
Citation: Swacha, J. Automatically

Generated Visual Profiles of Code

Solutions as Feedback for Students.

Information 2022, 13, 415. https://

doi.org/10.3390/info13090415

Academic Editors: Petros Lameras,

Panagiotis Petridis and

Sylvester Arnab

Received: 1 August 2022

Accepted: 31 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Automatically Generated Visual Profiles of Code Solutions as
Feedback for Students
Jakub Swacha

Department of IT in Management, University of Szczecin, 71-004 Szczecin, Poland; jakub.swacha@usz.edu.pl

Abstract: Providing students feedback on their exercise solutions is a crucial element of computer
programming education. Such feedback can be generated automatically and can take various
forms. This paper introduces and proposes the use of visual profiles of code solutions as a form of
automatically generated feedback to programming students. The visual profiles are based on the
frequency of code elements belonging to six distinct classes. The core idea is to visually compare a
profile of a student-submitted solution code to the range of profiles of accepted solutions (including
both reference solutions provided by instructors and solutions submitted by students who successfully
passed the same exercise earlier). The advantages of the proposed approach are demonstrated on a
number of examples based on real-world data.

Keywords: interactive learning environments; computer programming education; code visualization;
automatic feedback

1. Introduction

Feedback, along assessment, is one of the “key drivers for learning” [1]; it is “generally
regarded as crucial to improving knowledge and skill acquisition” and as “a significant
factor in motivating learning” [2]. This paper focuses particularly on the informative tutor-
ing feedback, defined as “multiple-try feedback strategies providing elaborated feedback
components that guide the learner toward successful task completion without offering
immediately the correct response” [3].

Introductory programming courses, to much extent, consist in solving numerous
programming exercises of increasing difficulty and complexity. It is not often for students
to solve exercises at their first attempt—in fact, sometimes tens of attempts are made before
a correct solution is produced [4]. Giving relevant feedback after each such attempt is a
mundane task for a teacher, especially considering there are many students solving the
same exercises at the same lesson. In a large class, it becomes very difficult for a teacher to
provide meaningful feedback with sufficient speed; waiting for teacher’s feedback, some
students can figure out the solution themselves, yet others can get frustrated and lose
interest in learning programming, contributing to the anecdotal high drop-out ratios of
programming courses.

Help comes in the form of software supporting programming learning, capable of
producing relevant feedback to students’ attempted solutions automatically. Such tools
started to appear in the 1960s and became popular in the 1990s [5]. Today, there are plenty
of tools in this vein available (in 2018, Keuning et al. reported 101 tools identified using
only two bibliographic databases and excluding tools providing only visual, non-textual
feedback [5]), differing in covered programming languages, applied feedback generation
methods, and feedback scope and form.

In the times of powerful code correction and completion tools such as OpenAI
Codex [6], it becomes possible to automatically generate programming exercise solutions
line by line. However, the students are not given programming exercises just to obtain their

Information 2022, 13, 415. https://doi.org/10.3390/info13090415 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13090415
https://doi.org/10.3390/info13090415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-2214-6989
https://doi.org/10.3390/info13090415
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13090415?type=check_update&version=2

Information 2022, 13, 415 2 of 15

solutions but to make the students learn something while solving the exercises. Addition-
ally, one of the formative feedback guidelines says: “avoid using progressive hints that
always terminate with the correct answer” [2].

Therefore, the problem addressed in this paper is how to make the feedback less
unveiling while keeping it clear and useful for students. The intention is to motivate
students to think (providing them with some clues) rather than to provide them with
explicit suggestions on what to correct and how to do it.

Research in psychology and communication indicates a strong advantage of visual
over text-based communication [7]. This motivates seeking graphical feedback forms. As
a matter of fact, algorithm and program visualization (static or dynamic) is featured in
many interactive learning environments [8]. Typically, they present the code as a kind of
a diagram (often a flowchart), making all its components and transitions between them
more approachable for students (in the case of dynamic visualization, the current state of
an executing program is also presented, including used data structures and the results of
the program attained so far).

In this paper, however, a different approach for visualizing students’ code is taken:
instead of presenting it visually with a fine grain of detail, only selected traits of the code are
visualized and compared with accepted solutions (which could be both reference solutions
provided by instructors and solutions submitted by students who successfully passed the
same exercise earlier), striving to actively engage students in finding out the necessary
improvements or additions to their submitted code.

The visual form of feedback proposed here is not intended to substitute other forms
of feedback, as it is able to indicate only a subset of possible problems with the submitted
code, but to complement the other forms of feedback, providing the students with easily
comprehensible information sufficient to solve many typical errors in the code, which, at
the same time, is not explicit and thus requires some thinking on behalf of the student,
leading to better understanding of the correct solution.

In the next section, the related work on automatically generated feedback is reported.
Then, the proposed approach is described, after which its proof-of-concept implementation
and its validation results are discussed. The final section concludes.

2. Prior Research on Informative Tutoring Feedback

The research on informative tutoring feedback spans a wide range of topics, including
the identification of feedback types, the techniques of implementing automatic feedback
generators, and the measurement of feedback effectiveness.

2.1. Feedback Types

The most extensive list of informative tutoring feedback types (or, feedback compo-
nents, as they are usually combined with each other) has been developed by Narciss [3].
She distinguishes three simple feedback components: knowledge of performance for a set
of tasks, knowledge of result/response, and knowledge of the correct results, as well as five
elaborated ones: knowledge about task constraints, knowledge about concepts, knowledge
about mistakes, knowledge about how to proceed, and knowledge about metacognition.

As regards the simple feedback components, knowledge of performance provides a
summative information on the achieved performance in a finished set of tasks (e.g., “5 of
20 correct”), knowledge of the correct results describes or indicates a correct solution, and
knowledge of result/response communicates whether a solution is correct or incorrect—in
the context of programming exercises, the following meanings of correctness are in use:
(1) it passes all tests, (2) it is equal to a model program, (3) it satisfies one or more constraints,
and (4) a combination of the above [3].

Regarding the five types of elaborated feedback for programming exercises—knowledge
about task constraints includes, e.g., hints or explanations on the type of task (helping to
put it in the right context among other, previously solved tasks), hints or explanations on
task-processing rules (providing general information on how to approach the exercise),

Information 2022, 13, 415 3 of 15

hints or explanations on subtasks (helping to manage the task complexity), and hints or
explanations on task requirements (e.g., forcing the use of a particular language construct
or forbidding the use of a particular library function). Knowledge about concepts includes,
e.g., hints or explanations on technical terms, examples illustrating the concept, hints or
explanations on the conceptual context, hints or explanations on concept attributes, and
attribute-isolation examples. Knowledge about mistakes includes, e.g., number of mistakes,
location of mistakes, hints or explanations on type of errors, and hints or explanations on
sources of errors. Knowledge about how to proceed includes, e.g., bug-related hints for
error correction (i.e., what the student should do to fix the issue), hints or explanations
on task-specific strategies, hints or explanations on task-processing steps (i.e., the next
step a student should take to get closer to the solution), guiding questions, and worked-
out examples. Knowledge about metacognition includes, e.g., hints or explanations on
metacognitive strategies and metacognitive guiding questions [3].

Among the 101 tools analyzed by Keuning et al., the most popular elaborated feedback
type was knowledge about mistakes, implemented in 96% of the tools [5]. Knowledge
about how to proceed came second (featured in 45% tools) and knowledge about concepts
and knowledge about task constraints, respectively, third (17% tools) and fourth (15% tools).
Only one of the analyzed tools implemented knowledge about metacognition [5].

There are also other feedback classifications in use. Le, who considered only adaptive
feedback (i.e., one which provides different information for different answers), identified
five types of feedback that were supported by systems supporting programming education:
Yes/No feedback (e.g., “Passed” or “Failed”), syntax feedback (similar to compiler mes-
sages, yet more comprehensible for students), semantic feedback (which can be divided
into intention-based, striving to determine the intention of the student, and code-based
feedback, which ignores the intention of the student), layout feedback (on whether the
submitted code follows a specific coding convention), and quality feedback (on whether
the student’s solution is efficient in terms of time and memory resources) [9]. Among
the 20 tools he analyzed, the most (15) implemented code-based semantic feedback; 6 of
them have also implemented intention-based semantic feedback. Syntax feedback has been
featured in four tools, Yes/No feedback in three tools, layout feedback in two tools, and
quality feedback in just one tool [9].

2.2. Techniques for Automatic Feedback Generation

There are various techniques used to implement automatic feedback generators. Ac-
cording to the results of Keuning et al., the most widespread is automatic testing (59% of
the analyzed tools), followed by program transformations (38%), basic static analysis (37%),
intention-based diagnosis (21%), external tools (12%), model tracing (10%), data analysis
(9%), and constraint-based modeling (4%) [5].

Automatic testing consists in running the student-submitted code and comparing
its output to the output of the correct solution. As running students’ code is dangerous,
safety mechanisms have to be implemented, such as jailed sandboxes, which restrict the
tested process to a specified subset of system resources, virtual machines or containers [10].
Another option made possible by the vast progress in the capabilities of web browser script
engines is using them as execution environments. While students’ code written in JavaScript
can be run natively, this approach can also be used with other programming languages,
provided its interpreter or compiler has been written in or transpiled to JavaScript (see,
e.g., [11]).

The aim of program transformations is to help match students’ submissions with
model solutions. The difficulty of this matching is due to the fact that a specific algorithm
can be correctly implemented using many programs, differing in their used statements,
statement order, logical structures, or even variable names. The work-around is to transform
all semantically equivalent forms into a canonical one. For instance, Xu and Chee identify
13 types of semantics-preserving variations and propose a rule-based transformation of
each program to the form of an Augmented Object-oriented Program Dependence Graph,

Information 2022, 13, 415 4 of 15

which eliminates many of these variations while supporting matching programs with each
other [12].

Basic static analysis is performed on the code without running it and can detect code
which is syntactically correct but shows misunderstood concepts (e.g., in JavaScript, using
IsLooselyEqual operator where IsStrictlyEqual should have been used), or check for code
elements which are correct in general terms but not allowed in the context of a certain
exercise or execution environment (e.g., if an exercise asks students to implement from
scratch a function which is already available in the standard library), or for code elements
which are required in any correct solution of an exercise (e.g., if an exercise asks students to
solve a problem by implementing a recursive algorithm) [13]. The basic static analysis is
implemented using rules whose definition is very time-consuming, but there are dedicated
domain-specific languages making it less tedious (see, e.g., [14]).

Intention-based diagnosis tries to infer what the program was intended to do, how
it was intended to work, and identify errors in these intentions or their realization [15].
Well-known tools featuring this technique are PROUST and CHIRON [16].

External tools are usually static analysis tools developed rather for software develop-
ment purposes than programming education, which are yet capable of producing feedback
which could be valuable for students. The exemplary external tools in use are: Check-Style
(generating feedback on preserving coding convention), FindBugs (reporting suspicious
code that may result in bugs), and PMD (reporting bad coding practices) [5].

Model tracing tools strive to trace and analyze the process that the student is following
solving a problem by applying rules which classify student steps as correct or wrong and
suggest the right direction whenever the student wanders off the path. The classic example
of such tools is the LISP tutor [17].

The common trait of data analysis tools is generating hints using data acquired from
students themselves. These tools may have very diverse characters, as there are various
aspects of solution development which could be addressed with this approach. While
Keuning et al. described such tools as “using large sets of historical data” [5], this is
not truly necessary, as data analysis can be performed on single student submissions as
well: for instance, various software metrics could be calculated for it and presented to
students [18], giving the additional benefit of students learning how to interpret software
metrics. Similarly, tools based on sample program sets provided by teachers do not need
any historical data; a good example of such tool is described by Coenen et al., which uses
machine learning techniques to match the student code to the most similar sample solution,
striving to facilitate the learner in making further progress [19]. Moreover, ITAP (Intelligent
Teaching Assistant for Programming), which uses state abstraction, path construction, and
state reification to automatically generate personalized hints for students, even for given
states that have not occurred in the data before, indicates teachers as the source of two
required pieces of input information: at least one reference solution to the problem and a
test method that can automatically score code [20].

Using students’ historical data has, however, an obvious advantage of avoiding the
preparation of sample programs by teachers. Lazar and Bratko proposed to exploit the
history of students’ attempts, containing several incorrect submissions and at least one
correct submission, to identify sequences of line edits that fix a buggy program, which
can be used as a basis for providing hints [21]. SourceCheck uses a set of correct student
solutions of an assignment to annotate the student’s code with suggested edits, including
code that should be moved or reordered [22]. Zhi et al. propose a method for automatically
selecting most appropriate program examples using the automatic extraction of program
features from historical student data [23].

Constraint-based modeling is based on the assumption that “correct solutions are
similar to each other in that they satisfy all the general principles of the domain” [24].
The students are thus allowed to perform whatever actions they please which do not
lead to a state that is known to be wrong. As constraints define equivalence classes of
problem states, and an equivalence class triggers the same instructional action, it is therefore

Information 2022, 13, 415 5 of 15

possible to attach feedback messages directly to constraints [24]. The best-known example
of this approach is J-LATTE (Java Language Acquisition Tile Tutoring Environment), which
supports two modes: concept mode, in which the student designs the program without
having to specify contents of statements, and coding mode, in which the student completes
the code [25].

2.3. Automatic Feedback Effectiveness

Keuning et al. report that over 71% of the works they analyzed included an empirical
assessment of some kind [5]. In 38% of cases, it was based on technical analysis (e.g.,
measuring the number of correctly recognized solutions, the time needed for the analysis,
and a comparison to the analysis of a human tutor, e.g., [12]), in 33%, student and/or
teacher survey results were provided, and in 30%, the learning outcome was evaluated
(usually by comparing the outcomes of a control group that used an alternative learning
strategy and the group that used the proposed solution, e.g., [26]) [5]. Strangely, Keuning
et al. have not aggregated the assessment results; such data can yet be found in Le’s review,
where “pedagogical evaluation studies” have been reported for 16 out of 20 analyzed tools
(80%), and all of them were positive [9]. Similar results can be found in another review, by
Cavalcanti et al., which, however, has a somewhat different scope—as it covers all online
learning environments providing automatic feedback, not only supporting programming
education (although those supporting programming comprise the largest, a 30% share of
the software covered in the review) [27]. Among the 63 works analyzed therein, 41 (65%),
including 32 (51%) supported by empirical evaluation, provided results related to student
performance—and all of them were positive. This should not be interpreted, though, that
automatic feedback always improves learning performance, as we are aware of works from
outside the sets analyzed by Le or Cavalcanti et al. that report negative evaluation results
(e.g., [19]). There are also other negative consequences linked to some types of feedback,
e.g., Kyrilov and Noelle reported reduced student engagement and increased cheating after
providing instant Yes/No feedback on programming exercises [28].

3. Visual Profiles of Programming Exercise Solutions
3.1. Concept of Visual Code Profiles

The core idea of visual profiles of programming exercise solutions can be described as
striving to generate an image depicting core traits of a program, so that similar images are
generated for similar programs, and different images are generated for different programs.
Such visual profiles can be, consequently, used to generate feedback to programming
students by visually comparing the submitted solution with the correct solutions (the
plural is intended, as the latter may differ in form).

The problem of generating such visual profiles is related to the problem of finding
a canonical representation of a program, which is central to the technique of program
transformations (and is relevant to some of the other techniques as well, as, e.g., using
such program representation instead of source code as input may greatly improve the
efficiency of data analysis). There are, however, important differences. Obviously, a canonic
representation of a program does not have to be visualized, and usually is not, though there
are solutions that exploit such an opportunity (e.g., [29]). The key difference, actually, is
that the canonical representation of a program, to be useful, has to convey all semantically
relevant traits of a program, particularly its logic, whereas its visual profile may convey
any subset of its traits, as there is no intention to reconstruct the logic of the program based
on its visual profile. In fact, in the context of feedback generation, the lack of possibility of
easily converting a visual profile into a working program is considered as its advantage,
as it motivates the students to figure out their own solution based on the provided hints
rather than to copy one from a correct example.

Information 2022, 13, 415 6 of 15

3.2. Graphic Form of Visual Code Profiles

The following design requirements relevant to generating visual profiles of program-
ming exercise solutions have been defined:

1. It must be possible to automatically construct a visual profile from any code which
conforms to the syntax of the taught programming language.

2. The visual profile must have a graphic form which is both capable of conveying all
intended information and be readable for students.

3. It must be possible to render at least two visual profiles in the same drawing space for
the ease of comparing them by students.

4. It must be possible to generate visual profiles of sets of programming exercises, i.e.,
not only of individual programming exercises.

Typically, programs are visualized using diagrams capable of displaying the flow of
the algorithm [8,29]. While such a form is essential in explaining the program logic, for
all but trivial examples, it results in images far too complex to make fast visual compar-
isons. For this reason, it was decided to use a different form as a base for visual profiles of
programming exercise solutions, one that would be much easier to interpret and compare.
Several alternative solutions were considered for this purpose. Although the visual attrac-
tiveness of word clouds was appreciated, along with their capability of conveying various
types of information at the same time (the rendered text, its size, color, and orientation and
position in both axes), they were found to be hard to interpret in detail and very difficult
to compare. Japanese Candlestick charts, conversely, could be easily adapted to compare
the submitted solution traits with the correct solutions, but they are not easy to interpret
(except for students having long experience with stock market data analysis). Histograms
are readable and can be easily adapted for presenting comparisons in an effective way, yet
their proportions change with the number of considered variables, and when it is high,
either more horizontal space is needed, or their readability decreases.

Consequently, a radar chart has been chosen as a form of visual profiles, as it:

• Can show multiple traits at the same time in a compact space without sacrificing readability.
• It has fixed proportions that do not change with the number of presented variables (as

is the case with, e.g., bar charts).
• It allows for easy comparison of profiles of various exercises and exercise sets by

rendering them in the same chart yet using different colors.

3.3. Set of Traits Considered in Visual Code Profiles

In order to define a set of traits to be considered in visual code profiles, an archive of
over 9000 student-submitted solutions from an introductory Python course (whose contents
are described in detail in [4]) was analyzed in a search for most obvious differences between
accepted and failed submissions. It resulted in the list of types of frequent students’ errors,
consisting of either using a wrong program element (that no accepted solution contained)
or not using a needed program element (that most accepted solutions contained). The list
included (the order is meaningless):

1. Not using an instruction essential for the solution (e.g., break in a program requiring
complex loop control).

2. Not using an operator essential for the solution (e.g., ** in a program requiring
power calculation).

3. Not using a built-in function essential for the solution (e.g., the int function in a
program requiring conversion of strings to integers).

4. Not using a method of a built-in type essential for the solution (e.g., the sort method
of lists in a program requiring ordering of data).

5. Not importing a module providing functions essential for the solution (e.g., random in
a program requiring randomization).

6. Producing output not meeting the exact requirements of an exercise (e.g., printing
“Hello” instead of “Hello!”).

Information 2022, 13, 415 7 of 15

Based on that, the following list of program traits has been defined:

1. Instructions.
2. Operators.
3. Built-ins.
4. References to components of built-in classes.
5. Imported modules.
6. String and numeric constants.

3.4. Generating Visual Code Profiles

While it is possible to render multiple traits in one chart, it would hurt readability
strongly. Therefore, each trait is rendered in its own dedicated chart. Depending on the
available drawing space, the charts of all traits can be rendered one next to another, or one
chart is provided at one time, and the student is able to switch between the rendered traits.

The profiled code is parsed in order to identify the tokens relevant to any of the traits,
which are then retrieved and counted. For each trait, its statistical profile can be represented
as a list of pairs (token, number of occurrences) containing all tokens relevant to that trait that
were found in the profiled code.

For each respective trait and each exercise, the statistical profiles of all student solu-
tions of that exercise which were accepted as correct are aggregated into a list of triples
(token, minimum number of occurrences, maximum number of occurrences) containing all tokens
relevant to that trait that were found in at least one accepted solution of that exercise.

The visual profile of the code is rendered as a radar chart using three parameters:

• l denoting the maximum total number of tokens shown in one chart; it should be set
in accordance with the space available for drawing the profile to ensure that the chart
is not overloaded with data, which would make it unreadable.

• m denoting the minimum number of variables shown in the chart; by default, it should
be set to 3 to ensure a two-dimensional form of the drawn radar chart contents (with
less than 3 variables, the resulting radar chart would be difficult to interpret visually);
if the number of tokens is fewer than m, the data for existing tokens are duplicated to
generate m variables.

• n denoting the minimum number of tokens of each category shown in one chart; this
is explained below.

Regarding the n parameter, the considered categories are:

(I) The tokens which are the most characteristic for the profiled code but were not found
in accepted solutions of the programming exercise that the profiled code attempts
to solve.

(II) The tokens which are most characteristic for the accepted solutions of the program-
ming exercise that the profiled code attempts to solve and were also found in the
profiled code.

(III) The tokens which are the most characteristic for the accepted solutions of the pro-
gramming exercise that the profiled code attempts to solve but were not found in the
profiled code.

This parameter matters only if l is smaller than the number of identified tokens. As
long as this remains true, iteratively, the least characteristic token is discarded from the
list of category I tokens (considered as the least important, as they do not indicate what
the proper solution should have) if their count is larger than n; if that is not true, the least
characteristic token is discarded from the list of category II tokens also if their count is
larger than n; if that is not true, the least characteristic token is discarded from the list of
category III tokens (considered as the most important, as they indicate what the proper
solution should have but the profiled code has not). Obviously, the value of n has to meet
the requirement: n ≤ l/3.

The tokens most characteristic of the profiled code are the tokens most frequently
occurring in that code. The tokens most characteristic of the programming exercise are the

Information 2022, 13, 415 8 of 15

tokens having the highest value of the tuple: (minimum number of occurrences in any of the
accepted solutions, maximum number of occurrences in any of the accepted solutions).

By including the tokens most characteristic of the programming exercise in the visual
profile, the user may easily notice elements which are typical for accepted solutions but
missing in the profiled code. By including the traits most characteristic of the profiled code
in the visual profile, the user may easily notice elements which are untypical for accepted
solutions but present in the profiled code.

While the values of parameters l, m, and n are implementation-specific, in interactive
learning environments, they could be allowed to be adjusted by the user at runtime.

For each token, its level in the profiled code is shown in color A as a point denoting
the number of its occurrences in the profiled code, connected with a line with the respective
points of the tokens neighboring it in the chart, and its level in the accepted programming
exercise solutions is shown as a pair of points in colors B and B’, respectively, denoting the
minimum and maximum number of its occurrences in the accepted solutions’ code, each
connected with a line with the respective minimum and maximum level points of the tokens
neighboring it in the chart, with the area between the lines connecting minimum- and
maximum-level points filled with color B”, whereas the area between the lines connecting
minimum-level points and the center of the chart is filled with color C.

Regarding interpretation, if the point or line in color A is within the lines in color B or
B’ (or within the shape in color B”), the element of the profiled code it represents was also
similarly used in the accepted solutions (so, it is probably correct); if the points or lines in
color A are closer to the chart center than the line in color B’, the element it represents was
used more times in any of the accepted solutions than in the profiled code (so, it should
probably be used more in it); otherwise, if the points or lines in color A are further from
the chart center than the line in color B, the element of the profiled code it represents was
used in the accepted solutions, yet to a lesser degree (it could be considered wrong or
unnecessary if the level of the token represented by the point in color B is 0).

The colors A, B, B’, B”, and C are implementation-specific, with the requirements
that colors A and B should be contrasting, and colors B, B’, and B” should be similar (it is
recommended to use two pale shades of color B as colors B’ and B”). In interactive learning
environments, they could be allowed to be adjusted by the user at runtime.

The visual profiles can only be drawn for traits present in either the profiled or the
reference code, e.g., an attempt to draw a chart of imported modules for a program which
does not import any module and no accepted solution of the same exercise does it would
result in an empty chart.

4. Proof-of-Concept Implementation and Tests
4.1. Proof-of-Concept Implementation

In order to validate the feasibility of the proposed concept and its usability on real-
world data, its proof-of-concept implementation has been developed in Python 3.8.2. The
main reason for choosing this particular language was the ease of implementation due to
the availability of the ast standard module providing a source code parser along with the
full grammar of the language.

The detailed list of the tokens (under names defined in the Python grammar used
by ast) assigned to respective program traits is provided in Appendix A. For Instructions,
Operators, Built-ins, and Built-in classes’ components, it is the number of occurrences of the
respective tokens themselves that is counted as a parameter of a given trait (e.g., programs
can be compared by the number of for statements they contain), whereas for Modules and
Constants, it is the number of occurrences of respective token values that is counted (e.g.,
programs can be compared by the names of modules they import).

For real-world applications in programming learning environments, producing charts
of high visual attractiveness may be important to attain a positive user experience. How-
ever, in the proof-of-concept implementation, which is not subject to the user experience
evaluation, visual attractiveness of the generated charts is irrelevant, for which reason, the

Information 2022, 13, 415 9 of 15

default form of radar charts as implemented in the matplotlib.pyplot Python module was
chosen for their drawing.

The parameters l, m, and n were set, respectively, to 18, 3, and 6. Red was chosen as
color A and three shades of blue were used as colors B, B’, and B”, whereas light gray was
chosen as color C.

4.2. Test Dataset and Procedure

As the test dataset, the already-mentioned archive of over 9000 student-submitted so-
lutions from an introductory Python course was used. The archive comprises solutions of
94 exercises arranged in 12 thematic lessons (details can be found in [4]) provided by 39 stu-
dents. For each solution, information is included whether it was accepted (i.e., passed all
tests) or not (i.e., failed to pass at least one of the tests). The archive was exported from the
University of Szczecin’s instance of the FGPE PLE platform [30] in the form of a CSV file.

First, for each exercise, all its accepted solutions were parsed to retrieve all occurrences
of relevant tokens, which were then used to establish the minimum and maximum number
of occurrences of each token of each trait.

Then, the failed submissions were screened to find examples of evident differences
between the submitted solution code and the accepted solutions code pertaining to each of
the considered traits. Each such example supports the rationale for including the relevant trait
in the set of considered traits. Then, the visual profiles of the exemplary submissions were
drawn and then analyzed to verify whether the rendered chart contains sufficient information
presented in a form noticeable enough for the user to spot the difference. Each such positively
verified example demonstrates a use case in which the visual profile proved useful.

4.3. Test Results

Figures 1–3 present visual profiles of exemplary students’ programs showing respec-
tive traits. Note that each figure features a different student-submitted exercise solution.

Information 2022, 13, x FOR PEER REVIEW 9 of 15

the respective tokens themselves that is counted as a parameter of a given trait (e.g., pro-

grams can be compared by the number of for statements they contain), whereas for Mod-

ules and Constants, it is the number of occurrences of respective token values that is

counted (e.g., programs can be compared by the names of modules they import).

For real-world applications in programming learning environments, producing

charts of high visual attractiveness may be important to attain a positive user experience.

However, in the proof-of-concept implementation, which is not subject to the user expe-

rience evaluation, visual attractiveness of the generated charts is irrelevant, for which rea-

son, the default form of radar charts as implemented in the matplotlib.pyplot Python mod-

ule was chosen for their drawing.

The parameters l, m, and n were set, respectively, to 18, 3, and 6. Red was chosen as

color A and three shades of blue were used as colors B, B’, and B”, whereas light gray was

chosen as color C.

4.2. Test Dataset and Procedure

As the test dataset, the already-mentioned archive of over 9000 student-submitted

solutions from an introductory Python course was used. The archive comprises solutions

of 94 exercises arranged in 12 thematic lessons (details can be found in [4]) provided by

39 students. For each solution, information is included whether it was accepted (i.e.,

passed all tests) or not (i.e., failed to pass at least one of the tests). The archive was ex-

ported from the University of Szczecin’s instance of the FGPE PLE platform [30] in the

form of a CSV file.

First, for each exercise, all its accepted solutions were parsed to retrieve all occur-

rences of relevant tokens, which were then used to establish the minimum and maximum

number of occurrences of each token of each trait.

Then, the failed submissions were screened to find examples of evident differences

between the submitted solution code and the accepted solutions code pertaining to each

of the considered traits. Each such example supports the rationale for including the rele-

vant trait in the set of considered traits. Then, the visual profiles of the exemplary submis-

sions were drawn and then analyzed to verify whether the rendered chart contains suffi-

cient information presented in a form noticeable enough for the user to spot the difference.

Each such positively verified example demonstrates a use case in which the visual profile

proved useful.

4.3. Test Results

Figures 1–3 present visual profiles of exemplary students’ programs showing respec-

tive traits. Note that each figure features a different student-submitted exercise solution.

(a) (b)

Figure 1. Visual profiles of exemplary students’ programs showing: (a) Instructions and (b) Opera-

tors.
Figure 1. Visual profiles of exemplary students’ programs showing: (a) Instructions and (b) Operators.

Information 2022, 13, 415 10 of 15
Information 2022, 13, x FOR PEER REVIEW 10 of 15

(a) (b)

Figure 2. Visual profiles of exemplary students’ programs showing: (a) Built-ins and (b) Methods.

(a) (b)

Figure 3. Visual profiles of exemplary students’ programs showing: (a) Modules and (b) Con-

stants.

Figure 1a covers Instructions. The exercise the student attempted required compli-

cated while loop control. As we can see, all accepted solutions used if and break instruc-

tions (as indicated by the pale blue line), whereas the student’s submission does not con-

tain them (no red line is shown for these elements, indicating level 0). The visual profile

clearly indicates the required instructions that the student’s submission is lacking.

Figure 1b covers Operators. The exercise the student attempted required calculating

a power, denoted as ** in Python (here, represented by the Pow token). The student made

the mistake of using another operator, ^ (here, represented by the BitXor token), which

represents bitwise exclusive or in Python. As we can see, all accepted solutions used Pow

and did not use BitXor, which the students’ submission contains. Interestingly, the student

used Pow in one instance, implying either he/she actually knew this operator (bringing

the question of why it was not used in the other instances) or copied the code fragment

containing it from another student without understanding its meaning. Note that token

class names are used for displaying operators in the chart in the proof-of-concept imple-

mentation for the sake of its simplicity, whereas for real-world implementations, using

the actual form of operators is suggested, as it would be more readable for students.

Figure 2. Visual profiles of exemplary students’ programs showing: (a) Built-ins and (b) Methods.

Information 2022, 13, x FOR PEER REVIEW 10 of 15

(a) (b)

Figure 2. Visual profiles of exemplary students’ programs showing: (a) Built-ins and (b) Methods.

(a) (b)

Figure 3. Visual profiles of exemplary students’ programs showing: (a) Modules and (b) Con-

stants.

Figure 1a covers Instructions. The exercise the student attempted required compli-

cated while loop control. As we can see, all accepted solutions used if and break instruc-

tions (as indicated by the pale blue line), whereas the student’s submission does not con-

tain them (no red line is shown for these elements, indicating level 0). The visual profile

clearly indicates the required instructions that the student’s submission is lacking.

Figure 1b covers Operators. The exercise the student attempted required calculating

a power, denoted as ** in Python (here, represented by the Pow token). The student made

the mistake of using another operator, ^ (here, represented by the BitXor token), which

represents bitwise exclusive or in Python. As we can see, all accepted solutions used Pow

and did not use BitXor, which the students’ submission contains. Interestingly, the student

used Pow in one instance, implying either he/she actually knew this operator (bringing

the question of why it was not used in the other instances) or copied the code fragment

containing it from another student without understanding its meaning. Note that token

class names are used for displaying operators in the chart in the proof-of-concept imple-

mentation for the sake of its simplicity, whereas for real-world implementations, using

the actual form of operators is suggested, as it would be more readable for students.

Figure 3. Visual profiles of exemplary students’ programs showing: (a) Modules and (b) Constants.

Figure 1a covers Instructions. The exercise the student attempted required complicated
while loop control. As we can see, all accepted solutions used if and break instructions
(as indicated by the pale blue line), whereas the student’s submission does not contain
them (no red line is shown for these elements, indicating level 0). The visual profile clearly
indicates the required instructions that the student’s submission is lacking.

Figure 1b covers Operators. The exercise the student attempted required calculating
a power, denoted as ** in Python (here, represented by the Pow token). The student
made the mistake of using another operator, ˆ (here, represented by the BitXor token),
which represents bitwise exclusive or in Python. As we can see, all accepted solutions used
Pow and did not use BitXor, which the students’ submission contains. Interestingly, the
student used Pow in one instance, implying either he/she actually knew this operator
(bringing the question of why it was not used in the other instances) or copied the code
fragment containing it from another student without understanding its meaning. Note that
token class names are used for displaying operators in the chart in the proof-of-concept
implementation for the sake of its simplicity, whereas for real-world implementations,
using the actual form of operators is suggested, as it would be more readable for students.

Figure 2a covers Built-ins. The exercise the student attempted required some calcula-
tions; as indicated by the red line outside of the blue space, the student made the mistake

Information 2022, 13, 415 11 of 15

of converting intermediate results at one point to the integer type (using the int built-in
function), which none of the accepted solutions used. The visual profile clearly indicates
the unnecessary built-in function that the student used which led to the error in the result.

Figure 2b covers References to components of built-in classes—in particular, it indicates
the methods of built-in classes used in the code. The exercise the student attempted to solve
required obtaining a part of a string delimited by specific signs. As indicated by the blue
shape, all accepted solutions used the find method of the str class, whereas the student’s
submission (as indicated by the red vertical line) does not contain it. Note that it is possible
to solve the exercise without using the find method, although it is much more complicated,
which explains why no student managed to accomplish it this way. The visual profile thus
clearly indicates the method that should have been used.

Figure 3a covers Imported modules. The exercise the student attempted required a
certain mathematical function. As we can see, all accepted solutions imported the math
module containing that function, whereas the students’ submission does not contain it. The
visual profile thus clearly indicates the module that the student’s submission is lacking.
This very simple example was included also to illustrate the role of parameter m (set to its
default value of 3): there was only one module imported in all accepted solutions (math),
but it was repeated three times in the chart to meet the requested minimum number of
variables shown in each chart. We would see only a single straight blue line if the limit was
not enforced, which would hamper the readability of the chart.

Figure 3b covers String and numeric constants. The exercise the student attempted
required printing eight asterisks in a loop. The student used the for loop over a range (0,7),
which actually results in 7 repetitions, not 8. Note that the constant 7 can also be found in
some of the accepted solution (which used, e.g., the while n ≤ 7 loop). There is yet another
visible difference between the students’ submission and the accepted ones: the former has
“*” as a constant, the latter just “*”. Superfluous spaces are often a reason for which the
students’ submissions are not accepted, as their output is verified to strictly match the
expected results, so this indicates a valid use case for visual profiling of Constants, although
in the particular case of the profiled submission, the student made no mistake, as he/she
used the end = “*” parameter of the print function disabling the automatic generation of
whitespaces between displayed values (the other students used “*” and end = “*” to achieve
the same effect). This example was included also to illustrate the weak sides of the visual
profiles (as the first mistake was not clearly indicated, and the cue for the second mistake
was not leading to the actual reason of not accepting the submission). These are discussed
in the following section.

5. Discussion and Future Work

The presented examples show that for all six considered traits, the visual profiles may
bring valuable cues by visually indicating key differences between the submitted code and
the already-accepted solutions of that exercise in terms of used Instructions, Operators,
Built-ins, Built-in class components, Modules, and Constants. Figures 1a, 2b and 3a clearly
indicate elements missing in the submitted code; Figures 1b, 2a and 3bclearly indicate
elements which should not have been used as they are wrong or, at least, an unnecessary
complication of the solution.

Of course, we selected the examples that contained such differences; however, while
for the bulk of submissions, the differences will not be visible for all considered traits, for
most wrong submissions, there is at least one trait where the difference becomes apparent.

There are three main limitations of the presented visual code profiles. The first is when
the diversity of accepted solutions results in hiding the difference, as exemplified in the case
of constant 7 in Figure 3b. This is a problem specific to blank sheet exercises, for which the
student is allowed to use any known approach; it is much less characteristic for exercises
whose author provides a solution skeleton that the students are supposed to extend, thus
limiting the diversity of solutions. A possible workaround would be to consider token pairs
in addition to single tokens when drawing the visual profile, which in the discussed case

Information 2022, 13, 415 12 of 15

could indicate the difference between the possibly good pair (while, 7) and the most probably
wrong pair (for, 7). The problem is how to select the pairs most adequate for visualization,
considering that for more complicated programs there could be hundreds of them, and there
is a limit on the number of variables a radar chart can render while staying readable. Finding
a solution to this problem is the first direction of our future work.

The second limitation is when there is actually no difference between two programs
with regard to any trait, as the difference lies in the program structure and/or the flow of
statements. The visual code profiles are not an adequate tool to handle the differences of
this kind. While there is no technical problem in identifying and counting the occurrences
of specific fragments of program structure, presenting them in readable form would be far
from easy, as for all but the most trivial exercises, there will be many alternative statement
combinations found in their solutions. As the errors in program logic are already well-
addressed by existing solutions (see Section 2.2), we do not consider them as a topic which
has to be addressed by visual profiles. The two types of feedback (visual profiles and
program logic analysis) can be easily combined in a user interface of a programming
learning environment.

The third limitation is typical for all feedback techniques based on the prior student
submissions. Visual profiles use all submissions accepted so far as their reference, therefore
indicating notable differences for unorthodox solutions, which may be unrelated to the
actual error, which caused the student’s submission to not be accepted—as was the case
of the space–asterisk string in Figure 3b. Suggesting the student to check a possibly
(but not truly) problem-causing program element is, however, not all wrong, as it may
increase his/her awareness of the role of that element (and in the described exemplary
case, following the suggestion would lead to a simpler code). This limitation has also
another aspect—that there is no reference available before the first submission is accepted;
it, however, can be addressed by the instructor solving all exercises before the students are
allowed to do that.

We do not consider the scope of the considered traits to be an actual limitation. As
explained in Section 3.3, the selection of traits was based on the observation of simple errors
students often make. There is no technical barrier in extending the list of the considered
traits to include other classes of tokens, e.g., expression types or named function parameters.
Experimenting with other traits indicates the second direction of our future work.

In spite of the limitations described above, the proposed visual profiles have a large
potential for implementation in interactive programming learning environments, primarily
to provide non-obvious feedback to students learning with them. There is yet another
possible point of implementation in interactive programming learning environments: in
their teacher console, where the visual profiles could support teachers in diagnosing and
possibly correcting students’ submissions.

The main threat to validity is the form of testing which did not involve students.
Therefore, the third and most important direction of our future work will be to implement
the visual profiles in an interactive programming learning environment by embedding
them in the feedback section of its user interface, so that their real-world effectiveness could
then be measured in such dimensions as:

• Inclination of students to have a look at provided visual profiles.
• Ability of students to grasp cues from the visual profiles.
• Share of submissions improved thanks to cues from the visual profiles.
• Effect of using the visual profiles on the students’ progress in the course.

6. Conclusions

The paper introduced visual profiles of programs as a form of automatically gener-
ated feedback to programming students, alternatively to text-based feedback. A visual
profile depicts the frequency of code elements belonging to one of six distinct classes in
both student-submitted solution code and the already accepted solutions, allowing a fast
visual comparison of the two. The visual profiles were shown to provide useful cues for

Information 2022, 13, 415 13 of 15

improvement for a number of exemplary programming exercise solutions selected from a
real-world data set.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from the author on request.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The list of Python tokens considered in program trait visualization:

1. Instructions
Assert, AsyncFor, AsyncFunctionDef, AsyncWith, Await, Break, ClassDef,
Continue, Delete, ExceptHandler, For, FunctionDef, Global, If, IfExp,
Import, ImportFrom, Lambda, Nonlocal, Pass, Raise, Return, Try,
While, With, Yield, YieldFrom

2. Operators
Add, And, BitAnd, BitOr, BitXor, Div, Eq, FloorDiv, Gt, GtE, In, Invert,
Is, IsNot, LShift, Lt, LtE, MatMult, Mod, Mult, Not, NotEq, NotIn,
Or, Pow, RShift, Sub, UAdd, Usub

3. Built-ins
_, __build_class__, __debug__, __doc__, __import__, __loader__,
__name__, __package__, __spec__, abs, all, any, ArithmeticError, ascii,
AssertionError, AttributeError, BaseException, bin, BlockingIOError,
bool, breakpoint, BrokenPipeError, BufferError, bytearray, bytes,
BytesWarning, callable, ChildProcessError, chr, classmethod, compile,
complex, ConnectionAbortedError, ConnectionError, ConnectionRefusedError,
ConnectionResetError, copyright, credits, delattr, DeprecationWarning,
dict, dir, divmod, Ellipsis, enumerate, EnvironmentError, EOFError,
eval, Exception, exec, exit, False, FileExistsError, FileNotFoundError,
filter, float, FloatingPointError, format, frozenset, FutureWarning,
GeneratorExit, getattr, globals, hasattr, hash, help, hex, id,
ImportError, ImportWarning, IndentationError, IndexError, input, int,
InterruptedError, IOError, IsADirectoryError, isinstance, issubclass,
iter, KeyboardInterrupt, KeyError, len, license, list, locals, LookupError,
map, max, MemoryError, memoryview, min, ModuleNotFoundError, NameError,
next, None, NotADirectoryError, NotImplemented, NotImplementedError,
object, oct, open, ord, OSError, OverflowError, PendingDeprecationWarning,
PermissionError, pow, print, ProcessLookupError, property, quit, range,
RecursionError, ReferenceError, repr, ResourceWarning, reversed, round,
RuntimeError, RuntimeWarning, set, setattr, slice, sorted, staticmethod,
StopAsyncIteration, StopIteration, str, sum, super, SyntaxError,
SyntaxWarning, SystemError, SystemExit, TabError, TimeoutError, True,
tuple, type, TypeError, UnboundLocalError, UnicodeDecodeError,
UnicodeEncodeError, UnicodeError, UnicodeTranslateError, UnicodeWarning,
UserWarning, ValueError, vars, Warning, WindowsError, ZeroDivisionError, zip

4. Built-in classes’ components
__add__, __and__, __class__, __contains__, __del__, __delattr__,
__delitem__, __dict__, __dir__, __doc__, __enter__, __eq__, __exit__,
__format__, __ge__, __getattribute__, __getitem__, __getnewargs__,
__gt__, __hash__, __iadd__, __iand__, __imul__, __init__, __init_subclass__,
__ior__, __isub__, __iter__, __ixor__, __le__, __len__, __lt__, __mod__,

Information 2022, 13, 415 14 of 15

__mul__, __ne__, __new__, __next__, __or__, __rand__, __reduce__,
__reduce_ex__, __repr__, __reversed__, __rmod__, __rmul__, __ror__,
__rsub__, __rxor__, __setattr__, __setitem__, __sizeof__, __str__,
__sub__, __subclasshook__, __xor__, _checkClosed, _checkReadable,
_checkSeekable, _checkWritable, _CHUNK_SIZE, _finalizing, add, append,
buffer, capitalize, casefold, center, clear, close, closed, copy, count,
detach, difference, difference_update, discard, encode, encoding,
endswith, errors, expandtabs, extend, fileno, find, flush, format,
format_map, fromkeys, get, index, insert, intersection, intersection_update,
isalnum, isalpha, isascii, isatty, isdecimal, isdigit, isdisjoint,
isidentifier, islower, isnumeric, isprintable, isspace, issubset,
issuperset, istitle, isupper, items, join, keys, line_buffering, ljust,
lower, lstrip, maketrans, mode, name, newlines, partition, pop, popitem,
read, readable, readline, readlines, reconfigure, remove, replace, reverse,
rfind, rindex, rjust, rpartition, rsplit, rstrip, seek, seekable,
setdefault, sort, split, splitlines, startswith, strip, swapcase,
symmetric_difference, symmetric_difference_update, tell, title,
translate, truncate, union, update, upper, values, writable, write,
write_through, writelines, zfill

5. Modules
Import, ImportFrom

6. Constants
bool, bytes, complex, constant, float, int, NoneType, string

References
1. Lameras, P.; Arnab, S. Power to the Teachers: An Exploratory Review on Artificial Intelligence in Education. Information 2021,

13, 14. [CrossRef]
2. Shute, V.J. Focus on Formative Feedback. Rev. Educ. Res. 2008, 78, 153–189. [CrossRef]
3. Narciss, S. Feedback Strategies for Interactive Learning Tasks. In Handbook of Research on Educational Communications and Technology;

Routledge: London, UK, 2008; pp. 125–143.
4. Szydłowska, J.; Miernik, F.; Ignasiak, M.S.; Swacha, J. Python Programming Topics That Pose a Challenge for Students. In

Proceedings of the Third International Computer Programming Education Conference (ICPEC 2022), Barcelos, Portugal, 2–3 June
2022; Simões, A., Silva, J.C., Eds.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Dagstuhl, Germany, 2022; Volume 102,
pp. 7:1–7:9.

5. Keuning, H.; Jeuring, J.; Heeren, B. A Systematic Literature Review of Automated Feedback Generation for Programming
Exercises. ACM Trans. Comput. Educ. 2019, 19, 1–43. [CrossRef]

6. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto, H.P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating Large Language Models Trained on Code. arXiv 2021, arXiv:2107.03374. [CrossRef]

7. Dansereau, D.F.; Simpson, D.D. A Picture Is Worth a Thousand Words: The Case for Graphic Representations. Prof. Psychol. Res.
Pract. 2009, 40, 104. [CrossRef]

8. Sorva, J.; Karavirta, V.; Malmi, L. A Review of Generic Program Visualization Systems for Introductory Programming Education.
ACM Trans. Comput. Educ. 2013, 13, 1–64. [CrossRef]

9. Le, N.-T. A Classification of Adaptive Feedback in Educational Systems for Programming. Systems 2016, 4, 22. [CrossRef]
10. Peveler, M.; Maicus, E.; Cutler, B. Comparing Jailed Sandboxes vs Containers within an Autograding System. In Proceedings of

the 50th ACM Technical Symposium on Computer Science Education, Minneapolis, MN, USA, 22 February–2 March 2019; ACM:
New York, NY, USA; pp. 139–145.

11. Edwards, S.H.; Tilden, D.S.; Allevato, A. Pythy: Improving the Introductory Python Programming Experience. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education, Atlanta, GA, USA, 5 March 2014; ACM: New York, NY,
USA; pp. 641–646.

12. Xu, S.; Chee, Y.S. Transformation-Based Diagnosis of Student Programs for Programming Tutoring Systems. IEEE Trans. Softw.
Eng. 2003, 29, 360–384. [CrossRef]

13. Striewe, M.; Goedicke, M. A Review of Static Analysis Approaches for Programming Exercises. In Proceedings of the International
Computer Assisted Assessment Conference, Zeist, The Netherlands, 30 June–1 July 2014; Springer: Berlin/Heidelberg, Germany;
pp. 100–113.

http://doi.org/10.3390/info13010014
http://doi.org/10.3102/0034654307313795
http://doi.org/10.1145/3231711
http://doi.org/10.48550/ARXIV.2107.03374
http://doi.org/10.1037/a0011827
http://doi.org/10.1145/2490822
http://doi.org/10.3390/systems4020022
http://doi.org/10.1109/TSE.2003.1191799

Information 2022, 13, 415 15 of 15

14. Swacha, J. Exercise Solution Check Specification Language for Interactive Programming Learning Environments. In Proceedings
of the 6th Symposium on Languages, Applications and Technologies (SLATE 2017), Vila do Conde, Portugal, 26–27 June 2017;
Queirós, R., Pinto, M., Simões, A., Leal, J.P., Varanda, M.J., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl,
Germany, 2017; Volume 56, pp. 6:1–6:8.

15. Johnson, W.L. Intention-Based Diagnosis of Novice Programing Errors; Research Notes in Artificial Intelligence; Morgan Kaufmann:
London, UK, 1986; ISBN 978-0-934613-19-4.

16. Sack, W.; Soloway, E. From PROUST to CHIRON: ITS Design as Iterative Engineering; Intermediate Results Are Important! In
Computer-Assisted Instruction and Intelligent Tutoring Systems; Routledge: London, UK, 1992; pp. 239–274.

17. Anderson, J.R.; Skwarecki, E. The Automated Tutoring of Introductory Computer Programming. Commun. ACM 1986, 29, 842–849.
[CrossRef]

18. Koyya, P.; Lee, Y.; Yang, J. Feedback for Programming Assignments Using Software-Metrics and Reference Code. ISRN Softw.
Eng. 2013, 2013, 805963. [CrossRef]

19. Coenen, J.; Gross, S.; Pinkwart, N. Comparison of Feedback Strategies for Supporting Programming Learning in Integrated
Development Environments (IDEs). In Proceedings of the Advanced Computational Methods for Knowledge Engineering,
International Conference on Computer Science, Applied Mathematics and Applications, Berlin, Germany, 30 June–1 July 2017; Le,
N.-T., van Do, T., Nguyen, N.T., Thi, H.A.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 72–83.

20. Rivers, K.; Koedinger, K.R. Data-Driven Hint Generation in Vast Solution Spaces: A Self-Improving Python Programming Tutor.
Int. J. Artif. Intell. Educ. 2017, 27, 37–64. [CrossRef]

21. Lazar, T.; Bratko, I. Data-Driven Program Synthesis for Hint Generation in Programming Tutors. In Proceedings of the Intelligent
Tutoring Systems, Honolulu, HI, USA, 5–9 June 2014; Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K., Eds.; Springer
International Publishing: Cham, Switzerland, 2014; pp. 306–311.

22. Price, T.W.; Zhi, R.; Barnes, T. Evaluation of a Data-Driven Feedback Algorithm for Open-Ended Programming. In Proceedings of
the 10th International Conference on Educational Data Mining, Wuhan, China, 25–28 June 2017; International Educational Data
Mining Society: Montréal, QC, Canada.

23. Zhi, R.; Marwan, S.; Dong, Y.; Lytle, N.; Price, T.W.; Barnes, T. Toward Data-Driven Example Feedback for Novice Programming.
In Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019), Montréal, QC, Canada, 2–5 July
2019; International Educational Data Mining Society: Montréal, QC, Canada, 2019; pp. 218–227.

24. Mitrovic, A.; Koedinger, K.R.; Martin, B. A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling. In
Proceedings of the User Modeling 2003, Johnstown, PA, USA, 22–26 June 2003; Brusilovsky, P., Corbett, A., de Rosis, F., Eds.;
Springer: Berlin, Heidelberg, 2003; pp. 313–322.

25. Holland, J.; Mitrovic, A.; Martin, B. J-Latte: A Constraint-Based Tutor for Java. In Proceedings of the 17th International on
Conference Computers in Education (ICCE 2009), Hong Kong, China, 30 November–4 December 2009; pp. 142–146.

26. Lane, H.C.; VanLehn, K. Teaching the Tacit Knowledge of Programming to Novices with Natural Language Tutoring. Comput. Sci.
Educ. 2005, 15, 183–201. [CrossRef]

27. Cavalcanti, A.P.; Barbosa, A.; Carvalho, R.; Freitas, F.; Tsai, Y.-S.; Gašević, D.; Mello, R.F. Automatic Feedback in Online Learning
Environments: A Systematic Literature Review. Comput. Educ. Artif. Intell. 2021, 2, 100027. [CrossRef]

28. Kyrilov, A.; Noelle, D.C. Binary Instant Feedback on Programming Exercises Can Reduce Student Engagement and Promote
Cheating. In Proceedings of the 15th Koli Calling Conference on Computing Education Research, Koli, Finland, 19 November
2015; ACM: New York, NY, USA; pp. 122–126.

29. Jiang, L.; Rewcastle, R.; Denny, P.; Tempero, E. CompareCFG: Providing Visual Feedback on Code Quality Using Control Flow
Graphs. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education, Trondheim,
Norway, 15 June 2020; ACM: New York, NY, USA; pp. 493–499.

30. Paiva, J.C.; Queirós, R.; Leal, J.P.; Swacha, J.; Miernik, F. An Open-Source Gamified Programming Learning Environment. In
Proceedings of the Second International Computer Programming Education Conference (ICPEC 2021), Braga, Portugal, 27–28
May 2021; Henriques, P.R., Portela, F., Queirós, R., Simões, A., Eds.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Dagstuhl,
Germany, 2021; Volume 91, pp. 5:1–5:8. [CrossRef]

http://doi.org/10.1145/6592.6593
http://doi.org/10.1155/2013/805963
http://doi.org/10.1007/s40593-015-0070-z
http://doi.org/10.1080/08993400500224286
http://doi.org/10.1016/j.caeai.2021.100027
http://doi.org/10.4230/OASIcs.ICPEC.2021.5

	Introduction
	Prior Research on Informative Tutoring Feedback
	Feedback Types
	Techniques for Automatic Feedback Generation
	Automatic Feedback Effectiveness

	Visual Profiles of Programming Exercise Solutions
	Concept of Visual Code Profiles
	Graphic Form of Visual Code Profiles
	Set of Traits Considered in Visual Code Profiles
	Generating Visual Code Profiles

	Proof-of-Concept Implementation and Tests
	Proof-of-Concept Implementation
	Test Dataset and Procedure
	Test Results

	Discussion and Future Work
	Conclusions
	Appendix A
	References

