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Abstract: Background: Distinguishing between the spinal cord and cerebrospinal fluid (CSF) non-
invasively on CT is challenging due to their similar mass densities. We hypothesize that patch-based
machine learning applied to dual-energy CT can accurately distinguish CSF from neural or other
tissues based on the center voxel and neighboring voxels. Methods: 88 regions of interest (ROIs)
from 12 patients’ dual-energy (100 and 140 kVp) lumbar spine CT exams were manually labeled
by a neuroradiologist as one of 4 major tissue types (water, fat, bone, and nonspecific soft tissue).
Four-class classifier convolutional neural networks were trained, validated, and tested on thousands
of nonoverlapping patches extracted from 82 ROIs among 11 CT exams, with each patch representing
pixel values (at low and high energies) of small, rectangular, 3D CT volumes. Different patch sizes
were evaluated, ranging from 3 × 3 × 3 × 2 to 7 × 7 × 7 × 2. A final ensemble model incorporating
all patch sizes was tested on patches extracted from six ROIs in a holdout patient. Results: Individual
models showed overall test accuracies ranging from 99.8% for 3 × 3 × 3 × 2 patches (N = 19,423) to
98.1% for 7 × 7 × 7 × 2 patches (N = 1298). The final ensemble model showed 99.4% test classification
accuracy, with sensitivities and specificities of 90% and 99.6%, respectively, for the water class and
98.6% and 100% for the soft tissue class. Conclusions: Convolutional neural networks utilizing local
low-level features on dual-energy spine CT can yield accurate tissue classification and enhance the
visualization of intraspinal neural tissue.

Keywords: dual-energy computed tomography; spine imaging; spinal canal; spinal cord; convolutional
neural networks; CT segmentation

1. Introduction

Computed tomography (CT) is a commonly used modality for the evaluation of bony
spine abnormalities by virtue of its widespread availability, rapid acquisition times, and
depiction of fine bony detail. However, its clinical utility in assessing intraspinal soft tissue
abnormalities is limited. Cord compression, disc herniations, or intraspinal soft tissue
tumors can be missed on CT, even by experienced radiologists, because they are often
inconspicuous or invisible on CT [1,2]. Magnetic resonance imaging (MRI) offers superior
intraspinal soft tissue and fluid depiction but is not always readily available or feasible,
often due to contraindications or patient aversions to MRI, such as claustrophobia, body
habitus, metallic implants, etc. [3,4]. Myelography, in which extrinsic iodinated contrast
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material is injected into the spinal canal, permits high-resolution imaging of the spinal
cord and nerve roots [5] but is invasive and is much more time-consuming than CT. In
some cases, myelography is not possible due to the limited tolerance of prone positioning,
bleeding concerns, or other procedural contraindications. Therefore, there is a clinical need
for alternative approaches to augment spinal cord visualization accurately and robustly on
routine spine CT.

Conventional CT relies on differences in X-ray attenuation among different tissue types
based on atomic number, mass density, or uptake of extrinsic contrast agents. However,
within the spinal canal, the ability to discern the spinal cord from surrounding cerebrospinal
fluid (CSF) is markedly limited due to the high overlap in attenuation values between the
spinal cord and CSF, rendering CT unreliable for visualization of the spinal cord in most
practical settings. Dual-energy CT post-processing techniques can improve the specificity of
differentiation among tissue types [6], but routinely used segmentation methods based on
material decomposition typically require a sufficiently large atomic number difference that
is not present between the spinal cord and CSF. Dual-energy post-processing techniques
have been shown to be helpful in reducing artifacts from metallic hardware [7–9], but even
in the absence of metallic hardware, beam-hardening artifacts and noise related to photon
attenuation by the bony spinal elements result in wide variations in pixel values that further
hinder attempts to differentiate between spinal cord and CSF on CT. Differential uptake of
extrinsic iodinated contrast material can assist in segmenting different tissue types in many
non-neuroradiologic imaging applications, but because normal spinal cord parenchyma is
separated from the vasculature by a blood–CNS barrier, contrast administration has very
little utility in improving spinal cord visualization on CT.

Machine learning approaches, such as deep convolutional neural networks (CNNs),
have been used to augment medical images [10–12], including the segmentation of med-
ical images by tissue type. The application of deep neural networks to the automated
segmentation of bony structures from soft tissue in spine CT has been reported [13–15].
For instance, Vania et al. used two-dimensional patches of spine CT images to create a
method for segmenting the bony elements of the spine from adjacent non-bony tissues,
with pixel-wise sensitivity and a specificity of 97% and 99%, respectively [13]. Another
two-dimensional patch-based method was able to distinguish bone from non-bone pixels
on spine CT with 91% sensitivity and 93% specificity [14]. Often favorable accuracies are
achievable for this task due to the large differences in density between bone and soft tissue
pixels, but none of the above studies address the more challenging task of differentiating
spinal cord voxels from CSF on CT. Automated methods have also been described for
detecting the general region of the spinal cord or nerve roots by their location relative to
vertebral anatomy [16,17], but these methods likely rely on the pixel position relative to
bony structures without attempting to differentiate neural soft tissue pixels from water
pixels that may occur in these locations.

In this study, we propose a patch-based machine learning method to help differentiate
major tissue types in the spine, with an emphasis on differentiating the spinal cord from
CSF. We applied this to lumbar spine CT exams as the transition in intraspinal contents
from the spinal cord to predominantly CSF near the thoracolumbar junction serves as a
suitable site for evaluating the model’s performance. A prior study reporting improved
soft-tissue visualization of spine tumors using dual-energy CT post-processing [18] lends
credence to the proposition that sufficient information is contained within dual-energy CT
data to differentiate among soft tissues with subtle attenuation differences on conventional
CT. In this study, we test the hypothesis that machine learning-based predictive models
can accurately classify small dual-energy CT patches as CSF, neural tissue (spinal cord
and nerves), fat, or bone using only information from the center voxel and its immediate
surrounding neighboring voxels.



Information 2022, 13, 412 3 of 15

2. Materials and Methods
2.1. Subjects and Source Data

Following IRB approval, we assembled a custom in-house repository of 3-dimensional
(3D) regions of interest (ROIs) of dual-energy CT volumes, pooled from a retrospective
cohort of 12 patients having undergone dual-energy lumbar spine CT requested for clinical
reasons due to the presence of hardware within portions of the spine. Patient ages ranged
from 45 to 66 years (median age: 59). All CT examinations were performed on a dual-source
spiral scanner (Siemens Somatom Definition FLASH, Siemens, Erlangen, Germany) at low
(100 kVp) and high (140 kVp) energies. Median tube current-time products were 281 and
212 mAs, respectively. Source images used for this study consist of 512 × 512 CT images of
0.75 mm thickness at 16-bit grayscale, obtained using an I50f reconstruction kernel. The
median reconstruction diameter was 171 mm.

ROI selection was performed manually by a fellowship-trained neuroradiologist
(X.V.N.) with 14 years of experience interpreting MR and CT images. Because subsequent
classification was to be performed with small individual voxel patches as input data rather
than using the entire volume or whole slices as input, it was not necessary to perform a
full manual 3D segmentation of each CT volume. Instead, the radiologist was tasked with
selecting appropriate 3D ROIs that were representative of the targeted tissue classes and
had relatively uniform tissue composition, avoiding slices with metallic artifacts. Because
the ROIs were to be subsequently pooled to generate the voxel patches used for machine
learning, more than one ROI per CT exam per class label was permitted. The radiologist first
visualized each CT examination as a stacked series of CT images with low and high-energy
images represented as separate imaging channels. Using built-in functions within the
open-source FIJI image-processing package [19], rectangular 3D ROIs for each dual-energy
pair of CT image volumes were manually selected and identified as one of the following:
bone, fat, muscle, intrabladder/intrabowel fluid, spinal cord, or CSF.

In total, 13 ROIs labeled as bone were derived from both areas of cortical and trabecular
bone, 9 of which were acquired at the T12 or L1 vertebral body, and 4 of which were selected
from the sacrum or iliac bones. In total, 15 ROIs labeled as fat were selected, with 12 from the
dorsal subcutaneous fat and 3 ROIs from the intraperitoneal or retroperitoneal fat. In total,
12 ROIs were selected for muscle, most of which were obtained from the dorsal paraspinal
musculature. In total, 9 ROIs were selected from intrabladder or intrabowel low-density
fluid. Because of the inability to differentiate between spinal cord and CSF on CT, ROIs for
these tissues were selected by a neuroradiologist evaluating the CT images in conjunction
with available MRI exams on the same patient. In total, 21 ROIs for CSF were selected
from intraspinal CSF pockets that, upon correlation with MRI, were deemed unlikely to
contain cord or nerve roots (Figure 1A). For instance, in several subjects, CSF pockets in
the ventral subarachnoid space at the L1, L2, or L3 vertebral levels were used based on
correlation with T2-weighted (T2W) signal hyperintensity on MRI. As not all patients had
sufficiently large pockets of intraspinal CSF to allow for the selection of intraspinal CSF
ROIs, this was performed in only 9 patients. Similarly, intraspinal soft-tissue ROIs were
also identified at sites deemed to represent the spinal cord (Figure 1B) based on correlation
with the available MRI exams. In total, 18 spinal cord ROIs were selected in 11 patients, as
1 patient’s lumbar spine CT did not include sufficient imaging of the lower thoracic levels.
A total of 88 3D ROIs were manually selected among the 12 subjects.

As the focus of this study was intraspinal tissue classification, we grouped spinal
cord and muscle ROIs together into a superclass of “soft tissue” and grouped intra-
bowel/intrabladder fluid and CSF ROIs into a superclass of “water.” This represents
a type of hyper-class augmentation [20], making use of shared attributes distinguishing
one superclass from another to assist in distinguishing a subclass of one superclass from a
subclass of another superclass. The following four tissue class labels are used in this study:
water, bone, fat, and soft tissue.
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Figure 1. Representative manual ROI selection of ‘water’ and ‘soft tissue’ class voxels. In this exam-
ple of ‘water’ ROI selection (A), the location of a pocket of ventral subarachnoid CSF identified on 
MRI at the L2 level was selected on CT (rectangle) and applied to multiple consecutive slices to 
create a 3D ROI in the CT volume for purposes of subsequent subsampling for the ‘water’ class. For 
this example of intraspinal ‘soft tissue’ ROI selection (B), the conus medullaris visualized in the 
imaged lower thoracic spine on MRI was targeted on CT (rectangle) to similarly create a 3D ROI. 
Note that there is no readily apparent difference between conus and CSF based on visual inspection 
of the CT images alone. 

As the focus of this study was intraspinal tissue classification, we grouped spinal 
cord and muscle ROIs together into a superclass of “soft tissue” and grouped intra-
bowel/intrabladder fluid and CSF ROIs into a superclass of “water.” This represents a 
type of hyper-class augmentation [20], making use of shared attributes distinguishing one 
superclass from another to assist in distinguishing a subclass of one superclass from a 
subclass of another superclass. The following four tissue class labels are used in this study: 
water, bone, fat, and soft tissue. 

2.2. Voxel-Based Processing 
This study is designed to address whether small patches of voxels in a CT volume 

are sufficient to allow the classification of the central voxel’s tissue composition. This ap-
proach differs from routine deep learning segmentation models that take the entire image 
as input. In U-net or related segmentation models, a voxel’s spatial relationship to larger-
scale imaging features assists the model in determining the segmentation map. In our ap-
proach, we intentionally deny the AI access to data beyond the local neighborhood of a 
given voxel. Therefore, the AI model in our study takes as input small patches of dual-
energy CT data. The following section describes the process for generating a training, val-
idation, and testing dataset of small CT patches. 

Of the 88 ROIs available, 6 ROIs from 1 patient were selected as a holdout subset to 
evaluate the transferability and the final model evaluation, and the 82 ROIs from the re-
maining 11 subjects were used for training, validation, and initial individual model test-
ing. Note that the model evaluation was performed on a per-patch basis rather than a per-
ROI or per-patient basis, such that the 6 holdout ROIs yielded hundreds of patches as 
subsequently quantified in the Results section. The use of voxel patches generated from 
ROIs from a separate holdout patient offers an assessment of model performance when 
applied to voxel patches from a different CT exam than those used for training and vali-
dation. 

These 4-class labeled ROIs were input into an automated patch extraction process to 
generate thousands of non-overlapping 3D rectangular patches, each of size X by X by Z, 
where X and Z are odd numbers ≥ 3 that can be user-specified. X represents the pixel 
dimension of the square patch on axial imaging, while Z represents the craniocaudal di-
mension, i.e., the number of consecutive slices included. The following combinations of 

Figure 1. Representative manual ROI selection of ‘water’ and ‘soft tissue’ class voxels. In this example
of ‘water’ ROI selection (A), the location of a pocket of ventral subarachnoid CSF identified on MRI
at the L2 level was selected on CT (rectangle) and applied to multiple consecutive slices to create
a 3D ROI in the CT volume for purposes of subsequent subsampling for the ‘water’ class. For this
example of intraspinal ‘soft tissue’ ROI selection (B), the conus medullaris visualized in the imaged
lower thoracic spine on MRI was targeted on CT (rectangle) to similarly create a 3D ROI. Note that
there is no readily apparent difference between conus and CSF based on visual inspection of the CT
images alone.

2.2. Voxel-Based Processing

This study is designed to address whether small patches of voxels in a CT volume
are sufficient to allow the classification of the central voxel’s tissue composition. This
approach differs from routine deep learning segmentation models that take the entire
image as input. In U-net or related segmentation models, a voxel’s spatial relationship to
larger-scale imaging features assists the model in determining the segmentation map. In
our approach, we intentionally deny the AI access to data beyond the local neighborhood
of a given voxel. Therefore, the AI model in our study takes as input small patches of
dual-energy CT data. The following section describes the process for generating a training,
validation, and testing dataset of small CT patches.

Of the 88 ROIs available, 6 ROIs from 1 patient were selected as a holdout subset
to evaluate the transferability and the final model evaluation, and the 82 ROIs from the
remaining 11 subjects were used for training, validation, and initial individual model
testing. Note that the model evaluation was performed on a per-patch basis rather than a
per-ROI or per-patient basis, such that the 6 holdout ROIs yielded hundreds of patches as
subsequently quantified in the Section 3. The use of voxel patches generated from ROIs
from a separate holdout patient offers an assessment of model performance when applied
to voxel patches from a different CT exam than those used for training and validation.

These 4-class labeled ROIs were input into an automated patch extraction process
to generate thousands of non-overlapping 3D rectangular patches, each of size X by X
by Z, where X and Z are odd numbers ≥ 3 that can be user-specified. X represents the
pixel dimension of the square patch on axial imaging, while Z represents the craniocaudal
dimension, i.e., the number of consecutive slices included. The following combinations
of (X, Z) were used: (3, 3), (3, 5), (3, 7), (5, 5), (5, 7), and (7, 7), each with its own dataset
of patches. As each patch has 3 spatial dimensions plus a dimension for CT acquisition
energy, each patch is thus represented by a rank 4 tensor containing 16-bit grayscale pixel
values (which represent Hounsfield units + 1024). Each tensor, therefore, encodes local
information to assist in characterizing the center voxel and is associated with a tissue class
label derived from its source ROI. CT data in the form of exams, ROIs, and patches are
illustrated in Figure 2.
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Figure 2. Illustrative representation of examples of data used in this study in the form of CT exams,
ROIs, and patches. The study includes data aggregated from 12 CT exams, 88 ROIs of various tissue
classes, and thousands of patches of varying sizes, with a representative patch shown for a patch size
of X = 3, Z = 3.

2.3. Machine Learning

The dataset consisted of tensors representing patches of dual-energy CT data, each
paired with tissue class labels encoded as one-hot-encoding variables. The training, valida-
tion, and test sets were obtained from this dataset by random stratified selection using tissue
class labels as the stratifying variable. In total, 20% of the dataset was used for individual
model testing. Of the remaining data elements, 30% were used as validation, and 70% were
used for training. Given the relative scarcity of intraspinal voxels and the primary goal of
the study was to differentiate between the spinal cord and CSF, data augmentation was
performed on the training and validation sets to increase the composition of intraspinal
voxels. The set of tensors derived from intraspinal ROIs was augmented using flipping
operations on each of the 3 spatial axes and rotation operations (90, 180, or 270 degrees) in
the axial plane.

Supervised machine learning was implemented using the Sequential model in Keras,
a deep learning application programming interface, to train a 4-class classifier neural
network. The layer immediately below the input layer was a 3D convolutional layer with
256 filters and a 3 × 3 × 3 kernel without padding. Because padding was not used in
the convolutions, the output of each convolutional layer is a 256-element array of data
elements that are smaller than the data elements in its input. The number of layers in the
network was allowed to vary with X or Z, such that higher values of X or Z would result
in more convolution layers as needed to yield a 256-element array of scalar values prior
to the fully connected layers (Figure 3). As our maximum patch size was 7 × 7 × 7 × 2, a
maximum of 3 convolution layers were used. A batch-normalization step, a rectified linear
unit (ReLU) activation function, and dropout were performed following each convolution.
The most superficial convolutional layer had a dropout rate of 0.1, with higher dropout
rates used at deeper layers. The penultimate layer was a dense layer with 64 nodes and
a ReLU activation function. The final layer was a dense layer with a softmax activation
function and a node for each of the four prediction classes.
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Figure 3. Schematic illustration of the transformation of data across the layers of the convolutional
neural network for two representative patch sizes. For the largest patch size (X = 7, Z = 7) (A), the
7 × 7 × 7 × 2 input is transformed after three successive 3D convolutions of kernel size 3 × 3 × 3
without padding into a 256-element array of scalar values prior to the fully connected layers, which
in turn generate the final 4-class classifier output. For the smallest patch size (X = 3, Z = 3) (B), one 3D
convolution of kernel size 3 × 3 × 3 without padding is sufficient to generate a 256-element array of
scalar values. 3D Conv = three-dimensional convolutional layer; Batch Norm = batch normalization
layer; ReLU = rectified linear unit activation function.

Different models were independently trained and evaluated for each combination of
X and Z. During training, models were fitted using the AdaDelta [21] optimizer with an
initial learning rate of 0.001 and used categorical cross-entropy as the loss function. As
described in [21], the AdaDelta optimizer is a variant of the stochastic gradient descent
optimizer and was selected for its use of an adaptive learning rate throughout training.
The training was performed for a maximum of 300K epochs, with early stopping if no
improvement in validation loss was observed for 30K epochs. Performance metrics were
obtained when applying individual models to the test set, and sensitivity/recall, specificity,
precision/positive predictive value, and F1 scores for each tissue class were obtained. A
final ensemble model was created by implementing an ensemble voting mechanism among
6 trained models such that the mode of the predicted class among these models determines
the final class prediction. To assess transferability, performance metrics of the final model
were evaluated on data generated from labeled ROIs in the holdout CT exam that was not
used for training/validation.
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2.4. Output Visualization

The final ensemble model was applied to selected CT lumbar spine exams to permit a
visual assessment of the model’s ability to differentiate intraspinal CSF from spinal cord
tissue. In addition to representative CT images among the 11 CTs used for training, this
was also applied to the holdout CT exam to allow assessment of transferability to imaging
volumes on which the network was not trained or validated. For each voxel in a CT exam
(except for voxels located within 3 pixels of the edge), a tensor was generated to capture
pixel intensities of the 7 × 7 × 7 group of voxels centered at the voxel of interest at low and
high energies. This tensor was then sent as input to the final ensemble model to predict
the center voxel tissue class. To assist with the visualization of intraspinal anatomy, output
image maps were generated in 8-bit grayscale to depict voxel assignments to each of the
4 tissue classes. Voxels classified as bone were assigned a low pixel value of 1 to effect bone
subtraction. Fat voxels were assigned slightly higher pixel values (50), water voxels were
assigned a high pixel value of 200 to simulate myelography, and soft tissue voxels were
assigned a fixed intermediate value of 100.

3. Results
3.1. Model Training

At each patch size, machine learning models were trained to identify the tissue class
of the center voxel. The number of patches in the datasets used in training and individual
model testing/validation varied with patch size (Table 1), such that smaller sizes allowed
for the generation of more patches from the labeled ROIs, ranging from >97,000 for the
smallest size of 3 × 3 × 3 × 2 to approximately 6500 for 7 × 7 × 7 × 2. There was
class imbalance, with relative underrepresentation of the ‘water’ class related to difficulty
obtaining large ROIs for this class. The overlap in center-pixel Hounsfield units (HU) across
tissue classes for the largest of the labeled datasets (Figure 4) confirms the difficulty of
HU-based thresholding methods in differentiating these tissue types.
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overfitting is observed at larger patch sizes, but overall validation accuracy remained 
high. A patch size of 3 × 3 × 3 × 2 provided the greatest overall test accuracy of 99.8%, with 
larger sizes resulting in slightly lower test accuracies ranging from 98.1% to 99.0% (Table 
2). Among the four tissue classes, the ‘water’ class was associated with the worst perfor-
mance at some of the higher patch sizes, possibly related to relative underrepresentation 
of this class (Table 2), but overall test accuracy for this class and the remaining classes 
exceeded 98% for all values of X and Z examined. F1 scores, which may be more useful in 
the setting of class imbalance, ranged from 94.2% to 99.3% for the ‘water’ class and con-
sistently exceeded 98% for the other three classes (Table 2). 

Figure 4. Histogram of average center Hounsfield units (HU) of all 3 × 3 × 3 × 2 patches generated
from the labeled ROIs. Although center pixels in patches from bone ROIs, not unexpectedly, show
higher HUs on average than water and soft tissue patches, and fat patches show lower HUs, the tissue
classes show substantial overlap in HUs. In particular, the histograms for soft tissue and water are nearly
superimposable. Therefore, no HU thresholding could separate all four classes with high accuracy.
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These patches were used to train convolutional neural networks, and representative
learning curves are shown in Figure 5. At the smallest patch size evaluated (3 × 3 × 3 × 2),
the loss or accuracy curves for training and validation are nearly superimposed. Some
overfitting is observed at larger patch sizes, but overall validation accuracy remained high.
A patch size of 3 × 3 × 3 × 2 provided the greatest overall test accuracy of 99.8%, with
larger sizes resulting in slightly lower test accuracies ranging from 98.1% to 99.0% (Table 2).
Among the four tissue classes, the ‘water’ class was associated with the worst performance
at some of the higher patch sizes, possibly related to relative underrepresentation of this
class (Table 2), but overall test accuracy for this class and the remaining classes exceeded
98% for all values of X and Z examined. F1 scores, which may be more useful in the
setting of class imbalance, ranged from 94.2% to 99.3% for the ‘water’ class and consistently
exceeded 98% for the other three classes (Table 2).
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Table 1. Composition of the labeled dataset used for training and individual model testing. Entries
in each cell represent numbers of non-overlapping X by X by Z by 2 tensors in the labeled dataset.

Class Labels

X Z Bone Soft
Tissue Fat Water Total

3 3 29,380 33,343 21,018 13,373 97,114
3 5 16,996 19,779 12,599 7840 57,214
3 7 5861 6667 4187 2783 19,498
5 5 11,146 13,850 8671 5270 38,937
5 7 3837 4669 2876 1873 13,255
7 7 1879 2258 1435 912 6484

Table 2. Confusion matrices and detailed test performance characteristics a at different combinations
of X and Z.

Ground
Truth Prediction

X Z Bone Soft
Tissue Fat Water Total Sens Spec Prec F1 Acc

3 3 bone 5856 6 1 13 5876 99.7% 100.0% 99.9% 99.8% 99.9%
soft tissue 0 6665 0 4 6669 99.9% 99.8% 99.7% 99.8% 99.9%

fat 0 0 4204 0 4204 100.0% 100.0% 100.0% 100.0% 100.0%
water 4 17 0 2653 2674 99.2% 99.9% 99.4% 99.3% 99.8%

TOTAL 5860 6688 4205 2670 19,423 99.8%

3 5 bone 3331 18 8 42 3399 98.0% 99.9% 99.8% 98.9% 99.4%
soft tissue 0 3947 0 9 3956 99.8% 99.3% 98.7% 99.2% 99.4%

fat 1 0 2519 0 2520 100.0% 99.9% 99.7% 99.8% 99.9%
water 5 36 0 1527 1568 97.4% 99.5% 96.8% 97.1% 99.2%

TOTAL 3337 4001 2527 1578 11,443 99.0%

3 7 bone 2163 16 9 42 2230 97.0% 99.9% 99.9% 98.4% 99.1%
soft tissue 1 2748 0 21 2770 99.2% 98.6% 97.6% 98.4% 98.8%

fat 0 0 1734 0 1734 100.0% 99.9% 99.5% 99.7% 99.9%
water 2 52 0 1000 1054 94.9% 99.1% 94.1% 94.5% 98.5%

TOTAL 2166 2816 1743 1063 7788 98.2%

5 5 bone 1151 8 0 13 1172 98.2% 100.0% 99.9% 99.1% 99.4%
soft tissue 0 1329 0 5 1334 99.6% 99.3% 98.6% 99.1% 99.4%

fat 0 0 837 0 837 100.0% 100.0% 100.0% 100.0% 100.0%
water 1 11 0 545 557 97.8% 99.5% 96.8% 97.3% 99.2%

TOTAL 1152 1348 837 563 3900 99.0%

5 7 bone 733 11 1 22 767 95.6% 100.0% 100.0% 97.7% 98.7%
soft tissue 0 929 0 5 934 99.5% 98.7% 97.6% 98.5% 98.9%

fat 0 0 575 0 575 100.0% 100.0% 99.8% 99.9% 100.0%
water 0 12 0 363 375 96.8% 98.8% 93.1% 94.9% 98.5%

TOTAL 733 952 576 390 2651 98.1%

7 7 bone 364 3 0 9 376 96.8% 99.7% 99.2% 98.0% 98.8%
soft tissue 0 450 0 2 452 99.6% 98.8% 97.8% 98.7% 99.1%

fat 0 0 287 0 287 100.0% 100.0% 100.0% 100.0% 100.0%
water 3 7 0 172 182 94.5% 99.0% 94.0% 94.2% 98.4%

TOTAL 367 460 287 183 1297 98.1%
a sens = sensitivity, spec = specificity, prec = precision/positive predictive value, F1 = F1 score/Dice coefficient,
acc = accuracy.
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These six models were combined into an ensemble model for subsequent application
to dual-energy CT volumes. The ensemble model performed satisfactorily on the holdout
CT exam, with an accuracy of 99.4% (Table 3). Sensitivities ranged from 100.0% for bone and
fat to 90.0% for water, and specificities ranged from 99.6% for bone and water to 100% for
soft tissue and fat (Table 3). Note that these metrics represent performance on homogenous
ROIs of each tissue class, which were much smaller than the source CT volumes, and
the assessment of the model performance on voxels outside these selected ROIs requires
visualization of the generated post-processed images in the subsequent section.

Table 3. Confusion matrix and detailed test performance characteristics a of the final ensemble model.

Ground
Truth Prediction b

Bone Soft Tissue Fat Water Total Sens Spec Prec F1 Acc

bone 280 0 0 0 280 100.0% 99.6% 99.6% 99.8% 99.8%
soft tissue 0 144 0 2 146 98.6% 100.0% 100.0% 99.3% 99.6%

fat 0 0 96 0 96 100.0% 100.0% 100.0% 100.0% 100.0%
water 1 0 0 9 10 90.0% 99.6% 81.8% 85.7% 99.4%

TOTAL 281 144 96 11 532 99.4%
a sens = sensitivity, spec = specificity, prec = precision, F1 = F1 score, acc = accuracy. b Prediction performance
refers to results on 7 × 7 × 7 × 2 test patches derived from labeled ROIs in the holdout CT not used for training
or model validation.

3.2. Visualization of Post-Processed Images

We assessed four-class classifier performance in areas beyond the selected ROIs by
using the ensemble model to generate output images at four distinct grayscale values
to represent water, soft tissue, fat, and bone (in order of decreasing pixel values). The
generated images allow for the depiction of the conus medullaris and cauda equina among
a background of high CSF pixel intensity, thereby simulating a post-myelogram CT image
with bone subtraction (Figure 6). Because the model was trained only on homogenous
patches, suboptimal tissue discrimination at tissue interfaces is not unexpected. Image
quality on the holdout test CT (Figure 6B) is comparable to that on a representative CT
exam among the 11 used for training (Figure 6A).

The qualitative inspection of the generated images and the comparison to MRI reveals
some discrepancies between the MRI reference standard and the model’s depiction of CSF
and neural tissue. For instance, in Figure 6A, the area occupied by CSF in each axial image
is mildly overestimated, and the model is not able to depict individual cauda equina nerve
roots at lower levels, presumably due to their small size on cross-sectional imaging. In
Figure 6B, some of the nerve roots are better depicted, and canal stenosis (seen as a loss
of the T2-weighted signal in the thecal sac in the penultimate column) can be visualized
on the generated four-scale images. Figure 7 further illustrates examples of correct and
incorrect tissue classification in a magnified view of a selected output image near the
thoracolumbar junction. For this purpose, the correctness of tissue classification was based
on the comparison to its expected appearance on CT or MRI. Note that the source and
output images include several structures not included in any of the labeled training or
testing ROIs. For instance, paravertebral fat, diaphragm, and ribs generally produce correct
pixel classification despite the lack of inclusion of these structures in any of the labeled
ROIs. Kidneys and tissue interfaces (which contain more than one tissue class) were not
included in the labeled ROIs and contribute to common instances of misclassification.
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Figure 6. Representative images generated by the ensemble model as applied to 1 of the 11 CT exams
used for individual model training/validation (A) and to the holdout CT exam that was not used for
training (B). The montages show generated 4-scale output images (2nd row), original 0.75 mm CT
images at 140 kVp (3rd row), and original 0.75 mm CT images at 100 kVp (4th row). Each column of
CT images shown represents slices at 2.25 cm intervals. Corresponding 5 mm axial T2W MRI images
are shown in the 1st row for comparison.
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Figure 7. Examples of correct and incorrect tissue classifications in a representative output image
taken from the second column of Figure 6A. The 140 kVp CT source image is placed below the anno-
tated output image to permit comparisons of annotated pixels to their corresponding CT appearances.

4. Discussion

In this study, we developed a novel machine learning model to assist the visualization
of intraspinal soft tissue structures on an unenhanced dual-energy spine CT by differ-
entiating four major tissue classes with high accuracy. We trained and tested multiple
convolutional neural networks to perform the task of classifying a small 3D patch of a
CT volume using HUs at both 100 kVp and 140 kVp in the center voxel and surrounding
voxels. We found that an ensemble model, consisting of six individually trained models
that differ in the number of surrounding voxels they accept as input, showed 99.4% overall
accuracy on labeled ROIs from a holdout test CT exam not used for training/validation.
The accuracy is much higher than would be expected for this task when relying on vi-
sual assessment, especially since HUs alone cannot reliably separate water pixels from
soft tissue, given their near-identical HU distributions, as shown in Figure 4. Among the
tissue types, fat and bone show the best classification. Sensitivity and specificity for fat
classification were both 100.0% in the holdout test set. Our bone voxel prediction, with
100% sensitivity and 99.6% specificity in our holdout test set, is mildly more accurate than
prior studies using machine learning to segment bone from adjacent soft tissues (91–97%
sensitivity and 93–99% specificity [13,14]). For the more difficult task of identifying soft
tissue and water voxels, which to our knowledge has not been performed in this setting,
the ensemble model performs relatively well, with test sensitivities of 98.6% and 90.0% and
specificities of 100.0% and 99.6% for the soft tissue and water classes, respectively.

Although the mechanisms by which the model performs this discrimination task are
not readily explainable, one interpretation is that low-level features, such as combinations
of Hounsfield units, texture, and differences in low-energy and high-energy HUs, are



Information 2022, 13, 412 13 of 15

sufficiently different among the four tissue types to allow the model to successfully identify
the appropriate tissue class. Since the model performs the task using only small 3D
volumes as input, no voxels more than three units from the center voxel in any dimension
are available to the model during the classification task. Therefore, an advantage of this
patch-based approach to segmentation compared to using the entire CT volume as input to
a deep learning segmentation model is that the model does not rely on spatial information
provided by macroscopic elements, such as the relationship to bony structures or anatomical
location, to deduce a voxel’s membership in a given class. While such information could
potentially improve performance, the reliance on high-level features and global spatial
cues would likely introduce undesired biases (e.g., predicting water class for voxels based
on their location in the lower lumbar spine) that may compromise performance in case
of abnormal pathology. Another advantage is that a large number of training elements
was able to be generated from a small number of CT exams, which is useful for exams
like dual-energy spine CT that are not routinely requested in clinical practice. Since only
homogenous single-class patches are provided to the model for training, one disadvantage
of this approach is that the model performs poorly at interfaces between two or more
tissue types.

Among the major implications of our study is that machine learning can distinguish
between intraspinal neural tissue and CSF much better than is considered possible for
radiologists reviewing the source dual-energy CT images (Figure 4). The relatively high
overlap in attenuation levels between soft tissue and water pixels (Figure 2) precludes
any conventional thresholding or window-leveling approach from separating these pixels
on the original CT source images. The neural network, therefore, was charged with
a much more difficult task than simply replicating what a radiologist sees; it instead
performed satisfactorily in discerning subtle tissue differences imperceptible to radiologists.
From a clinical perspective, our neural network model has the potential to improve the
visualization of intraspinal soft tissue and may lead to better post-processing methods to
assist radiologists’ interpretation of dual-energy spine CT.

To our knowledge, this patch-based machine learning strategy to segment a dual-
energy CT to better visualize intraspinal CSF has not been previously described. Patch-
based features have recently been used in other deep learning architectures for such tasks
as brain MRI segmentation [22]. Other deep learning techniques, such as generative
adversarial networks, have been used to synthetically improve the visualization of brain
MRI findings by simulating full-dose contrast enhancement in patients receiving no or
reduced amounts of gadolinium [23,24]. In these scenarios, machine learning was applied
to capture subtle relationships and patterns that predict the appearance on a more sensitive
imaging technique. In our study, we created synthetic images to augment visualization
of CSF on unenhanced dual-energy spine CT images, akin to a “virtual myelogram.”
Our findings may lead to automated techniques that could be evaluated in subsequent
studies to improve the diagnosis or detection of severe spinal stenosis or other intraspinal
abnormalities. However, future clinical studies would be needed to validate the use of this
or similar methods in detecting intraspinal pathology, such as cord compression, large disc
herniations, or epidural tumor, before such approaches could be adopted in clinical practice.

Among the limitations of this study is that our models were trained and tested in
a small number of spine CTs, all from the same scanner model and manufacturer at a
single institution, thus potentially benefiting from the similarity of scan parameters. The
transferability to other scan conditions was not tested in this study, and future work may
need to include a greater variety of scanner types and more exam types to ensure model
robustness. The generated segmentation images also illustrate some shortcomings of model
performance, such as the false-positive depiction of water voxels outside the spine. This
may be due in part to the decision to selectively augment intraspinal voxels to improve
performance in intraspinal tissue differentiation, which is likely justified given the emphasis
on intraspinal anatomy in this study. Third, the model was developed using only exams
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with relatively normal intraspinal anatomy; therefore, its performance in a clinical setting
to facilitate diagnosis or detection of intraspinal pathology has not been tested.

5. Conclusions

In this study, we demonstrated that an ensemble of CNNs taking small 3D patches of
dual-energy CT data as input can satisfactorily perform a four-tissue voxel classification task
with high accuracy (99.4% four-class test classification accuracy). The performance was best
for fat and bone voxels but also satisfactory for our main objective of classifying soft tissue
and water voxels, with test sensitivity and specificity for soft tissue and test specificity for
water approaching 99–100%, and a test sensitivity for water of 90%. This model was used
to produce segmented output images permitting the qualitative assessment of intra-spinal
fluid volume, which could be of potential use in assisting the detection of pathological
spine conditions, such as spinal stenosis. While limitations of the study include the small
number of CT exams used, a lack of diversity of intraspinal pathology and scanner models
or manufacturers, and the presence of some false classifications (particularly in locations
such as fat–soft tissue interfaces that are not included in the training set), the current study
establishes a proof of concept that local low-level features on dual-energy spine CT contain
sufficient information to permit accurate pixel classification and enhance the visualization
of intraspinal neural tissue, although not quite as well as MRI. Future work on this topic
would include further characterization and refinement of the model, such as training and
testing on a wider variety of scanner manufacturers and models, different acquisition
settings, a higher number of patients, and a wider variety of intraspinal pathology.
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