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Abstract: If Diabetic Retinopathy (DR) patients do not receive quick diagnosis and treatment, they
may lose vision. DR, an eye disorder caused by high blood glucose, is becoming more prevalent
worldwide. Once early warning signs are detected, the severity of the disease must be validated
before choosing the best treatment. In this research, a deep learning network is used to automatically
detect and classify DR fundus images depending on severity using AlexNet and Resnet101-based
feature extraction. Interconnected layers helps to identify the critical features or characteristics; in
addition, Ant Colony systems also help choose the characteristics. Passing these chosen attributes
through SVM with multiple kernels yielded the final classification model with promising accuracy.
The experiment based on 750 features proves that the proposed approach has achieved an accuracy
of 93%.
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1. Introduction

The advances in science and technology have improved the standard of living for
humans by making their lives easier, safer, and more convenient to live [1]. Machine
Learning (ML) [2,3]-based automated systems these days provide a variety of services to
customers, all with the goal of improving the quality of our lives. ML-based systems have
become quite significant in the accurate early detection of dangerous diseases. One of the
most common and debilitating conditions affecting people all over the globe is diabetic
retinopathy (DR) [4,5]. It is a major contribution to the increase in the frequency of vision
disorders among individuals, which is the major driving force behind the general rise in
the number of people who are experiencing vision loss. People who are diagnosed with DR
have an approximately 90% chance of averting the permanent loss of their vision if early
diagnosis is performed correctly and effectively [6].

The clinical, blood-vascular, and optic disc features of a patient may be improved
using image enhancement technologies for retinal imaging [7]. A typical visual diagnostic
approach for DR diagnosis is digital fundus imaging. Recent clinical studies recommend
carrying out this check on a consistent basis throughout the whole of the diabetic patient’s
life. Patients who had none or a mild degree of diabetic retinopathy, for instance, were
instructed to go through screening once a year, but those who had moderate retinopathy
were instructed to repeat fundus examinations every six months. This retinal examination,
along with the overall rise in the number of DR patients throughout the globe, represents
a huge responsibility that medical professionals consider difficult to handle [8,9]. Due
to various recent developments in areas such as nonmydriatic eye imaging and online
data transmission, it is now feasible to use retinal fundus image analysis (RFIA) systems
for the purpose of analyzing the retinal image in order to make a diagnosis of DR. The
phases of the retinography sample analysis procedures may be carried out by qualified
eye physicians or non-eye trained personnel, depending on the results corresponding to
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acquired sensitivity (SE) and specificity (SP). The usual performance of automated software
for the diagnosis of diabetic retinopathy is outstanding, with sensitivity (SE) approaching
80% and specificity (SP) reaching 95% [10,11].

Screening programmers will need to take more retinal image graphs as the number
of diabetes patients continues to rapidly increase [12]. This will create a high demand for
medical personnel and will drive up the cost of healthcare services. It is possible that a
computerized system may be of use here, either as a resource for making comprehensive
technological diagnoses or as a back-up for the efforts of medical doctors [13,14]. An auto-
mated system must be able to classify retinal images in a professional manner using severity
ratings that are currently being used in clinical settings. The proposed international clinical
diabetic retinopathy and diabetic macular edema disease scales are two examples of these
severity ratings [15–17]. There are two distinct flavors of DR, Non-Proliferative Diabetic
Retinopathy (NPDR), the less severe form, and Proliferative Diabetic Retinopathy(PDR),
the more severe form [18]. The signs of a DR are the first symptoms that manifest them-
selves. These symptoms could include a mild illness or NPDR. Patients who have NPDR
may initially have just foggy vision in the early stages of the disease; but, as the disorder
advances, the retina starts to generate new blood vessels, which may result in significant
visual impairment [19]. Diabetes mellitus is a condition that is caused by excessive levels
of blood sugar, which results in the vessels expanding and leaking fluid [20]. In the images
of the fundus retina, the lesions seem like dots of streaming blood and fluids. There are
two distinct sorts of lesions, which are referred to, respectively, as bright lesions and red
lesions [21]. Red lesions include microaneurysms (MCA) and hemorrhage (HM), while
bright lesions contain soft and hard exudates. Both types of exudates may be seen in bright
lesions (EX). HM and MCA are represented, respectively, by the bigger and smaller dark
red dots. Hard EX is displayed as vivid yellow spots, but soft EX, often known as cotton
wool, manifests as fluffy, yellowish-white patches. This is because soft EX causes damage
to nerve fibers, whereas hard EX does not [22,23]. Research has shown that an automated
system that is based on the technology of deep learning ay be able to diagnose diabetic
retinopathy successfully [24].

The Major Contributions Are as Follow

• In preprocessing, the resize function is used to scale all the images to 1000 × 1000
pixels since the images’ dimensions vary. After resizing, k-mean clustering is used to
enhance the image. We used a variety of data augmentation techniques to boost the
quantity of low-volume data while dealing with the original dataset. These strategies
included vertical and horizontal flips as well as 90-degree and 180-degree rotations.

• To achieve features, AlexNet and Resnet101 are utilized. The characteristics are
extracted from the fully connected layers.

• Serial feature fusion is used to fuse these extracted features.
• Several of these features are insignificant for successful classification; hence, we used

an efficient feature selection method known as Ant Colony system to choose the most
beneficial features to include in our classification. Afterwards, these selected attributes
are sent to SVM with several kernels for final classification.

The article is organized as follows: Section 2 provides an explanation of relevant
work, including more modern methodologies. In Section 3, we describe the technique that
has been presented. The outcomes of the suggested research approach are discussed in
Section 4.

2. Related Work

The researchers [25] used a two-stage method for automated DR classification. First,
two U-Net models are utilized to segment the OD and blood vessels (BV). Second, a sym-
metric hybrid CNN-SVD model was created to detect DR by recognizing microaneurysms,
hemorrhages, and exudates. After OD and BV extraction, this model was preprocessed to
pick the most discriminant features using Inception-V3 and transfer learning (EX). In [26],
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authors presented an advanced framework for the classification of diabetic retinopathy
that focuses on feature selection over deep features and used wrapper approaches that
were inspired by nature. In [27], for the fundus image evaluation, targeted contrastive
learning was applied to determine the severity of diabetic retinopathy. DR is the most
challenging eye ailment diabetes sufferers may encounter. A considerable proportion of
people may escape the permanent stage of the illness, which is blindness, if DR is detected
early. The artificial intelligence-based systems that have been developed are accurate in
their identification of DR and exhibit promising outcomes. Numerous discoveries have
been made in this sector, which is now a very active and popular area of research.

A technique that is based on classical ML and DL [27] is proposed for use in the
categorization of patient retinal fundus images into classes according to the severity level
of the illness. They used a CNN architecture that had been trained using Transfer Learning
and was driven by deep learning in order to finalize the classification. In order to do
multi-label categorization [28] of fundus illness, binocular fundus images were used with
a neural network algorithm model. This was conducted with the intention of improving
accuracy. The model was constructed using attention processes and the fusing of different
features. Binocular fundus images are focused on certain features by the algorithm, which
then feeds them into a ResNet50 network that has attention mechanisms built in. This
allows the attributes of the fundus image lesions to be extracted. In this study [29], image
classification and identification of the retinal fundus were suggested employing cutting-
edge deep learning approaches in supervised, self-supervised, and vision transformer
setups. They investigated, assessed, and summed up the three different types of diabetic
retinopathy, which are referable, non-referable, and proliferative. The strategy that has
been presented aims to solve the issue of poor fundus image quality and identify the
indicators of retinopathy. WFDLN processes two channels of fundus images, which are
referred to as contrast-limited adaptive histogram equalization (CLAHE) fundus images
and contrast-enhanced canny edge detection (CECED) fundus images. In the case of the
CECED fundus images, the features are recovered using fine-tuned Inception V3, but in
the case of the CLAHE fundus images, fine-tuned VGG-16 is used to extract the features
of the image. A weighted technique is used to aggregate the outputs from both channels,
and the final recognition result is obtained using a SoftMax classification. The examination
of the experimental findings revealed that the network could reliably recognize the DR
phases [30].

The primary focus of this was on the difficulty of segmenting the fundus images of
newborn babies who had been delivered preterm. They used two different approaches
to create the novel dataset of the participants; these approaches were dissimilar from one
another in terms of their size, resolution, and illumination, respectively.

The trained models demonstrated a high degree of adaptation and resilience in the
face of heterogeneity and unpredictability in the data because of this. They were able to
achieve superior U-Net topologies by combining squeeze and excitation (SE) blocks with
attention gates (AG) to isolate the demarcation line/ridge and vessel from the datasets. This
resulted in the desired separation. Because of this, they were able to divide the demarcation
line/ridge and the vessel. Employing a deep learning (DL) learning-based automated
system and executing retinal fundus image classification methods led to the discovery
of diabetic retinopathy. They devised efficient answers to the issues, complications, and
challenges that surfaced in the modern era of autonomous systems [31–33].

The combination of fundus images and image processing that is based on deep learning
allowed for the diagnosis of diabetic retinopathy and other retinal issues [34]. In addition,
diagnosing DR manually is difficult since it may disturb the retina, leading to structural
changes such as microaneurysms (MAs), exudates (EXs), and hemorrhages (HMs), as
well as the creation of extra blood vessels. The detection and classification of diabetic
retinopathy in fundus images of the eye is accomplished via the use of a hybrid technique
that is proposed here. Transfer learning is performed on CNN models that have already
been trained, and it is used to extract features, which are then blended to generate a hybrid
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feature vector. This feature vector is used by a number of classifiers for the purpose of
performing binary and multiclass classification on fundus images [35].

3. Proposed Methodology

In our research, a unique and effective deep learning-based framework for the cat-
egorization of diabetic retinopathy is presented. The fundus image dataset [35] is used
for analysis of diabetic retinopathy. Accordingly, the images are exported in a variety of
dimensions and in a low quantity, and the resize function is used during the preprocessing
step to scale each of the images to a resolution of 1000 pixels on each end. Using the initial
dataset, we carried out several different data augmentation processes in order to increase
the amount of low-volume data that was made accessible for analysis. These concepts
include, among others, inverting the vertical and horizontal axes, rotating 90 degrees, and
rotating 180 degrees. The AlexNet and Resnet101 are utilized for feature extraction. The
characteristics are extracted from the fully connected layers that are completely related to
one another. Ant Colony algorithm is used for selecting core features. The final classifi-
cation is determined by running these chosen characteristics through several kernels of a
support vector machine (SVM). The proposition’s general design is shown in Figure 1.
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3.1. Resizing and Data Augmentation

To begin, we perform preprocessing operations on the input images, including re-
sizing [36] and k-mean clustering. After being shrunk down, each section of the matrix
appears as a discrete dot on the screen. In a true color image, the intensity of the red pixels
is represented on the first bigger plane, the intensity of the green pixels is shown on the
second level, and the intensity of the blue pixels is displayed on the third level. This strategy
allows us to show off two actions in the column without sacrificing any image quality, no
matter how narrow the column is. Note that just the first two dimensions of the provided
image need to change. K-mean clustering [37] is used for enhancing the image as shown
in Figure 2. Because the datapoints in k-means are far fewer than the total clusters, each
datapoint is referred to as the cluster’s centroid on the graph. Each centroid is associated
with a cluster number. If there are more datapoints than clusters, the distance between each
datapoint and each centroid is calculated, resulting in the shortest feasible distance. This
data sample is stated to be a member of the cluster that is the shortest distance away from
this data. Its mathematically express as [37].

I = (I1, I2) and J = (J1, J2) are the points, then the distance is given by:

Distance(I&J) =
√
(I1 − J1)

2 + (I2 − J2)
2 (1)

The cluster centroid is symbolized by ki, x is the datapoint that is assigned to each
cluster. Here Dist is the euclidean distance as shown in Equation (2):

minimum_Dist(ki, x) (2)
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Multiple data augmentation methods were used on the original dataset in order to
increase the sparse data, such as flipping the dataset vertically, horizontally, 90 degrees,
or 180 degrees [38,39]. The results of the research were used to assess and categorize DR
in medical imaging. This dataset is also known as a “vertically flipped dataset” since
it is comprised of images from the original dataset that have been rotated vertically to
change the location of a diabetic retinopathy patch within the image’s graphs. Both the
“action” and “axis” parameters were set to the value “flip”, and the “axis” parameter was
set to “vertical”. Both the “action” and “axis” parameters have been optimized to their
maximum potential. Since the new flip vertical dataset was much larger than the original
images dataset, the two were combined to produce a dataset twice as large. As described
above, the horizontally flipped dataset was produced by rotating each image in the original
dataset by 90 degrees, shifting the location of the diabetic retinopathy patch in each image.
Action was set to “flip” and axis was set to “horizontal” in the transformation such that the
image was flipped vertically. The dataset size needed to be increased; thus, the produced
flipped-horizontal dataset was joined with the original images’ dataset. The images from
the original dataset were rotated 90 degrees counterclockwise to produce the 90-degree
rotation dataset. The output images needed to be shown on the screen at an exact angle of
900 degrees; thus, the value of the parameter “action” was set to “rotate”, and the min/max
degrees tags in the settings tags were set to 900 degrees. To expand the size of the original
dataset, the produced dataset was combined with a dataset comprising the original images.

The images in the original dataset were rotated by 180 degrees and then combined
to form the 180-degree rotation dataset. Since the generated images were rotated to be
precisely at an angle of 1800 degrees, the value of the “action” parameter was set to “rotate”,
and the min/max degrees tags in the settings tags were set to 1800 and 1800 degrees,
respectively. To expand the size of the original dataset, the produced dataset was combined
with a dataset comprising the original images. Figure 2 describes the data augmentation.

3.2. Feature Extraction

Convolutional neural networks, such as AlexNet and Resnet101 [40–42], are used
to recognize images. With the ImageNet database, we can load a version of the network
that has already been trained on more than a million images. The pretrained network can
put images into more than 1000 categories. It can also put images into a wide range of
animal categories, as well as categories for keyboards, mice, and pencils. Because it has
been trained in this way, the network has learned to represent a wide range of image types
using many different features. The Resnet101 network will accept images with a resolution
of 224 by 224 pixels. The AlexNet network will accept images with a resolution of 227 by
227 pixels. To be more specific, we took the diabetic retinopathy dataset and used AlexNet
and RESNET101 to pull out the most important features. We used the FC7 fully connected
layer of the AlexNet, which had 4096 features, and the FC1000 fully connected layer of the
Resnet101, which had 1000 features.
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3.2.1. AlexNet Deep CNN Model

Krizhevsky and his team proposed 8-layer deep architecture called AlexNet [43].
The AlexNet contain five deep convolution layers and three fully connected layers. This
network uses the rectified linear unit (ReLU) function instead of the sigmoid function to
deal with the problem of vanishing gradients and to train quickly. The pooling operation is
used to cut down on the size of the space. The size of the fully connected layers (FC6 and
FC7) is 4096 features. For the last fully connected layer, which is called the “output layer”,
the size of the FC8 is 1000 features.

3.2.2. ResNet-101 Deep CNN Model

ResNet-101 [44] is a 152-layer deep neural network. ResNet-101 developed the concept
of integrating residual mapping with network layers. It stacks residual blocks, with each
residual block consisting of two 3 × 3 convolutional layers. ResNet-101 altered CNN’s
design by integrating the concept of “residual learning” and developing an effective method
for training deep neural networks. Residual block attempts to tackle the issue of lowering
gradient weight by training deep network. It became more accurate when ResNet-101 with
50 or more layers was used to categorize images.

3.2.3. Feature Selection Using Ant Colony System (ACS)

ACS is all about what ants do and how they move. As they move from one place
to another, the ants spread a substance called “pheromone” that they leave behind. The
strength of this material goes down over time. There is a good chance that the pheromone
led the ants to the trail. This makes ants more likely to take the cheaper route. Accordingly,
ants move from one place to another in the same way that points in a graph move from one
point to another. A vertex is a feature, and an edge between two vertices is a choice about
which feature to choose next. The method keeps trying different things to find the best ones.
The approach stops when the least number of vertices have been reached and a freezing
criterion has been met. The points are something that will happen at a certain point at a
certain time. In general, the nth ant moves from state a to state b with the probability as
shown in Equation (3).

pn
ab =

(
Qδ

ab
)(

Pσ
ab
)

∑ allowed
((

Qδ
ab
)(

Pσ
ab
)) (3)

In Equaiton (3),
(
Qδ

ab
)

is the amount of pheromone deposited for the switching state
from a to b. δ is a parameter to control the change of

(
Qδ

ab
)
. σ is a parameter to control the

change of
(

Pσ
ab
)
.
(
Qδ

ab
)

and
(

Pσ
ab
)

signify the trail level and desirability for the other possible
state switches. Several of these features are insignificant for successful classification; hence,
we used an efficient feature selection method known as the Ant Colony system to choose
the most beneficial features to include in our classification. By the technique, these selected
attributes are sent to SVM and its several SVM kernels for final classification.

4. Results and Discussion

In this segment, more detailed experiments are conducted to test the proposed frame-
work. The following actions were performed to achieve the objectives: An image is
enhanced using k-mean clustering, a deep CNN model that has been pre-trained is used for
feature extraction, the best deep model features are selected using an Ant Colony system,
and the best features are then concatenated for classification using SVM variants. In this
study, the dataset known as fundus [43] is used. At the outset, each DR image was classi-
fied into one of three groups: non-referable DR (DR1, mild no proliferative DR), referable
DR, and referable DR with proliferative features (RDR). A severity level of moderate no
proliferative DR or worse, in addition to the presence of referable diabetic macular edema,
was diagnostic of referable diabetic retinopathy (DME). The subtype of mild DR with no
proliferative features is referred to as DR2, and it was differentiated from RDR. DR3 is the
category that incorporates both proliferative and severe no proliferative DRs together in



Information 2023, 14, 30 7 of 14

one grouping as shown in Figure 3. The suggested method’s performance is evaluated
using several different metrics, including accuracy, total cost, prediction speed, training
speed, precision, F1 rate, and recall rate among others. The experiments make use of five
different folds.
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Figure 3. Fundus image database.

To determine whether the planned research would be successful, this study makes use
of a variety of performance evaluation criteria. The confusion matrix that is generated dur-
ing the testing procedure for the identification job is relied on by most of these methods. The
calculations for these procedures are as follows: Accuracy(Ac), precision(Pe), Recall(Re)
& F1 Score(F1 − s).

Ac =
TruePValues + TrueNValues

TruePValues + TrueNValues + FalsePValues + FalseNValues
(4)

Re =
TruePValues

TruePValues + FalseNValues
(5)

Pe =
TruePValues

TruePValues + FalsePValues
(6)

F1 − s =
2 ∗ (Re ∗ Pe)

Re + Pe
(7)

4.1. Experiment Setup 1 (250 Features)

In this experiment, 250 realistic attributes are used to evaluate a novel approach. The
selected feature vector has a dimension of 250. Based on the feature set, DR and normal
occurrences are classified using SVM classifiers. With a score of 92.6%, the C-SVM classifier
performed the best in this evaluation. Q-SVM is the second-most accurate classifier. Table 1
provides an overview of the experiment’s performance based on 250 criteria. The graph
below depicts a true classifier, together with their corresponding training periods and
prediction speeds (Figures 4 and 5). Figure 5 exhibited the confusion matrices relative to
the classifier.

Table 1. Experiment Setup 1.

Classifier Features Accuracy (%) Precision Recall F1 Score

Liner SVM 250 81.1 0.597 0.52 0.540

Quadratic SVM 250 92.3 0.957 0.955 0.955

Cubic SVM 250 92.6 0.922 0.937 0.927

Fine Gaussian SVM 250 41.3 0.33 0.592 0.282

Medium Gaussian SVM 250 87 0.852 0.882 0.862

Coarse Gaussian SVM 250 61.1 0.508 0.525 0.427



Information 2023, 14, 30 8 of 14

Information 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

Fine Gaussian SVM 250 41.3 0.33 0.592 0.282 
Medium Gaussian SVM 250 87 0.852 0.882 0.862 
Coarse Gaussian SVM 250 61.1 0.508 0.525 0.427 

 
Figure 4. Demonstrated training time of 250 features. 

 
Figure 5. Demonstrated prediction speed of 250 features. 

4.2. Experiment Setup 2 (550 Features) 
This experiment tests a novel method on 550 features. The feature vector’s dimension 

is 550. SVM classifiers distinguish DR from regular occurrences based on the feature set. 
The C-SVM classifier scored 91.8% overall. Q-SVM has the second-highest industry 
accuracy. Table 2 summarizes the experiment’s 550-criteria performance. Figures 6 and 7 
exhibit the training times and prediction speeds for a real classifier. 

Table 2. Experiment Setup 2. 

Classifier Features Accuracy (%) Precision Recall F1 Score 
Liner SVM 550 81.4 0.632 0.832 0.815 

Quadratic SVM 550 91.1 0.91 0.92 0.912 
Cubic SVM 550 91.8 0.915 0.93 0.917 

Fine Gaussian SVM 550 41.7 0.345 0.842 0.422 
Medium Gaussian SVM 550 88 0.655 0.83 0.647 
Coarse Gaussian SVM 550 60.4 0.504 0.512 0.422 

7.9992

1.602

1.5134

1.9161

1.4267
1.4695

Training Time (s)

Linear SVM Quadratic SVM Cubic SVM

Fine Gaussian SVM Medium Gaussian SVM Coarse Gaussian SVM

0
500

1000
1500
2000
2500
3000
3500
4000

Linear SVM Quadratic SVM Cubic SVM Fine Gaussian
SVM

Medium
Gaussian SVM

Coarse
Gaussian SVM

Prediction speed (obs/s)

Prediction speed (obs/sec)

Figure 4. Demonstrated training time of 250 features.

Information 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

Fine Gaussian SVM 250 41.3 0.33 0.592 0.282 
Medium Gaussian SVM 250 87 0.852 0.882 0.862 
Coarse Gaussian SVM 250 61.1 0.508 0.525 0.427 

 
Figure 4. Demonstrated training time of 250 features. 

 
Figure 5. Demonstrated prediction speed of 250 features. 

4.2. Experiment Setup 2 (550 Features) 
This experiment tests a novel method on 550 features. The feature vector’s dimension 

is 550. SVM classifiers distinguish DR from regular occurrences based on the feature set. 
The C-SVM classifier scored 91.8% overall. Q-SVM has the second-highest industry 
accuracy. Table 2 summarizes the experiment’s 550-criteria performance. Figures 6 and 7 
exhibit the training times and prediction speeds for a real classifier. 

Table 2. Experiment Setup 2. 

Classifier Features Accuracy (%) Precision Recall F1 Score 
Liner SVM 550 81.4 0.632 0.832 0.815 

Quadratic SVM 550 91.1 0.91 0.92 0.912 
Cubic SVM 550 91.8 0.915 0.93 0.917 

Fine Gaussian SVM 550 41.7 0.345 0.842 0.422 
Medium Gaussian SVM 550 88 0.655 0.83 0.647 
Coarse Gaussian SVM 550 60.4 0.504 0.512 0.422 

7.9992

1.602

1.5134

1.9161

1.4267
1.4695

Training Time (s)

Linear SVM Quadratic SVM Cubic SVM

Fine Gaussian SVM Medium Gaussian SVM Coarse Gaussian SVM

0
500

1000
1500
2000
2500
3000
3500
4000

Linear SVM Quadratic SVM Cubic SVM Fine Gaussian
SVM

Medium
Gaussian SVM

Coarse
Gaussian SVM

Prediction speed (obs/s)

Prediction speed (obs/sec)

Figure 5. Demonstrated prediction speed of 250 features.

4.2. Experiment Setup 2 (550 Features)

This experiment tests a novel method on 550 features. The feature vector’s dimension
is 550. SVM classifiers distinguish DR from regular occurrences based on the feature
set. The C-SVM classifier scored 91.8% overall. Q-SVM has the second-highest industry
accuracy. Table 2 summarizes the experiment’s 550-criteria performance. Figures 6 and 7
exhibit the training times and prediction speeds for a real classifier.

Table 2. Experiment Setup 2.

Classifier Features Accuracy (%) Precision Recall F1 Score

Liner SVM 550 81.4 0.632 0.832 0.815

Quadratic SVM 550 91.1 0.91 0.92 0.912

Cubic SVM 550 91.8 0.915 0.93 0.917

Fine Gaussian SVM 550 41.7 0.345 0.842 0.422

Medium Gaussian SVM 550 88 0.655 0.83 0.647

Coarse Gaussian SVM 550 60.4 0.504 0.512 0.422
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4.3. Experiment Setup 3 (750 Features)

In this exercise, we experimented with a new approach on 750 random features. The
750-dimensional feature vector is picked. Feature set SVM classifiers identify DR outbreaks
from regular occurrences. The C-SVM classifier won with 93% accuracy. Q-SVM has
second-best accuracy. Table 3 summaries the trial’s 750 outcomes. Figures 8 and 9 illustrate
one classifier’s training and prediction times.

Table 3. Experiment Setup 3.

Classifier Features Accuracy (%) Precision Recall F1 Score

Liner SVM 750 82.3 0.815 0.832 0.804

Quadratic SVM 750 92.6 0.93 0.932 0.93

Cubic SVM 750 93.0 0.93 0.935 0.932

Fine Gaussian SVM 750 40.8 0.64 0.842 0.286

Medium Gaussian SVM 750 87.9 0.857 0.897 0.872

Coarse Gaussian SVM 750 60.6 0.505 0.54 0.419
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4.4. Discussion

In this experiment, 250 real-world characteristics are utilized to assess a new method.
The size of the chosen feature vector is 250. Using SVM classifiers, DR and normal oc-
currences are categorized based on the feature set. The C-SVM classifier fared the best
in this examination, with a score of 92.6%. The second-most accurate classifier is Q-SVM.
Based on 250 criteria, Table 1 presents a summary of the experiment’s results. The graph
below illustrates true classifiers along with their respective training times and prediction
speeds. This experiment employs 550 characteristics to evaluate a unique technique. The
dimension of the feature vector is 550. Using the feature set, the SVM classifiers identify
DR from ordinary occurrences. Overall, the C-SVM classifier scored 91.8%. Q-SVM has
the second-highest accuracy in the industry. The performance of the trial on 550 criteria
is summarized in Table 2. We also tried a fresh method on 750 random characteristics in
this experiment, selecting the 750-dimensional feature vector. Feature set SVM classifiers
distinguish between DR outbreaks and common occurrences. The C-SVM classifier won
with an accuracy of 93%. Q-SVM has the second-best precision. Table 3 summaries the
750 results of the experiment- listing normal, diabetic retinopathy, cataract, glaucoma,
age-related macular degeneration, myopia, hypertension and other anomalies in fundus
images from the Ocular Disease Intelligent Recognition (ODIR) collection. To enhance the
dataset, left and right eye images were not differentiated, and these images were put on
the VGG-16 CNN network to binary classify each condition independently. This research
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compares the accuracy of each organ and the overall model to benchmark publications.
Baseline accuracy rose from 89% to 91%, and the suggested approach enhanced illness
identification.

Predictions of glaucoma, normal images, and other disorders have risen from 54% to
91% [44]. Table 4 shows a few comparisons with some of the previous techniques. Figure 10
shows the comparison of accuracy based on selected features (250, 550, and 750 etc.).

Table 4. Comparison from previous model.

Model Results (%) Dataset [43]

[45] Transfer learning using VGG-16 No fusion
(considered left and right images as separate images)

Validation Accuracy: 90.85
and F1-score: 91.0 Used all classes

Proposed
Fused features from fully connected layers of

AlexNet and Resnet-101, after fusion used using
ACS for core features selection for classification.

Accuracy = 93.0, Precision =
93.0, Recall = 93.5,

F1-score = 93.2

Used Normal vs. DR1,
DR2, and DR3
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5. Conclusions

DR patients with delayed diagnosis and treatment are more likely to lose eyesight.
Once early warning signals are recognized, the disease’s severity must be confirmed before
deciding on the best therapy. The proposition focuses on identifying DR fundus pictures by
severity using a deep learning model. This paper presents a deep learning-based approach
for categorizing fundus DR photos. Diabetic Retinopathy (DR), an eye condition caused by
high blood glucose, has become more common. Diabetes affects over half the world’s under-
70 population. DR patients frequently lose eyesight without early diagnosis and treatment.
After recognizing the warning indicators, the problem’s severity must be confirmed to
decide on treatment options. This work uses deep learning to classify DR fundus pictures
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by severity. This paper presents a deep learning-based approach for classifying fundus
DR pictures. In our proposition, feature extraction has been carried out promarily using
AlexNet and Resnet101. Characteristics are collected from interdependent layers. Ant
Colony systems help choose traits. Passing these qualities through an SVM with numerous
kernels produces the final classification (SVM). Future efforts will focus on refining the DR
classification by utilizing the latest deep learning algorithms instead of human grading to
identify cases with diabetic retinopathy.
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