG-16 [34] which is used to extract features to calculate the perceptual loss is
initialized with the model pre-trained on ImageNet-1k [35]. Meanwhile, other layers are
randomly initialized to accelerate the training process and reduce over-fitting. As for the
generative network, we use an SGD with a momentum of 0.95 to optimize it. The initial
learning rate is set to 0.001 with a decay rate of 0.9 after 1000 iterations. And the discriminative
network is optimized by an Adam, in which the initial learning rate is 0.02 with a decay rate
of 0.9 after 3000 iterations. We train our networks with a batch size of 1 for 200 k iterations in
total. Our method is implemented by TensorFlow on an NVIDIA GTX 1070 (8.00 GB).

4. Experiments
4.1. Dataset

There are many public datasets related to shadows, but some of them are prepared
for shadow detection only (SBU [27], UCF [19]), and some of them only have shadowed
and shadow-free pairs (SRD [8], UIUC [4], LRSS [3]). We take the widely used ISTD [9]
dataset in shadow removal to train and test our model. ISTD [9] contains triplets of
shadowed images, shadow-free images, and shadow masks. There are 1330 training triplets
and 540 testing triplets in total, covering various shadow shapes for 135 different scenes.
The input image size in our network is 240× 320, and we augment the training dataset by
flipping or cropping to avoid overfitting.

4.2. Evaluation Metrics

We follow the recent work to evaluate shadow removal results by Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) [36]. We first calculate the MSE between the
ground truth Igt and the generated image Ī (m× n) as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[Igt(i, j)− Ī(i, j)]2 (7)

Based on the MSE, PSNR is defined as:

PSNR = 10 · lg(
MAX2

Igt

MSE
) (8)

where MAX2
Igt

is the max value of each pixel in the ground truth. A higher PSNR means
better image quality.

SSIM [36] is an index to measure the similarity of the ground truth Igt and the
generated image Ī as below:

SSIM(Igt, Ī) =
(2µIgt µ Ī + C1)(2σIgt , Ī + C2)

(µ2
Igt

+ µ2
Ī + C1)(σ

2
Igt

+ σ2
Ī + C2)

(9)

where Igt and Ī are the ground truth and the restored image, respectively, µIgt is the average
of Igt, and µ Ī is the average of Ī. Finally, σ2

Igt
is the variance of Igt, σ2

Ī is the variance of Ī,

σIgt , Ī is the covariance of Igt and Ī. We set c1 = (0.01× (28 − 1))2, c2 = (0.03× (28 − 1))2.
The value of SSIM lies in the range [0, 1]. Please note that higher SSIM is what

we expected.

4.3. Results Comparison

In this section, we will compare our methods with other state-of-the-art approaches in
quantity and quality. We also provide ablation studies to verify the effectiveness of each
component in our framework.
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4.3.1. Qualitative and Quantitative Evaluation

First of all, we compare our network with state-of-the-art shadow removal methods
including DSC [7], Gong et al. [37], and ST-CGAN [9]. Compared with the traditional
method [37], we can improve the PSNR and SSIM by 19.2% and 44.94%, respectively. These
results demonstrate that deep learning has a significant impact on shadow removal. For the
recent methods which use CNNs [7,9], our approach has a 3.24% increase in SSIM and
2.77% improvement in PSNR. This is mainly attributed to the fact that our method pays
more attention to the structural characteristics of shadows, resulting in higher consistency
between the restored image and the ground truth. Overall, our method performs better in
PSNR and SSIM than existing methods. The detailed results are in Table 1.

Aside from the quantitative evaluation, we visualize the results of different methods
to evaluate them qualitatively. As we can see in Figure 7, the result of Gong et al. [37] is
the worst, indicating the traditional method cannot deal with complex conditions. DSC [7]
and ST-CGAN [9] are better than the traditional method since their results are more natural,
but we can still find some differences between the shadowed regions and the shadow-free
regions. Besides the loss of image information, DSC [7] and ST-CGAN [9] pay less attention to
the image details, which is common in existing methods because they use the same network
to process both shadowed regions and shadow-free regions. This problem can be solved
perfectly with our method. We use a dual-autoencoder to separately process the shadowed
regions and the shadow-free regions, so the consistency of our results is more remarkable.

Figure 7. Visualization results of different methods. From top to bottom: shadowed image (input),
the ground truth, our method, Gong et al. [37], DSC [7] and ST-CGAN [9]. Nearly all shadows are
removed by our method. Furthermore, the color, brightness, and texture are more similar to the
ground truth.
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Table 1. Quantitative evaluation results between the existing methods and our work.

Methods PSNR SSIM

Gong et al. [37] 19.89 0.6103
DSC [7] 23.07 0.8639

ST-CGAN [9] 23.63 0.8568
Our Method 23.71 0.8846

4.3.2. Ablation Study

To prove each part of our network is indispensable, four variants of our method are
designed to perform various ablation studies. Particularly, O is the contextual autoencoder
along with one encoder-decoder net. O+A means the generator that contains one encoder-
decoder net and the attention mechanism. T is the autoencoder containing two encoder-
decoder nets. T+A is our complete architecture: attentive autoencoder using the attention
mechanism with two encoder-decoder nets. As shown in Table 2, when using the attention
mechanism, the PSNR and SSIM are obviously improved. Since the attention map can
highlight shadows, it is beneficial for recovering. Furthermore, it is unreasonable to use
the same network to process shadowed regions and shadow-free regions. Unlike existing
methods, we apply the separate processing of shadowed areas and the shadow-free areas
to keep the consistency.

Table 2. Quantitative evaluation results between each part and the whole network.

Methods PSNR SSIM

O 20.30 0.8174
O+A 21.01 0.8625

T 20.52 0.8570
T+A (Our Method) 23.71 0.8846

The visualization results are shown in Figure 8. It can be seen that the network detec-
tion result is more accurate after applying the attention mechanism. Moreover, the bound-
ary is integrated with the surrounding very well. After adopting the two encoder-decoders,
the color, texture, and illumination of the image are more natural. Our method can recover
the shadow image to a clear image effectively. The results shown in Figure 8 demonstrate
the essence of each part of our network module.

Like ST-CGAN [9] and DSC [7], our proposed method adopts a multi-branch structure.
The difference is that our method detects shadows first, and then processes shadowed
and shadow-free regions separately. In contrast, ST-CGAN treats shadow detection and
shadow removal jointly. Similarly, the DSC method also uses multi-branch structure,
the difference is that the method uses multi-branch structure to extract features at different
scales, and then the DSC module to extract contextual features. The method can obtain
good results in both shadow detections. ST-CGAN and DSC process both shadowed areas
and shadow-free areas as a whole, making some restored shadow areas inconsistent with
the surroundings. Different from them, our proposed method is more concerned with
solving the inconsistency in the shadowed and shadow-free regions. The experimental
results show that our proposed method can achieve better metrics and more natural results.
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Figure 8. Visualization results of each variant of our method. From left to right: Input, O (one
encoder-decoder without attention mechanism), T (two encoder-decoder nets without attention
mechanism), O+A (one encoder decoder with attention mechanism) and T+A (the whole network,
two encoder-decoder nets with attention mechanism).

4.4. Discussion
4.4.1. Application

Our method can be applied in many ways. For example, the detected shadows in the
first stage can play an important role in various applications of visual scene understanding,
such as scene geometry depiction, camera location, object relighting, and scene illumination
inference. Meanwhile, the proposed shadow-removal model can be used to boost the
performance of many computer vision tasks through data augmentation, such as image
classification, object detection, and intrinsic image decomposition.

4.4.2. Limitations

On the other hand, there exist some limitations to the proposed method. For example,
the two-stage training and dual branches may lead to higher computational costs, and thus
cannot be deployed on lightweight and mobile devices.

5. Conclusions

In this work, we present a novel two-stage generative adversarial framework for
shadow removal. In the shadow detection stage, we develop an attentive-recurrent network
to generate the visual attention map. In the shadow removal stage, two auto-encoders
are used to process the shadowed regions and shadow-free regions separately to keep
consistency. The attention map is fed into the auto-encoders as a prior to make the generator
focus on shadows. We compare our approach with the state-of-art methods to show its
superiority both quantitatively and qualitatively. Furthermore, various ablation studies
demonstrate that each part of our work is essential. In the future, we expect to collect
more shadowed and shadow-free images with more complex scenes as well as improve the
ability of the network to remove shadows in complex conditions.
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