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Abstract: This article presents the concept of federated learning (FL) of eXplainable Artificial Intelli-
gence (XAI) models as an enabling technology in advanced 5G towards 6G systems and discusses its
applicability to the automated vehicle networking use case. Although the FL of neural networks
has been widely investigated exploiting variants of stochastic gradient descent as the optimization
method, it has not yet been adequately studied in the context of inherently explainable models.
On the one side, XAI permits improving user experience of the offered communication services
by helping end users trust (by design) that in-network AI functionality issues appropriate action
recommendations. On the other side, FL ensures security and privacy of both vehicular and user
data across the whole system. These desiderata are often ignored in existing AI-based solutions for
wireless network planning, design and operation. In this perspective, the article provides a detailed
description of relevant 6G use cases, with a focus on vehicle-to-everything (V2X) environments: we
describe a framework to evaluate the proposed approach involving online training based on real data
from live networks. FL of XAI models is expected to bring benefits as a methodology for achieving
seamless availability of decentralized, lightweight and communication efficient intelligence. Impacts
of the proposed approach (including standardization perspectives) consist in a better trustworthiness
of operations, e.g., via explainability of quality of experience (QoE) predictions, along with security
and privacy-preserving management of data from sensors, terminals, users and applications.

Keywords: explainable artificial intelligence; federated learning; 6G; vehicle-to-everything (V2X);
quality of service; quality of experience

1. Introduction

Artificial Intelligence (AI), along with Machine Learning (ML) as one of its core build-
ing blocks, is entering many market domains at a fast pace and will not only leverage
advanced communication networks but also shape the definition of next-generation net-
works themselves. In particular, AI is expected to play a crucial role in the design, operation
and management of future beyond-5G (B5G)/6G networks and in a plethora of applica-
tions [1]. However, the introduction of in-network AI comes with growing concerns on
privacy, security and trust for citizens and users; for this reason, the adoption of eXplainable
AI (XAI) models is an emerging trend considered for the design of transparent AI-based
solutions. Moreover, future service scenarios, especially in the automotive domain, will be
characterized by the deployment of connected vehicular systems from heterogeneous car
manufacturers, connected via different Mobile Network Operators (MNOs) and different
technology infrastructures [2]. In such complex setups, it will be imperative for service
providers to consider federated network environments including multiple administrative
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and technical domains as a working assumption for the design of innovative applications.
It is worth noting that the automated driving use case of “Teleoperated Driving (ToD) for
Remote Steering” [3] requires a throughput of up to 36 Mbps per single stream, along with
a positioning accuracy of 0.1 m and a reliability of 99.999% for the service to be considered
available to the end customer. Such stringent requirements call for new technical enablers,
to be introduced as part of the 6G network design. Considering the above-mentioned
challenges, in this article we envision the use of the federated learning (FL) concept applied
jointly with XAI models and discuss its applicability to automated vehicle networking use
cases to be encountered in B5G/6G setups. In fact, although FL has recently been widely
investigated in the context of Neural Networks and Deep Learning models (due to their
gradient based optimization strategy), much less attention has been devoted so far to FL of
XAI models.

The main contributions of this article can be summarized as follows:

• We propose the integration of FL with XAI for performing quality of experience (QoE)
predictions in B5G/6G networks, by providing a detailed discussion about the benefits
it can bring and the main challenges that need to be addressed;

• Considering vehicle-to-everything (V2X) applications as relevant use cases, we present
the design of a framework to evaluate the benefits of the proposed approach and
provide the guidelines to implement a realistic B5G/6G network testbed supporting
the training of XAI models in a federated fashion, as well as the issuance of explainable
QoE predictions;

• We shed light on the impact that the proposed FL approach with XAI models will
have on both the industrial and standardization sectors.

While the following subsections provide an overview of XAI and FL, respectively,
Section 2 describes the FL of XAI models applied to advanced 5G systems towards 6G.
Section 3 elaborates on some relevant V2X use cases and provides more details on the
proposed FED-XAI framework, focusing on a QoE prediction task. In Section 4, the impact
of such solutions to the automotive vertical segment is discussed: in particular, the benefits
of predicted QoE explanations useful for decision making are detailed for both car Original
Equipment Manufacturers (OEMs) and MNOs. Standardization impacts are also analysed
to provide interoperable and globally applicable solutions, and some challenges of FL of
XAI models are discussed. Finally, Section 5 draws some conclusions.

1.1. The Need for XAI

The adoption of AI techniques cannot disregard the fundamental value of trustworthi-
ness, which, along with inclusiveness and sustainability, represents the three core values of
the European Union Flagship Hexa-X (www.hexa-x.eu (accessed on 16 August 2022)) vision
for the upcoming 6G era [1]. Trustworthiness has become paramount for both users and
government entities, as witnessed by the “right to explanation” described in the General
Data Protection Regulation (GDPR) and by the European Commission’s (EC) Technical
Report on “Ethics guidelines for trustworthy AI” [4]. According to these, explainability
represents a key requirement towards trustworthiness. Thus, industry and academia are
placing increasing attention on XAI, that is, an AI “that produces details or reasons to make
its functioning clear or easy to understand” [5].

In this context, two strategies for achieving explainability can be identified [5]: the
adoption of post-hoc explainability techniques (i.e., the “explaining black-box” strategy)
and the design of inherently interpretable models (i.e., “transparent box design” strategy).
In this article, we focus on this latter class of approaches, noting that certain applications
may tolerate a limited performance degradation to achieve fully trustworthy operation.
In fact, performance and transparency are typically considered conflicting objectives [5,6].
However, this trade-off holds as long as the target task entails a certain complexity and the
data available are many and high quality. In this case, complex models, such as Deep Neural
Networks (DNNs), which are hard to interpret due to their huge number of parameters and
non-linear modelling, have proven to achieve high levels of accuracy; conversely, decision

www.hexa-x.eu
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trees and rule-based models may feature lower modelling capability but are typically
considered “highly interpretable”.

The importance of explainability has been recently highlighted in the context of
Secure Smart Vehicles [7]: on one hand, explanation is crucial in safety-critical AI-based
algorithms, designed to extend some widely available capabilities (e.g., lane-keeping and
braking assistants) towards fully automated driving; on the other hand, explainability is
needed at the design stage to perform model debugging and knowledge discovery, thus
positively impacting system security by reducing model vulnerabilities against external
attacks. Explainability of AI models will be crucial for 6G-enabled V2X systems. A prime
example is an AI service consumer requesting in-advance notifications on QoS predictions,
as studied in Hexa-X [1] and the 5G Automotive Association (5GAA) [8]. Accurate and
timely predictions should support very demanding use cases, with a horizon ranging
from extremely short to longer time windows. Better explainability of such predictions
and any consequent decision will provide benefits not only for technology and service
providers (see Section 4), but also for end-customers, who will become more receptive to
AI-based solutions.

1.2. Federated Learning

Exploiting data from multiple sources can enhance the performance (i.e., high accuracy
based on reduced bias) of AI models. However, wirelessly collecting and storing peripheral
data for processing on a centralized server has become increasingly impractical due to
two main reasons: first, it typically introduces severe communication and computation
overhead due to the transmission and storage of large training data sets, respectively;
second, it violates the privacy and security requirements imposed by data owners by
expanding the surface of possible over-the-air attacks towards biased decision making. In
other words, the preservation of data privacy represents an urgent requirement of today’s
AI/ML systems, because data owners are often reluctant to share their data with other
parties; in some jurisdictions, users have the ability to consent or not with the sharing
of privacy-sensitive data (e.g., per the General Data Protection Regulation—GDPR in
European Union). Such a need to preserve privacy of data owners, however, clashes with
the need to collect data to train accurate ML models, which are typically data hungry in
their learning stage. To overcome these limitations, FL has been proposed as a privacy-
preserving paradigm for collaboratively training AI models. In an FL system, participants
iteratively learn a shared model by only transferring local model updates and receiving an
aggregated shared model update, without sharing raw data.

The main opportunities of FL in the context of Intelligent Transportation Systems
(ITS) have been recently discussed in [9]: FL is expected to support both vehicle man-
agement (i.e., automated driving) and traffic management (i.e., infotainment and route
planning) applications. Furthermore, FL has been applied in the context of Ultra-Reliable
Low-Latency Communications for Vehicle-to-Vehicle scenarios, allowing vehicular users
to estimate the distribution of extreme events (i.e., network-wide packet queue lengths
exceeding a predefined threshold) with a model learned in a decentralized manner [10].
The model parameters are obtained by executing maximum likelihood estimation in a
federated fashion, without sharing the local queue state information data. The concept of
Federated Vehicular Network (FVN) has been recently introduced [11], as an architecture
with decentralized components that natively support applications, such as entertainment
at sport venues and distributed ML. However, FVN is a stationary vehicular network and
relies on the assumption that vehicles remain at a fixed location, e.g., parking lots, so that
the wireless connection is stable.

In most of the work on FL, the strategy for model aggregation was inspired by the
federated averaging protocol (FedAvg), which enables collaborative Stochastic Gradient De-
scent (SGD) optimization in a federated manner. Thus, FL has been extensively investigated
for models implementing SGD as their optimization method, such as Neural Networks
(NNs), but has not yet been adequately studied in the context of inherently explainable
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models. The following section introduces how XAI models can be generated by FL, a new
approach which appears very promising for future 6G systems.

2. FED-XAI: Bringing together Federated Learning and Explainable AI

Existing AI-based solutions for wireless network planning, design and operation
ignore either or both of the following aspects: (i) the need to preserve data privacy at all
times, including wireless transfer and storage, and (ii) the explainability of the involved
models. Furthermore, latency and reliability requirements of safety-critical automotive
communications call for seamless availability of decentralized and lightweight intelligence,
where data are generated—and decisions made—anytime and anywhere.

Current FL approaches only address the first requirement. Explainability has been
given less attention, having been approached primarily by exploiting post-hoc techniques,
e.g., Shapley values to measure feature importance [12]. There is a substantial lack of ap-
proaches for FL of inherently explainable models. On the other hand, a federated approach
for learning interpretable-by-design models, in which transparency is guaranteed for every
decision made, would represent a significant leap towards trustworthy AI. Therefore, we
introduce the concept of FL of XAI (FED-XAI) models, as a framework with a twofold
objective: first, to leverage FL for privacy preservation during collaborative training of AI
models, especially suitable in heterogeneous B5G/6G scenarios; second, to ensure an ade-
quate degree of explainability of the models themselves (including the obtained aggregated
model as a result of FL).

In the following, we provide some insights into how inherently explainable models
(e.g., decision trees or rule-based) can be learned, employing an FL paradigm. First, it is
worth noting that standard algorithms for learning such models typically adopt a heuristic
approach; in fact, gradient descent-based optimization methods, widely used in FL, cannot
be immediately applied, as they require the formulation of a global objective function. The
greedy induction of decision trees, for example, recursively partitions the feature space
by selecting for each decision node the most suitable attribute. The major challenge of the
FED-XAI approach, therefore, consists in generating XAI models, whose FL is not based on
the optimization of a differentiable global objective function.

The proposed FED-XAI approach relies on orchestration by a central entity but ensures
that local data are not exposed beyond source devices: each data owner learns a model by
elaborating locally acquired raw data and shares such a model with the central server, which
merges the received models to produce a global model (Figure 1). Notably, our envisioned
approach for federated learning of explainable AI models ensures data privacy regardless
of the data sample size. As per the advantages of the FED-XAI approach, we expect that
the global aggregated model performs better than the local models because it exploits the
overall information stored and managed by all data owners, without compromising model
interpretability.

Figure 1. Illustration of federated learning of XAI models.
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Our approach differs from classical FL in two aspects: first, it entails a one-shot
communication scheme for each model update and not an iterative algorithm. As a
consequence, the communication overhead is reduced, and the system is more robust to
possible connectivity problems. Second, merging decision trees and rule-based models
requires defining appropriate procedures, necessarily different from the simple weighted
average of models of the FedAvg protocol applied, for example, to NNs. In more detail, the
XAI models we consider can be represented as collections of “IF antecedent THEN consequent”
rules, (natively in a rule-based system, and easily obtainable also from a decision tree). This
representation is applicable regardless of the target task (regression or classification) and
the type of the attributes (e.g., nominal or numeric). The aggregation procedure consists in
juxtaposing rules collected from data owners, and resolving possible conflicts, which emerge
when rules from different models, having antecedents referring to identical or overlapping
regions of the attribute space, have different consequents. In one of our recent works [13],
we presented a novel approach for FL of Takagi-Sugeno-Kang (TSK) fuzzy rule based
systems [14], which can be considered as XAI models in regression problems. In a TSK
model, the antecedent of a rule identifies a specific region of the attribute space, whereas
the corresponding consequent allows for the evaluation of the predicted output within
such a region as a linear combination of the input variables. When two rules, generated by
different clients, share the same antecedent, the aggregation strategy for generating the FED-
XAI model involves combining the two rules into a single one with the same antecedent:
the coefficients of the linear model of the new consequent are evaluated as the weighted
average of the coefficients of the original rules, where the weight of each rule depends
on its support and confidence values. Research efforts in the FED-XAI domain, however,
are still in their embryonic stage: as for tree-based models, a preliminary investigation of
the trade-off between accuracy and interpretability has been recently carried out [15], but
learning strategies compliant with the federated setting still need to be sharpened.

The FED-XAI approach may find immediate applicability in the automated vehicle
networking domain, and, specifically, within the exemplary scenario described in Section 1:
a model for QoS prediction which is explainable by a wide set of service consumers
may be learned in a federated manner, reaping the benefits of collaborative training and
privacy protection.

Main Challenges of the FED-XAI Approach

There are also challenges related to the FED-XAI approach, especially for time-critical
operations in automated driving setups. For example, the computation (and, therefore,
energy) footprint of FED-XAI needs to be pre-evaluated before implementation to identify
the scalability potential of the solution. A clear distinction should be made between the
stages of training and inference. For most ML models, including decision tree and rule-
based systems, the inference time (critical from automated driving service standpoint) is
negligible compared to the training time and, in any case, model complexity can be tuned
to ensure that time constraints are satisfied. A larger computational overhead is required in
the training stage, but it does not affect the application (e.g., learning can be performed in
idle state). Another challenge is FED-XAI system resilience to attackers trying to benefit
from the access to explanations of QoE predictions (e.g., towards increasing automated
driving service outages for all or targeted vehicles). Finally, the approach will also need
to address some additional challenges that are typical of FL and are likely to characterize
6G network-based intelligent transportation applications: (i) multi-source data may have
different distributions and volumes, (ii) the number of participants can grow fast and
their participation to FL may be unstable due to insufficiency of radio and computational
resources, and (iii) learned models will need to be agilely updated in scenarios where
concept drift alters the characteristics of data distributions over time.
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3. The Proposed FED-XAI Framework for QoE Predictions in V2X Environments

This section describes some V2X use cases for which the FED-XAI approach is expected
to be beneficial. Furthermore, we discuss a framework for QoE prediction in B5G/6G
systems along with realistic sourcing of live data from an MNO network.

3.1. Exemplary 6G Use Cases in V2X Environments

The use of Information and Communication Technology, and especially AI techniques,
in the automotive sector is gaining increasing attention [16]. Given the large amount
of data generated by multiple, distributed sources, AI is one of the key technologies to
enable innovative use cases, such as autonomous driving [17,18], improved safety [19] and
platooning [20].

In the Hexa-X project, a general AI-assisted V2X use case is described ([1], Sec-
tion 4.2.7.3). In future enhanced automotive uses cases or services, collecting a high
volume of contextual and sensor data from traffic participants and road infrastructure will
be common practice. With these data, a Digital Twin (DT) of the traffic environment can
be created in the cloud or the edge of future mobile networks. This DT can be distributed
across multiple edge nodes corresponding to a coverage area or to higher hierarchical edge-
cloud nodes in different locations of the network and employed to optimize vehicle traffic
by generating inputs to traffic management as well as driving or manoeuvring instructions
to traffic participants. Moreover, DTs can be used to support ToD, by providing real-time
information and predictions of road traffic information, as well as predictions for the QoS
of the radio access network (e.g., radio signal quality). Real-time management of DTs is
very challenging and requires network capabilities not available today. To guarantee safety,
system operation requires extremely low latency, high reliability and ultra-high location
accuracy along with efficient and explainable AI algorithms. Multiple edge nodes can be
part of MNO or road infrastructure, and, at a given time, geographically proximate nodes
might contain similar AI models which are either part of the same learning federation or
updated by applying knowledge sharing. Moreover, when it comes to safety-related V2X
services for automated and connected vehicles, most of the use cases analysed by 5GAA [2],
e.g., See Through, Vulnerable Road User protection, Intersection Movement Assist, or In-
Vehicle Entertainment, are evaluated, attributing great significance to security and privacy.
In this perspective, the FED-XAI approach provides an intrinsic benefit, compared to its
centralized learning counterparts.

In [1] authors proposed to further improve the ToD use case by applying the AI-as-
a-Service approach: a driver planning to perform a journey would like to be informed
of any V2X service degradations along the planned route by means of in-advance QoS
predictions based on a plurality of data, gathered, e.g., from the Uu and PC5 interfaces
but also from vehicle sensors (RADAR, LiDAR, etc.). Such notifications will allow for
the decision upon activation of other V2X-related functionalities: for instance, automated
driving features should be avoided if the predicted QoS in a certain part of the route would
not allow such features to be used; hence, the driver should take control of the car until
new, favourable QoS predictions suggest switching to automated driving mode. Moreover,
QoS predictions could also be used to schedule the execution of non-V2X functionalities,
e.g., software over-the-air downloads. In addition, in this scenario, the various data owners
are encouraged to participate in the FED-XAI procedure, because the collaborative model
will blend the knowledge extracted from all data rather than only from local data.

In the following section, we describe an illustrative automotive scenario, which can be
the basis of evaluating the performance of the FED-XAI concept.

3.2. Details of the Proposed FED-XAI Framework

We consider an application where several instances of vehicular User Equipment (UE)
connected to a B5G/6G Base Station (BS) receive a video stream whose quality plays a
decisive role in the safety of remote driving. The quality of experience (QoE) perceived by
UEs depends on the QoS provided by the network. This can be mapped, for instance, to
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a see-through use-case, where the receiving UE is a car using a live feed from the camera
of another car (e.g., to make overtaking safer in the presence of visual impairments for
the driver), or to ToD, where the sender is the car being driven and the receiver is the
driving operator. In either case, operations may be supported by a DT of the traffic area
at the edge. From an implementation perspective, Multi-access Edge Computing (MEC)
infrastructure can be leveraged as an intrinsic facilitator for the segregation of data, as
requested by international regulation in the matter of ITS services. Furthermore, state-of-
the-art MEC technologies are defined by considering MEC security with an end-to-end
approach, leveraging existing standards relevant in the area, e.g., ETSI-NFV-SEC (European
Telecommunications Standards Institute—Network Functions Virtualisation—Security),
TC CYBER (Technical Committee Cybersecurity), 3GPP (Third Generation Partnership
Project), carefully selected to be applicable in edge computing systems.

The objective of the envisioned application is to employ XAI models, learnt (and
updated) in a federated fashion based on QoS/QoE data, to predict the QoE perceived
by UEs in the near future. Notably, it has been recently shown that highly interpretable
tree-based models are able to achieve competitive performance in this specific task [21]. In
the following, we describe how the FED-XAI approach can be deployed on a MEC-enabled
B5G/6G architecture (see Figure 2). A FED-XAI computation engine (CE) instantiated
within an edge/cloud node (also called a MEC host) is the central entity responsible
for model aggregation. With reference to the see-through scenario in Figure 2, each UE
measures QoS and QoE metrics, while receiving the video stream, possibly enhanced by
the DT. Examples of relevant metrics are: received throughput, jitter, packet error rate
(QoS), startup delay, number of stall events and rebuffering ratio (QoE). The collected
values of such QoS/QoE metrics are securely transmitted by each (vehicular) UE to a
corresponding MEC application, called FED-XAI manager (FM), possibly together with any
other relevant information for the FED-XAI learning algorithm. Each UE communicates
with its dedicated FM, which acts as an interface to the CE in the MEC system and provides
all the functionalities to allow the UE to participate in the federation, e.g., join/leave,
transmit/obtain model to/from the CE, etc. Alternatively, an FM can be hosted directly at
the UE (instead of the MEC host).

Figure 2. Example of video flow (red arrows) and related QoS/QoE metrics reporting (dashed black
arrows) in a MEC-enabled FED-XAI architecture. Interaction among FM, CE and a real time XAI
dashboard is also shown.
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We divide time in periods, as shown in Figure 3. During each period, a UE measures
both QoS and QoE metrics. We call QOSk(i) and QOEk(i) the vectors of QoS and QoE
metrics measured by UEk during period i. Both vectors are sent to the FM of UEk, FMk.
At t = n, FMk uses the XAI model obtained by the CE to predict the QoE that UEk will
perceive in the next period, i.e., QOEk(n + 1).

Figure 3. QoE prediction based on previous QoS/QoE samples.

For building (or updating) the FED-XAI model, the involved FMs train (or update) the
local model based on recent data (QOS(i) and QOE(i) for each i = n − m, n − m + 1,. . . , n,
where m is a predefined time window), and share it with the CE. Once the CE produces the
aggregated FED-XAI model, the latter is sent back to the FMs that will use it to perform the
QoE prediction for their corresponding UE. The results of the prediction feed a dashboard
that displays them in real time and explains how they were obtained.

The above scenario will be evaluated in a real-time distributed testbed, which em-
bodies both the communication and computation aspects of the system, as well as the
application logic. The communication is realized by Simu5G, a modular simulator of
3GPP-compliant New Radio based on OMNeT++ [22], which also works in real time and
interfaces with external applications [23]. The MEC subsystem is realized using Intel’s
OpenNESS open-source framework (www.openness.org (accessed on 16 August 2022)).
Moreover, QoS information is taken in real time from Simu5G, also through its MEC service
interface, that can be queried by MEC applications. In order to make the aforementioned
testbed more realistic, the network scenario implemented by Simu5G is designed consider-
ing data taken from TIM’s live network as input, such as base stations position and user
data volume, extracted using the techniques described in Section 3.3.

We have recently carried out a preliminary experimental analysis focused on QoE
forecasting in B5G/6G networks [24]: we have presented a novel data set (QoE forecasting
data set: http://www.iet.unipi.it/g.nardini/ai6g_qoe_dataset.html (accessed on 16 August
2022)) obtained through realistic network simulations and showed how decision trees as
an inherently explainable model can be considered a valid baseline for the prediction task.
Specifically, the data set consists of time-tagged contextual (e.g., UE position), QoS (e.g.,
Signal to Interference plus Noise Ratio (SINR) value measured at packet reception) and QoE
(e.g., percentage of a frame arrived at the time of its display) metrics from 24 repetitions of a
scenario in which 15 instances of UE experiment with a video for approximately 120 s. The
prediction task has been formulated as a regression problem. The preprocessing and feature
extraction steps are extensively described in [24]; in a nutshell, for each UE we collected the
timeseries related to 12 metrics (QoS, QoE and contextual) and obtained any record of the
preprocessed data set as follows: for a timestamp t, the input variables consist of 11 statistics
(i.e., mean, median, max, min, variance, standard deviation, kurtosis, skewness, Q1 and Q3,
number of samples) measured for each metric in the time window [t−W, t] (with W = 10 s),
whereas the output variable consists in the mean of the target QoE metric over the time
horizon of one second (i.e., in [t, t + H], with H = 1 s). For the preliminary experimental
analysis, we considered the centralized setting, i.e., all data available on a single node, and
resorted to the decision tree for regression available in scikit-learn (https://scikit-learn.
org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html (accessed on 16
August 2022)). Figure 4 reports an example of real and predicted timeseries for a given
QoE metric. Although our final goal is to learn XAI models in a federated fashion, such a
preliminary analysis allowed us to set a baseline for the centralized setting and to assess the
performance of an XAI model in a prediction task on realistic B5G/6G network simulations.

www.openness.org
http://www.iet.unipi.it/g.nardini/ai6g_qoe_dataset.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Figure 4. Real and predicted values of QoE for an example UE of the test set (Figure from [24]).

3.3. Feeding Models with Real Network Data

AI-based algorithms need to be fed with real data and collecting live measurements
from the MNO network is critical for the reliability of the produced output. In that
perspective, the Minimization of Drive Tests (MDT) functionality is applied on TIM Radio
Access Network (RAN) to acquire geolocated real data from live RAN. MDT is a 3GPP
standard feature (TS 37.320) which allows collecting geolocated radio measurements from
UEs in both idle and connected states [25]. This enables UEs to periodically send a large
set of measurements from Layer 2—MAC (3GPP TS 36.321), and Layer 3—Radio Resource
Control (3GPP TS 36.331). UEs take those measurements for standard procedures, such as
cell re-selection, handovers, quality reporting, etc. With MDT, UEs keep measuring the
same quantities but share their measurements periodically with the network. If a Global
Positioning System (GPS) receiver is enabled, UE measurements are geolocated, which
allows anonymous data collection for statistical analysis. MDT paves the way for replacing
traditional time-consuming drive tests, made by few test UEs, with thousands or millions
of measurements, reported by most devices in the network. Moreover, MDT data come
from several customers and UE types, thus allowing a realistic insight into user QoE. MDT
measurements in this work mainly refer to geolocated UE throughput and data volume
metrics. Examples of MDT georeferenced data from the TIM live network are reported in
Figure 5 for the area around Venice, where every pixel represents 1 m2 of the area, and
MDT data in each pixel are averaged and normalized to all MDT data collected in all pixels.

Most MDT data are geolocated in the sea and Venice channels too. This highlights the
capability of MDT data to represent the real traffic scenario. The real radio coverage map of
several cells in the 1800 MHz frequency band is reported with different colours. MDT data
are completely anonymous because neither customer nor UE identity data are monitored or
gathered. In particular, MDT data are only geolocated radio measurements reported by UE.
The MDT data on TIM’s RAN are gathered by using a Nokia system called Geosynthesis.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. MDT georeferenced data from TIM live network on the area of Mestre and Venice cities.
(a) MDT sample density (MDT sample/m2) in the area of Mestre and Venice Cities (Italy) averaged
over 24 h. On the map, each single visible point is a square pixel with 1 m side. (b) MDT sample
density on Venice city. (c) MDT Best Serving Cell radio coverage of Venice Cities (Italy). Each colour
identifies a single cell in the 1800 MHz frequency band. On the map, each single visible point is a
square pixel with 1 m side.

4. Impacts of the Proposed FED-XAI Approach on V2X Applications in B5G/6G Networks

The practical use value (or benefit) of FL for the considered V2X use cases, involving
various local models instantiated at vehicles, roadside units and edge cloud infrastructure
is that the QoE predictions issued by the resulting global aggregated model will be char-
acterized by a higher generalization capability in space and in time than local models. In
other words, when a QoE prediction request is issued by a (new) vehicle entering the area
of interest, the QoE prediction value to be returned in response will be more accurate and
of higher confidence than the one generated by a local model trained by using only the data
acquired in the vehicle. On top of the increased generalization capability, a second benefit
of the FED-XAI approach is the increase in trust in AI for 6G-enabled services. This has
an immediate business impact on 6G business entities. This increase in trust is beneficial
for all system entities, from end users to operators and service providers, edge-computing
providers and other vertical market players (e.g., automotive, industrial automation, etc.),
as it better instils collaboration, starting from a business level. For instance, the exem-
plary V2X applications described in Section 3.1 are typical cases where a collaboration
(and related business agreement) is needed between MNOs, possibly in partnership with
edge-computing service providers and car OEMs. Both car OEMs and MNOs can benefit
from explanations about such predictions and any consequent decision making: MNOs
can provide a more explainable set of 6G functionalities (e.g., FL agents enabling QoE
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predictions) and expose them to their customers (including car OEMs but also application
developers and system integrators); OEMs can also benefit from more information on
network predictions, exploitable to improve automated driving features offered to their
end customers (i.e., the actual drivers).

Figure 6 shows the same V2X service scenario, characterized by a fundamentally
different view, depending on the perspective considered: a car dashboard (from the point
of view of the user) shows the set of enabled V2X functionalities and their respective
space and time availability. Instead, the view of a network operator (providing the needed
communication and computation infrastructure) embeds more complexity, including the
management and operation of the network infrastructure and the FED-XAI functionalities
needed to provide QoE predictions for the offered V2X services. The boundary between
these two worlds is typically governed by a set of Service Level Requirements (SLRs),
defining the terms and conditions of the agreement between these two stakeholders (see
5GAA reports for the V2X cases [2]). These SLRs are service-specific and can be defined
in terms of minimum throughput, maximum delay, but also availability and reliability
of the guaranteed KPIs (defined, e.g., in a certain time window). In this perspective,
moving towards 6G, accurate and timely predictions (supported by XAI models) are key to
providing advanced and very demanding use cases, with a horizon ranging from extremely
short to long time windows. Therefore, it is evident how FED-XAI is paramount for
improving the understanding and mutual trust among 6G business entities (i.e., MNOs
and OEMs here).

Moreover, the industry is moving towards the adoption of MEC Federations, charac-
terized by a multi-MNO environment, where each operator can provide and share with the
other federating entities its own edge-computing infrastructure and services to third parties,
also in collaboration with other operators. Dually, operators can consume the resources
of other operators (e.g., in countries where they do not have a network infrastructure),
offering a seamless user experience to their own customers. Again, the FED-XAI approach
is particularly beneficial in such challenging scenarios, which are likely to become widely
adopted in B5G and 6G systems.

Figure 6. Reference V2X service scenarios, with MNO perspective and customer/car OEM perspective.

Standardization Impact of an Interoperable FED-XAI Implementation

An interoperable implementation of the FED-XAI concept with a focus on an au-
tomotive scenario is expected to stimulate discussion within Standards Development
Organizations (SDOs) on specifying the involved architectural entities (e.g., FED-XAI CE
and FMs), communication interfaces and service protocols including the exchanged data
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structures. For instance, the International Telecommunication Union (ITU) Focus Group on
AI for Autonomous and Assisted Driving (FG-AI4AD) aims to internationally harmonize
the definition of a minimal performance threshold for AI “on the road”. Additionally,
the ETSI Industry Specification Group on Securing AI (ISG SAI) has introduced a new
work item on explainability and transparency of AI processing (June 2021). AI platform
design issues aiming to provide assurance of explainability and transparency of decisions
and allowing independent determination of biases are in scope. ETSI ISG MEC is also
of relevance, as one of its specifications (GS MEC 030) focuses on defining the V2X Infor-
mation Service (VIS) for MEC systems: one of VIS functionalities is to facilitate issuing
journey-aware QoS predictions.

5. Conclusions

The aim of this article was to provide a comprehensive vision of AI-pervasive 6G
networks that will be extremely high performing, intelligent and trustworthy by design,
with a particular applicability to automated vehicle networking. We have introduced the
FED-XAI concept, proposing federated learning of XAI models. The FED-XAI concept,
applied to advanced 5G systems towards 6G, is expected to improve the user experience of
the offered communication services by helping end users trust in-network AI functionality.
Benefits of the proposed approach (that could also include standardization) consist in
better trustworthiness of operations, e.g., via explainability of QoE predictions, along with
security and privacy-preserving management of data from sensors, terminals, users and
applications for a range of automotive use cases.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP Third Generation Partnership Project
AI Artificial Intelligence
B5G Beyond 5G
CE Computation Engine
DNN Deep Neural Network
DT Digital Twin
ETSI European Telecommunications Standards Institute
FedAvg Federated Averaging
FED-XAI Federated learning of explainable Artificial Intelligence
FL Federated Learning
FM FED-XAI Manager
FVN Federated Vehicular Network
GPS Global Positioning System
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ISG Industry Specification Group
ITS Intelligent Transportation Systems
MDT Minimization of Drive Tests
MEC Multi-access Edge Computing
ML Machine Learning
MNO Mobile Network Operators
NFV Network Functions Virtualisation
NN Neural Network
OEM Original Equipment Manufacturers
QoE Quality-of-Experience
QoS Quality-of-Service
RAN Radio Access Network
SGD Stochastic Gradient Descent
SINR Signal to Interference plus Noise Ratio
SLR Service Level Requirements
ToD Teleoperated Driving
TSK Takagi-Sugeno-Kang
UE User Equipment
V2X Vehicle-to-Everything
XAI Explainable Artificial Intelligence
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