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Abstract: Computer vision is a powerful tool for healthcare applications since it can provide objective
diagnosis and assessment of pathologies, not depending on clinicians’ skills and experiences. It can
also help speed-up population screening, reducing health care costs and improving the quality of
service. Several works summarise applications and systems in medical imaging, whereas less work
is devoted to surveying approaches for healthcare goals using ambient intelligence, i.e., observing
individuals in natural settings. Even more, there is a lack of papers providing a survey of works
exhaustively covering computer vision applications for children’s health, which is a particularly
challenging research area considering that most existing computer vision technologies have been
trained and tested only on adults. The aim of this paper is then to survey, for the first time in the
literature, the papers covering children’s health-related issues by ambient intelligence methods and
systems relying on computer vision.

Keywords: computer vision; ambient intelligence; body motion analysis; facial expression recognition;
children’s healthcare

1. Introduction

Computer vision (CV) offers powerful tools to assist healthcare applications, especially
when coupled with artificial intelligence and machine learning. CV applications can provide
objective evidence of the presence of pathologies or an assessment that is not dependent
on clinicians’ skills and experiences. They can also help speed-up population screening
reducing health care costs and improving the quality of service [1].

According to the related scientific literature [2], there are two distinct levels in which
CV can be effectively exploited: physician-level diagnostics (medical imaging) and medical
scene perception (ambient intelligence). In medical imaging, the interior body is repre-
sented for clinical diagnosis and medical intervention, whereas ambient intelligence covers
techniques aimed at recognizing human activity and their physical, motor and mental
status while moving and acting in physical spaces.

In its broader sense, ambient intelligence is an umbrella term that encompasses intelli-
gent and ubiquitous sensing, smart computing, and human-centred interfaces combined to
deliver environments that are sensitive and responsive to people’s presence and activities.
In healthcare, ambient intelligence can refer to a continuous, non-invasive awareness of
activity and health status of individuals, patients and people in need in a physical space
that can assist doctors, nurses and other healthcare workers with clinical tasks such as
patient monitoring, automated documentation and protocol compliance monitoring [3,4].
Cameras and visual sensors are key ingredients of ambient intelligence, as they convey
precious information about the activity and the behaviour of people in an environment [3].
Visual data can be also processed to unobtrusively measure individuals’ vital signs and to
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support visual analyses of disease signs and symptoms [5]. CV tools come into play here as
key enablers of physicians’ and caregivers’ tasks based on visual inspection.

Regarding the related scientific literature, whereas several works summarise applica-
tions and systems in medical imaging [6], less work is devoted to surveying approaches
for ambient intelligence [7,8]. More importantly, most of the current literature focuses on
CV for ambient intelligence in adult and older adult care, whereas there is a lack of papers
that comprehensively review work on CV for children’s health. This is an emerging and
cogent topic, which is receiving a growing attention by health organizations and health-
care institutions lately [9,10]. The perspectives that ambient intelligence and innovative
health technologies may open in paediatric care are manifold and can strongly benefit
from research and technology advancement [10,11]. Particularly, CV coupled with artificial
intelligence and machine learning can support several clinical tasks, for disease detection
or well-being monitoring. Among them, the clinical tasks most commonly considered
comprise detection and assessment of

• Neurocognitive impairment (e.g., based on Prechtl General Movement Assessment—GMA)
or early signs of neurocognitive developmental disorders (e.g., Autism Spectrum
Disorders—ASD or Attention Deficit Hyperactivity Disorders—ADHD).

• Dysmorphisms (e.g., cleft lip) or physical or motor impairments (e.g., gait and walking
disorders) due to genetic disorders or surgery.

• The well-being and health status of newborns (e.g., vital signs and sleep monitoring
in the nursery or in the Neonatal Intensive Care Unit—NICU) and children.

To support these clinical tasks, CV tools need to be able to perform low-level tasks such
as face detection and head pose estimation, gaze tracking and analysis, motion detection
and tracking (e.g., legs and arms), and measurement of physiological signs (e.g., heart rate).
These low-level tasks underpin more complex inferences for the detection and assessment
of activities, vital signs or disease symptoms.

So far, some survey papers have analysed the state of the art on one specific low-level
task (e.g., body motion, gaze tracking, head pose estimation), which might be related to
neurological diseases or motor impairments. For instance, methods and systems aimed
at an early neurological disorder diagnosis have been recently collected in [12]. Prechtl
general movement assessment by CV was summarized in [13,14]. A review of works
dealing with gait deviations (also in children) in individuals with intellectual disabilities
has been proposed in [15]. Data-driven detection techniques that quantify behavioural
differences between autism cases and controls are reported in [16,17].

This paper aims to fill the aforementioned gap by providing, for the first time in
the literature, a comprehensive overview of the papers covering children’s health-related
issues by ambient intelligence methods and systems relying on computer vision. A coarse
taxonomy for the paper can be recovered by dividing works according to the part they
concentrate on, e.g., the face for extracting gaze direction and facial expressions, or on the
whole body, e.g., for gait analysis, posture estimation, and human–object interaction.

The proposed taxonomy is schematized in Figure 1 and the paper is then arranged
accordingly as follows: Section 2 discusses works that introduced CV-based systems relying
on tasks related to children’s head and face such as face analysis and head-pose estimation;
whereas Section 3 deals with works involving CV tasks aimed at analysing the human
body or part of it. These sections map each CV method to the clinical problem it addresses,
providing the reader with the background clinical motivation.

Section 4 then discusses some challenges to be addressed to reach a level of perfor-
mance that allows the instruments to be effectively used in clinical practice and, finally,
Section 5 will conclude the paper.
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Figure 1. Schema of the proposed taxonomy.

2. Face Analysis and Head Movements

Children’s faces contain a variety of valuable information regarding their state of
health. Indeed, due to physiological or behavioural responses, certain pathological condi-
tions alter the expression or appearance of children’s faces.

Contactless approaches, such as computer vision methods, may detect and analyse
the most relevant facial features, thus providing clinicians (or parents, teachers, caregivers,
etc.) with unobtrusive and objective information on children’s health status.

In the literature, many efforts have been made in this field, documented by a plethora
of research papers that have been reported and discussed in this section. The studies range
from the analysis of children’s face morphology to recognize genetic disorders, to head and
gaze tracking as a tool for large-scale screening of neurocognitive problems, to children’s
facial expression recognition.

For each reported work, the clinical aim, the used methods, the performances and
eventually the limits of the study have been pointed out.

A selection of papers was initially made by using the following queries in the
research databases:

• Scopus
QUERY “TITLE-ABS-KEY ((newborn OR baby OR children OR toddler OR infant) AND
(face OR facial) AND (analysis OR detection OR recognition OR tracking) AND “computer
vision” AND PUBYEAR > 2014 AND PUBYEAR < 2024 that returned 158 documents;

• Web of Science Core Collection
((((ALL=(children)) OR ALL=(infant)) OR ALL=(baby)) OR ALL=(newborn)) AND ((ALL=(face))
OR ALL=(facial)) AND ((ALL=(analysis)) OR ALL=(detection) OR ALL=(recognition))
AND ALL=(computer) AND ALL=(vision)), refined in the YEARS from 2015 to 2023, that
returned 197 documents;

• Scholar
allintitle: children OR newborn OR babies OR infants OR face OR facial OR analysis OR
recognition OR detection OR tracking OR “computer vision”, refined in the YEARS from
2015 to 2023, that returned 158 documents.

Among all the scientific papers retrieved from the above-mentioned databases, a
further selection was conducted based mainly on the scientific content (many works were
in fact not relevant for the purposes of the proposed survey), the type of publication
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(journals were preferred to conferences in case of comparable ideas) and finally on the
number of citations (articles prior to 2020 with less than 10 citations were not considered).

The remaining documents were split depending on the task: (i) analysis of the mor-
phology of the face (see Section 2.1); (ii) head pose estimation and/or gaze tracking (see
Section 2.2); and (iii) facial expression recognition (see Section 2.3).

In the following subsections, some tables have been used to organize information
within them. Section 2.4 concentrates on papers exploiting multimodal data to capture
and analyse as many aspects of face-related behaviours. In each table, (i) the proposed
computer vision approach used to perform the analysis, (ii) the clinical task, (iii) the
obtained performance and (iv) the test data population in terms of cardinality and age of
children are reported. Regarding the performance, the scores and the metrics released by the
authors are reported. In the case of non-quantitative measurements, the term ‘qualitative’
has been used in the relative table cell. Then, Section 2.5 reports some datasets that have
been made public and available to researchers and data scientists to enable them to train
and validate their methods. Finally, in Section 2.6, the most recent and promising methods
that attempt to address automatic face analysis challenges are introduced and discussed.

2.1. Face Morphology Analysis

Facial morphology refers to a series of many different complex traits, each influenced
by genetic and environmental factors. In Table 1, a summary of the selected work for face
morphology analysis is reported.

Table 1. Summary of the selected work for face morphology analysis. ‘acc’ = accuracy (correct predic-
tions/total number of predictions with respect to the clinical goal occurrences tested); CNN = Con-
volutional Neural Network; RMSE = root-mean-square error (it measures the differences between
values predicted by a model and the values provided by experts); SVR = Support Vector Regression.

Work (Year) Method Clinical Task Metrics

Dataset
Population/Age

(h = hours, w = weeks,
m = months, y = years)

[18,19] (2014, 2018)
Extraction of features

related to
nasolabial symmetry

Quantification of facial
asymmetry in children
pre- and post- primary

cleft lip repair

Qualitative 50 infants and 50
children (age: 8–10 y)

[20,21] (2016)

Geometrical approach +
landmarks identified by

computer-based
template mesh

deformation

Quantification of facial
asymmetry in children
with unilateral cleft lip

nasal deformity

Qualitative + Symmetry
Scores 49 infants (age 4–10 m)

[22] (2019) Face2Gene CLINIC app
(based on a CNN)

Recognition of facial
dysmorphisms due to

genetic disorders
acc = 72.5% 51 children

[23] (2019) CNN + SVR Estimation of postnatal
gestational age 7.98 days RMSE 130 newborns

(gestational age: 28–40 w)

In the literature, an early interesting clinical task has been the quantification of facial
asymmetry in children with unilateral cleft lip nasal deformity. The authors in [20,21]
developed a computer vision-based method using a template mesh deformed to fit a target
mesh using a geometric point detector. The clinical task was the quantification of facial
asymmetry in children with unilateral cleft lip nasal deformity. To accomplish that, the
authors (1) identify the three-dimensional midfacial plane in children with an unrepaired
cleft lip, (2) quantify nasolabial symmetry (by assessing, for instance, symmetry scores for
cleft severity) and (3) determine the correlation of these measures to clinical expectations.
A total of 35 infants (ages 4 to 10 months) with unrepaired unilateral cleft lips and 14 infant
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controls were enrolled in this study. Significant differences in symmetry scores were found
between cleft types, and before and after surgery.

Also, Mercan and colleagues [18,19] aimed at developing a computer vision-based
approach to analyse 3D facial images of 50 infants and 50 children (aged 8–10 years) before
and after primary cleft lip repair. They assessed a specific set of features related to unilateral
cleft lip nasal deformity: dorsal deviation, columellar deviation, nasal tip asymmetry, and
blunting of the alar-cheek junction. They also showed a correlation between this set of
measures related to nasolabial symmetry and aesthetic appraisal, demonstrating that
computer vision analysis techniques can quantify nasal deformity at different stages.

Another application for automatic facial morphology analysis is the estimation of
the postnatal gestational age, to assess whether or not infants are premature, which helps
clinicians to decide on suitable post-natal treatment. The work of Torres et al. [23] focused
on the development of a novel system for postnatal gestational age estimation using small
sets of images of a newborn’s face, foot and ear. A Convolutional Neural Network with
two-stage architecture predicts broad classes of gestational age; then, it fuses the outputs of
these discrete classes with the baby’s weight to make fine-grained predictions of gestational
age using Support Vector Regression.

Recently, most studies aimed at analysing children’s face morphology by computer
vision methods focus on recognising facial dysmorphisms due to genetic disorders instead.
This is a complex recognition problem: several genetic disorders can cause facial dysmor-
phism that can eventually be combined with dysfunctions in other organs [24]. Based
on facial features, a geneticist or a paediatrician can reach a possible diagnosis and order
appropriate tests for confirmation of the same. Nonetheless, while some of these syndromes
can be associated with distinctive facial features, others can be harder to detect at first
sight. A computer vision approach, aimed at automatically analysing the face of children
with facial dysmorphism, may avoid a delay in diagnosis by supporting geneticists and
paediatricians in recognizing the facial gestalt of genetic syndromes. In [22], the authors aim
at testing a computer vision approach to identify dysmorphic syndromes in Indian children.
Fifty-one children with definite chromosomal abnormalities or microdeletion/duplication
syndromes, or single gene disorders, with recognizable facial dysmorphism were enrolled
in the study. Their facial photographs (frontal and lateral) were uploaded in the Face2Gene
CLINIC app [25], where a deep convolutional neural network compares a patient’s gestalt
to its database for syndrome suggestion. Of the 51 patients, the software predicted the
correct diagnosis in 37 patients (72.5%). The method works quite well to classify facial dys-
morphism available during training. The open challenge becomes then to handle “unseen”
cases since there is a vast number of genetic disorders causing dysmorphism and providing
all of them during model training becomes unrealistic [26].

2.2. Head and Gaze Tracking and Analysis

In Table 2, a summary of the selected work for head pose estimation and/or gaze
tracking is reported.

Problems in neurocognitive development, ASD in particular, are associated with
disorders in the processing of social information, difficulties in social interaction, and
atypical attention and gaze patterns. Atypical eye gaze is an early-emerging symptom
of ASD and holds promise for autism screening. Traditionally, gaze tests rely on manual
assessments of children’s visual fixations to pictorial stimuli, but are very time-consuming
and difficult to standardize.

Many studies aimed at developing faster and low-cost solutions to reproduce the
two principal visual-based ASD clinical diagnostic tests: (i) the analysis of gaze fixation
patterns, which represent the region of an individual’s visual focus and (ii) the analysis
of visual scanning methods, which corresponds to the way in which individuals scan
their surrounding environment [27–29]. For instance, the framework and computational
tool proposed in [27] for measuring attention was tested on a population of 104 children
(age 16–31 months), 22 of them diagnosed with ASD. The computer vision algorithm
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detailed in [30] was used to automatically track children’s gaze and head position from
a recorded video. The latter was registered using an iPad front-facing camera while they
watched a movie displaying dynamic, social and non-social stimuli on the device screen.
The authors detected and tracked 51 facial landmarks, thus allowing for the detection of
head, mouth, and eye position to assess the direction of attention. They estimated the head
positions relative to the camera by computing the optimal rotation parameters between the
detected landmarks and a 3D canonical face model. The study showed that children in the
ASD group paid less attention to the video stimulus and to the social as compared to the
non-social stimuli, and often fixated their attention on one side of the screen.

Table 2. A partial summary of the selected work for head pose estimation and/or gaze tracking.
‘acc’ = accuracy (correct predictions/total number of predictions with respect to the clinical goal
occurrences tested); CNN = Convolutional Neural Network; R-CNN = Region proposal CNN [31];
ResNet-101 = Residual Network with 101 layers [32].

Work (Year) Method Clinical Task Metrics
Dataset Population/Age
(h = hours, w = weeks,
m = months, y = years)

[33] (2019) OpenFace Early detection of ASD signs Qualitative 6 children

[27] (2021)

Computation of 51 facial
landmark + computation of

rotation parameters between
the landmarks and a 3D

canonical face model

ASD diagnosis Qualitative 104 toddlers (age: 16–31 m)

[34] (2021)
Faster R-CNN algorithm to

fine-tune a pre-trained
ResNet-101

Monitoring of paediatric
patients in critical settings acc = 84% 59 paediatric patients

Also, robot-assisted tools have been of interest in intervention for children with
ASD, showing impressive results both in the diagnosis and therapeutic intervention when
compared to classical methods. The study reported in [33] aimed at early detecting ASD
signs in naturalistic behavioural observation through child–robot interaction. The proposed
system is composed of a responsive robotic platform, a flexible and scalable vision sensor
network, and an automated face analysis algorithm based on machine learning models.
The latter is developed using state-of-art trained neural models, available by Dlib3 [35]
and OpenFace [36] and involves face detection, recognition, segmentation and tracking,
landmarks detection and tracking, head pose, eye gaze and visual focus of attention
estimation. The authors also present a proof-of-concept test, with the participation of three
typically developing children and three children at risk of suffering from ASD.

Gaze detection and tracking may also be useful to monitor paediatric patients, es-
pecially in critical settings (e.g., Intensive Care Unit, ICU). The authors in [34] used the
Faster R-CNN algorithm to fine-tune a pre-trained ResNet-101 model [37] to automatically
detect and track eye regions for paediatric ICU patients monitoring. The last two layers of
the CNN were fine-tuned during training with 59 images and annotations for the eye and
mouth regions. The mouth landmark was included to improve model performance: it was
found in earlier testing that the mouth and eyes were often confused by object detectors
because of their similar shape and intensity profile on the face. By explicitly training the
model to detect both landmarks, the mouth serves as negative training data for the eye
localisation task. With a localization rate of 84%, this study demonstrated the potential of
convolutional neural networks for eye localization and tracking in a paediatric ICU setting.

2.3. Facial Expressions Analysis

In Table 3, a summary of the selected work for facial expressions analysis is reported.
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Table 3. Summary of the selected work for face expressions analysis. AAM = Active Appearance
Models; ‘acc’ = accuracy (correct predictions/total number of predictions with respect to the clinical
goal occurrences tested); AU = Action Units; AUC = Area Under the Curve; CERT = Computer Ex-
pression Recognition Toolbox; CLNF = Conditional Local Neural Field; CNN = Convolutional
Neural Network; HOG = Histogram Of Gradients; ICC = Intra class Correlation Coefficient;
LBP = Local Binary Patterns; LSTM = Long Short-Term Memory network; LTP = Local Ternary
Patterns; PCA-LMNN = Principal Components Analysis with Large Margin Nearest Neighbor;
RB = radon Barcodes; ResNet = Residual Network [32]; ResNet-152 = Residual Network with 152 lay-
ers [32]; SVM = Support Vector Machines; VGG-16 = VGG Net with 16 layers [38].

Work (Year) Method Clinical Task Metrics
Dataset Population/Age
(h = hours, w = weeks,
m = months, y = years)

[39] (2013)

AAM + HOG features;
comparison PCA-LMNN vs.

Laplacian Eigenmap and
SVM vs.

K-Nearest Neighbour

Assessment of the dynamics
of face-to-face interactions

with the mother
ICC 12 infants (age: 1 m–1 y)

[40] (2016) CERT Lie detection Qualitative Children (age: 6–11 y)

[41] (2017)

HOG computation +
Landmark Detection by

CLNF + Facial AU
intensities computation

Diagnosis and evaluation of
ASD children

Entropy score + Similarity
metrics children (age: 5–6 y)

[42] (2019)

Geometric and appearance
features/facial

landmark-based template
matching + SVM

Pain assessment AUC = 0.87/0.97 22 infants (age: 1 m–1 y)

[43] (2019) Neonatal CNN Pain assessment acc = 97% 84 neonates (age: 18 h–41 w)

[44] (2019) CNN + ResNet Robot assisted therapy acc = 72% children (age: 6–12 y)

[45] (2019) Mean Supervised Deep
Boltzmann Machine

Emotion detection
and recognition acc = 75% 154 children (age: 2–8 y)

[46] (2020)
Texture and geometric

descriptors: LBP, LTP and
RB + SVM

Pain assessment acc = 95% 26 neonates (age: 18–36 h)

[47,48] (2020, 2021)
Deep spatiotemporal

geometric facial features +
Recurrent Neural Network

ASD meltdown crisis
management acc = 85.8% children (age: 4–11 y)

[49] (2021) Facial landmark detection
and tracking

Early detection of ASD
symptoms AUC from 0.62 to 0.73 104 toddlers (age: 1–2 y)

[50] (2021) PainCheck Infant Pain assessment
Correlation with standard

scores: r = 0.82–0.88;
p < 0.0001

40 infants (age: 2–9 m)

[51] (2021)
YOLO face detector +

VGG-16 for facial features
extraction + LSTM

Pain assessment acc = 79% 58 neonates (age: 27–41 w)

[52] (2021) ResNet-152 Emotion detection
and recognition Balanced acc = 79.1% 154 children (age: 2–8 y)

[53] (2022) VGG-16 network Emotion detection
and recognition AUC = 0.82 123 children (age: 1 m–5 y)

[54] (2022)

Strain-based,
geometric-based,

texture-based and
gradient-based
facial features

Pain assessment acc = 95.56% 31 neonates

[55] (2022)
Progressive lightweight

shallow learning
(ShallowNet)

Emotion detection
and recognition Acc = 99.06% 12 children (age: 6–12 y)
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Over the past decade, research on automatic analysis of children’s facial expressions
has made great strides. One of the challenges in this area has been the recognition of regular
facial expressions. Another has been the attention to micro-expressions or compound ones,
i.e., the combination of several facial expressions, which can be critical for the success of
an automated system. The computational analysis of facial expressions can overcome the
limitations of human perception and provide fast and objective results in a wide range of
clinical tasks.

For instance, commonly used screening tools for autism spectrum disorder (ASD)
generally rely on subjective caregiver questionnaires. While behavioural observation
carried out by specialists is more accurate, it is also expensive, time-consuming and requires
considerable expertise. Many efforts have been made in the field of CV to overcome such
limitations and automatically recognise ASD children’s facial expressions to

• Handle meltdown crisis. Studies such as [47,48] consider the safety of autistic children
during a meltdown crisis. Meltdown signals are not associated with a specific facial
expression, but with a mixture of abnormal facial expressions related to complex
emotions. Through the evaluation of a set of spatio-temporal geometric facial features
of micro-expressions, the authors demonstrate that the proposed system can automati-
cally distinguish a compound emotion of autistic children during a meltdown crisis
from the normal state and timely notify caregivers.

• Support specialists in diagnosing and evaluating ASD children. In [41], the authors propose
a CV module consisting of four main components aimed at face detection, facial
landmark detection, multi-face tracking and facial action unit extraction. The authors
highlight how the proposed system could provide a noninvasive framework to apply
to pre-school children in order to understand the underlying mechanisms of the
difficulties in the use, sharing and response to emotions typical of ASD.

• Computationally analyse how children with ASD produce facial expressions with respect to
their typically developing peers. In [56–58], the authors propose a framework aimed at
computationally assessing how ASD and typically developing children produce facial
expressions. Such a framework, which works on a sequence of images captured by a
webcam under unconstrained conditions, locates and tracks multiple landmarks to
monitor facial muscle movements involved in the production of facial expressions
(thus performing a type of virtual electromyography). The output from these virtual
sensors is then fused to model the individual’s ability to produce facial expressions.
The results correlate with psychologists’ ratings, demonstrating how the proposed
framework can effectively quantify the emotional competence of children with ASD
to produce facial expressions.

• Early detect symptoms of autism. Despite advances in the literature, it is still diffi-
cult to identify early markers that can effectively detect the manifestation of symp-
toms of ASD. Carpenter and colleagues [49] collected videos of 104 young children
(22 with ASD) watching short movies on a tablet. They then used a CV approach
to automatically detect and track specific facial landmarks in the recorded videos
to estimate the children’s facial expressions (positive, neutral, all others) and differ-
entiate between children with and without ASD. In these cases, children with ASD
were more likely to show ’neutral’ facial expressions, while children without ASD
were more likely to show ’all other’ facial expressions (raised eyebrows, open mouth,
engaged, etc.).

Another fundamental goal in healthcare involves detecting and monitoring pain and
discomfort in children.

Children are particularly vulnerable to the effects of pain and discomfort, which can
lead to abnormal brain development, yielding long-term adverse neurodevelopmental
outcomes. Nowadays, the evaluation of pain in patients depends mainly on the continuous
monitoring of the medical staff when the patient is unable to verbally express his/her
experience of pain, as is the case of babies. Therefore, the need to provide alternative
methods for its evaluation and detection.
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For instance, PainCheck Infant [50] is a mobile point-of-care application that uses
automated facial evaluation and analysis to assess procedural pain in infants. Based on an
artificial intelligence algorithm, it enables the detection of six facial action units (AUs) that
indicate the presence of pain: AU4 (forehead lowering), AU9 (nose wrinkling), AU15 (lip
corner pressing), AU20 (horizontal mouth stretching), AU25 (lip parting) and AU43 (eye
closure). These facial actions, as classified by the Baby Facial Action Coding System [59],
represent specific muscle movements (contraction or relaxation). The authors reported the
good psychometric properties of PainCheck Infant after collecting video recordings from
40 infants (aged 2–9 months).

The authors in [60] also proposed an infant monitoring system to detect a broader
spectrum of facial expressions consisting of discomfort, unhappiness, joy and neutral.
They also aimed at detecting some states, including sleep, pacifier and open mouth. The
proposed system was based on combining expression detection using Fast R-CNN with
compensated detection using a Hidden Markov Model. The experimental results showed
an average precision for discomfort detection up to 90%.

The studies reported in [42,46] focus on texture and geometric descriptors to analyse
infants’ faces and detect expressions of discomfort. In particular, Martinez et al. [46]
used three different texture descriptors for pain detection: Local Binary Patterns, Local
Ternary Patterns and Radon Barcodes. A Support Vector Machine (SVM) based model was
implemented for their classification. The proposed features gave a promising classification
accuracy of around 95% for the infant COPE image database [61,62]. In [42], a two-phase
classification workflow was developed: phase 1, subject-independent, derived geometric
and appearance features; phase 2, subject-dependent, incorporated template matching
based on facial landmarks. Finally, to detect comfort or discomfort facial expressions, an
SVM classifier was applied to the video frames. Videos of 22 infants were used to evaluate
the proposed method. Experiments showed AUC of 0.87 for the subject-independent phase
and 0.97 for the subject-dependent phase.

However, there is a view among some researchers that pain is a multimodal emotion,
often expressed through several different modalities. For this reason, in [51] Salekin and
colleagues show that there is a need for a multimodal assessment of pain, particularly in
the case of post-operative pain (acute and prolonged pain). They integrated visual and
vocal signals using a multimodal spatio-temporal approach. For neonatal face analysis, the
proposed algorithm first detects the face region in each video frame using a pre-trained
YOLO-based [63] face detector. Then, a VGG-16 [38] network extracts visual features from
the face. Finally, they used LSTM [64] with deep features to learn the temporal pattern
and dynamics typical of postoperative discomfort. Experimental results on a real-world
dataset (known as USF-MNPAD-I—University of South Florida Multimodal Neonatal
Pain Assessment Dataset, consisting of 58 neonates with a gestational age that ranges
from 27 to 41 weeks [65]) show that the proposed multimodal spatio-temporal approach
achieves the highest AUC (0.87) and accuracy (79%), averaging 6.67% and 6.33% higher
than unimodal approaches. The work of Zamzmi et al. [54] also presented a comprehensive
multimodal pain assessment system that fuses facial expressions, crying sounds, body
movement and vital signs. In terms of face analysis, the proposed system acquires video of
infants being monitored in the neonatal intensive care unit and implements four feature
extraction methods, namely strain-based, geometric-based, texture-based, and gradient-
based, to extract relevant features from the newborns’ faces. The system achieved an
accuracy of 95.56%.

The area of children’s social interactions is also considered clinically relevant, since
the ability to produce and decode facial expressions in both childhood and adolescence
promotes social competence, whereas deficits characterise several forms of psychopathol-
ogy. However, even in this area, the study of facial expressions has been hampered by the
labour-intensive and time-consuming nature of human coding. Therefore, some efforts
have been made to automatically analyse children’s facial expressions in order to study
their social interactions.
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For example, primary social interactions, namely the family context, are the focus of
the studies reported in [39,66]. In the latter, the intensity of twelve infants’ facial expressions
is detected and measured in order to model the dynamics of face-to-face interactions with
their mothers. Certified Facial Action Coding System (FACS) coders manually coded
facial AUs related to the positive and negative affect from the video. Then, relevant facial
features were tracked using Active Appearance Models (AAM) and registered to a canonical
view before extracting Histogram of Oriented Gradients (HOG) features. Finally, using
these features, the authors compared two dimensionality reduction approaches (Principal
Components Analysis with Large Margin Nearest Neighbour and Laplacian Eigenmap)
and two classifiers, SVM and K-Nearest Neighbour.

In [40,67], the pro-social and antisocial behaviour of children is studied. In particular,
lie detection is carried out. Zanette et al. [40] first collected video recordings of a group
of children (6–11 years old). Non-verbal behaviour was analysed using the Computer
Expression Recognition Toolbox (CERT), which uses FACS to automatically code children’s
facial expressions while lying. The results showed the reliability of CERT in detecting
differences in children’s facial expressions when telling antisocial versus prosocial lies.

Regarding expression recognition aiming at emotion detection, most of the works in
this area have used deep neural networks for automatic classification of children’s facial
expressions, such as [53], where a VGG-16 network [38] was used. Here, the authors trained
the network on adult videos and refined the network using two publicly available databases
of toddler videos that differ in context, head pose, lighting, video resolution, and toddler
age: FF-NSF-MIAMI [68,69] and CLOCK [70] databases. The resulting AU detection system,
which the authors call Infant AFAR (Automated Facial Action Recognition), is available to
the research community for further testing and applications.

In [55], the authors present an advanced lightweight shallow learning approach to
emotion classification by using the skip connection for the recognition of facial behaviour
in children. In contrast to previous deep neural networks, they limit the alternative path
for the gradient in the early part of the network by a gradual increase with the depth
of the network. They show that the progressive ShallowNet is not only able to explore
more feature space, but also solves the overfitting problem for smaller data, using the
LIRIS-CSE [71] database to train the network.

Nagpal et al. [45] incorporated supervision into the traditionally unsupervised Deep
Boltzmann machine [72] and proposed an average supervised deep Boltzmann machine
for classifying an input face image into one of the seven basic emotions [73]. The proposed
approach was evaluated on two child face datasets: Radboud Faces [74] and CAFÉ [75].

However, emotion recognition classifiers traditionally predict discrete emotions. Nev-
ertheless, a method for dealing with compound and ambiguous labels is often required to
classify emotion expressions. In [52], Washington and colleagues explored the feasibility of
using crowdsourcing to obtain reliable soft-target labels and evaluate an emotion detection
classifier trained with such labels. Reporting an emotion probability distribution, which
takes into account the subjectivity of human interpretation, may be more useful than an
absolute label for many applications of affective computing. For the experiments, they
used the Child Affective Facial Expression (CAFE) data set [75] and a ResNet-152 neural
network [37] as a classifier.

In healthcare, social robotics is experiencing a rapid increase in applications. Some of
these applications include robot-assisted therapy for children [76]. Empathy, or the ability
to correctly interpret the manifestations of human affective states, is a critical capability of
social robots. The study reported in [44] proposes a method based on deep neural networks
that fuses information from the skeleton of the body posture with facial expressions for the
automatic recognition of emotions. The network is composed of two different branches, one
focusing on facial expressions and the other focusing on body posture. The two branches
are then combined at a later stage to form the branch for the recognition of the whole body
expression. The authors evaluated their method on a sophisticated child–robot interaction
database (aged 6 to 12 years) of previously collected emotional expressions.
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2.4. Multimodal Analysis

Several papers combine different types of data (e.g., gaze tracking and facial morphol-
ogy data, or head pose estimation and expression classification, etc.) to capture and analyse
as many aspects of the condition under study as possible. Some of the most relevant ones
are resumed in Table 4

Table 4. Summary of the selected work for multimodal face analysis. ‘acc’ = accuracy (cor-
rect predictions/total number of predictions with respect to the clinical goal occurrences tested);
ADHD = Attention deficit hyperactivity disorder; ICC = Intra Class Correlation coefficient.

Work (Year) Method Clinical Task Metrics
Datase Population/Age
(h = hours, w = weeks,
m = months, y = years)

[30] (2015) Facal Expressions + Head Pose
by IntraFace Software 2015

Detection of early indicators
of ASD ICC 20 toddlers (age: 16–30 m)

[77] (2020)
facial Expression An. + Gaze

Tracking by Classical computer
vision methods

Detection of early indicators
of ASD acc = 97.12% 10 children (age: 6–11 y)

[78] (2021)

facial Expression An. + Gaze
Tracking + 3D Body Pose by

Classical computer
vision methods

ADHD diagnosis acc = 80.25% children (age: 6–12 y)

For instance, several studies have focused on analysing facial features for detecting
early symptoms of ASD and on the automatic diagnosis of attention deficit hyperactivity
disorder (ADHD) based on children’s attention patterns and facial expressions [78].

For example, to detect early indicators of ASD, the authors in [30] analysed both facial
expressions and head postures of twenty 16- to 30-month-old children with and without
autism. They extracted 49 facial landmarks using the IntraFace software [79]; with regard
to the analysis of facial expressions, three classes of emotions were taken into account:
Neutral, Positive (Happy) and Negative (Anger, Disgust and Sad). However, the facial
expression classifier was trained on the standard Cohn–Kanade dataset [80], which contains
video sequences from a total of 123 subjects between the ages of 18 and 50.

Xu et al. [77] and Nag and colleagues [81] also attempted to find notable indicators for
early detection of ASD in both facial expressions and gaze patterns. The system proposed
in [77] provides participants with three modes of virtual interaction—videos, images and
virtual interactive games. Computer vision-based methods are used to automatically detect
the subject’s emotion and attentional characteristics in the three interaction modes. The
system is intended to aid in the early detection of autism. The system’s accuracy has been
verified through experiments on the publicly available dataset and data collected from
10 children with ASD.

2.5. Publicly Available Datasets

Large amounts of adult facial image datasets were available for research purposes, but
very few equivalent datasets for children can be found in the literature. The most relevant
datasets reporting infant, toddler, and children faces are reported here and listed in Table 5:

• COPE Database [61,62]: This database contains 204 photographs of 26 newborns
(between 18–36 h old) who were photographed while experiencing the pain of a heel
lance and a variety of stressors, including being moved from one cot to another (a
stressor that produces crying that is not in response to pain), a puff of air on the nose
(a stressor that produces eye squinting), and friction on the outer lateral surface of the
heel (a stressor that produces facial expressions of distress similar to those of pain). In
addition to these four facial displays, the database contains images of the newborns in
a neutral resting state. All subjects were born in a large Midwestern hospital in the
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United States. All newborns involved in the study were Caucasian, evenly divided
between the sexes (13 boys and 12 girls), and in good health.

• CAFE Database [75]: The CAFE set is a collection of 1192 photographs of 2- to 8-year-old
children posing with the six basic emotions defined by Ekman [82]: sadness, happiness,
surprise, anger, disgust and fear. It also includes a seventh neutral expression. Such a
set is also racially and ethnically diverse, with 27 African American, 16 Asian, 77 Cau-
casian/European American, 23 Latino, and 11 South Asian children. Photographs
include enough face variability to allow independent researchers to determine and
study the natural variation in human facial expressions. The children were asked to
pose with their mouths open and closed for each expression except surprise. Surprised
faces were open-mouthed only. Open-mouthed, disgusted faces usually included a
tongue protrusion.

• CLOCK Database [70]: This database was generated by a multi-site longitudinal project
known as CLOCK (Craniofacial microsomia: Longitudinal Outcomes in Children
pre-Kindergarten), which examined the neurodevelopmental and phenotypic out-
comes of children with craniofacial microsomia (CFM) and demographically matched
controls [83]. Two age-appropriate emotion induction tasks were used to elicit positive
and negative facial expressions. In the positive emotion task, an experimenter blew
bubbles at the infant. In the negative emotion task, an experimenter presented the
infant with a toy car, allowed the infant to play, then removed the car and covered
it with a clear plastic container. Each video was approximately 2 min long (745 K
and 634 K recorded frames). The video resolution was 1920 × 1080. FACS coders
manually annotated for nine action units: AU1 (inner brow raised), AU2 (outer brow
raised), AU3 (inner brow pulled together), AU4 (lowered eyebrow), AU6 (raised
cheek), AU9 (nose), AU10 (nose wrinkle), AU9 (nasal wrinkling), AU12 (corner of lips
pulled back), AU20 (lip stretching) and (lip stretching) and AU28 (lip sucking).

• LIRIS-CSE Database [71]: It features video clips and dynamic images consisting of
26,000 frames depicting 12 children from diverse ethnic backgrounds. This database
showcases children’s natural, unforced facial expressions across various scenarios,
featuring six universal or prototypical emotional expressions: happiness, sadness,
surprise, anger, disgust, and fear as defined by Ekman [73]. The recordings were made
in unconstrained environments, enabling free head and hand movements while sitting
freely. In contrast to other public databases, the authors assert that they were capable
of gathering children’s natural expressions as they happened due to the unconstrained
environment. The database has been validated by 22 human raters.

• GestATional Database [23]: It comprises 130 neonates recruited between October 2015
and October 2017. Clinical staff at Nottingham University NHS Trust Hospital, Not-
tingham, UK carried out recruitment and sorted the neonates into five groups based
on their prematurity status. The data gathered included: (i) images of the neonates’
faces, feet, and ears; (ii) case report forms with important information such as the
baby’s gestational age, days of life at the time of the visit, current weight, Ballard Score,
the mother’s medical history, and information related to the delivery. It is important
that technical term abbreviations are explained when they are first used, and that a
logical flow of information is maintained with causal connections between statements.

• FF-NFS-MIAMI Database [68,69]: It is a database documenting spontaneous behaviour
in 43 four-month-old infants. Infants’ interactions with their mothers were recorded
during a Face-to-Face/Still-Face (FF/SF) protocol [84]. The FF/SF protocol elicits
both positive and negative effects. It assesses infant responses to parent unrespon-
siveness, an age-appropriate stressor. AUs were manually annotated from the video
by certified FACS coders for four action units: AU4 (brow lowering), AU6 (cheek
raising), AU12 (lip corner pulling) and AU20 (lip stretching). The combination of
AU6 and AU12 is associated with a positive effect; AU4 and AU20 are associated
with a negative effect. The video resolution is 1288 × 964. There are 116,000 manually
annotated frames in 129 videos of 43 infants.
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• USF-MNPAD-I Database [65]: The University of South Florida Multimodal Neonatal
Pain Assessment (USF-MNPAD-I) Dataset was collected from 58 neonates (27–41 weeks
gestational age) while they were hospitalised in the NICU, undergoing procedural and
postoperative procedures. It comprises video footage (face, head, and body), audio
(crying sounds), vital signs (heart rate, blood pressure, oxygen saturation), and cortical
activity. Additionally, it includes continuous pain scores, following the NIPS (Neonatal
Infant Pain Scale) scale [85], for each pain indicator and medical notes for all neonates.
This dataset was obtained as a component of a continuous project centred on creating
avant garde automated approaches for tracking and evaluating neonatal pain and
distress.

Table 5. Datasets reporting children’s faces.

Dataset Reference Number of Subjects Type of Data Age of Subjects Year Publicly Available

COPE [61,62] 26 Images Neonates:
(age: 18–36 h) 2005 Yes

CAFE [75] 154 Images Children
(age: 2–8 years) 2014 Yes

CLOCK [70] 80 Video Children
(age: 4–5 years) 2017 No

LIRIS-CSE [71] 12 Video Children
(age: 6–12 years) 2019 Yes

GestATional [23] 130 Images
Neonates

(gestational age:
28–40 weeks)

2019 No

FF-NFS-MIAMI [68,69] 43 Video Infants 2020 No

USF-MNPAD-I [65] 58

Video, audio,
physiological,

contextual,
information

Neonates
(age: 27–41 weeks) 2021 Yes

2.6. New Computer Vision Perspectives for More Accurate Face Analyses

Face detection, head pose estimation and facial expression recognition are challenging
tasks, whose success can be hindered by varying conditions such as facial occlusion,
lighting, unusual expressions, distance from the cameras, skin type, complex real-world
background, low data resolution and noise. These challenges, which are well known
when dealing with adult face analyses, might even be exacerbated in the case of children
and newborns.

Among the most recent and promising methods that attempt to address such chal-
lenges, those based on deep learning models are gathering more and more momentum, as
they guarantee remarkable results in terms of accuracy and robustness. To mention a few,
DeepFace [86] and FaceNet [87], on which OpenFace [36] is based, have been some of the
pioneering solutions that have demonstrated state-of-the-art performance and paved the
way for further breakthroughs in the field.

DeepHeadPose [88] (code at https://github.com/natanielruiz/deep-head-pose) (All
the links in this section were accessed on 15 September 2023), dense head pose estima-
tion [89] (code available at https://github.com/1996scarlet/Dense-Head-Pose-Estimation),
SPIGA (Shape Preserving Facial Landmarks with Graph Attention Networks, [90]) (code
available at https://github.com/andresprados/SPIGA.img2pose [91] (code available at:
https://github.com/vitoralbiero/img2pose), 6DRepNet [92] (code available at: https:
//github.com/thohemp/6DRepNet) are some of the tools, mainly based on deep learning
models, that have been implemented specifically for head pose estimation and track-
ing [93,94] and that showed very promising results.

https://github.com/natanielruiz/deep-head-pose
https://github.com/1996scarlet/Dense-Head-Pose-Estimation
https://github.com/andresprados/SPIGA
https://github.com/vitoralbiero/img2pose
https://github.com/thohemp/6DRepNet
https://github.com/thohemp/6DRepNet
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However, these methods have been trained, implemented and tested mainly on adult
faces, so further development is needed to test their generalisability to newborn and
infant faces.

Regarding face detection, we note that ArcFace [95] (code available at: https://
github.com/1996scarlet/ArcFace-Multiplex-Recognition), RetinaFace [96] (code available
at: https://github.com/1996scarlet/ArcFace-Multiplex-Recognition) and FaceYolov5 [97]
(code available at: https://github.com/deepcam-cn/yolov5-face/tree/master) performed
exceptionally in detecting adult faces. Nevertheless, as several studies ([70,98,99]) reported,
face recognition methods designed for adults fail when applied to the neonatal population
due to the unique craniofacial structure of neonates’ faces as well as the large variations
in pose and expression as compared to adults. Therefore, further research in this do-
main should concentrate on designing algorithms trained specifically on datasets collected
from the neonatal population, as pointed out by Zamzmi et al. in [43], where a novel
Neonatal Convolutional Neural Network for assessing neonatal pain from facial expression
is described.

Regarding expression recognition aiming at emotion detection, most of the research
has focused on adult face images so far [100–103], with no dedicated research on automat-
ing expression classification for children. As infants’ faces have different proportions, less
texture, fewer wrinkles and furrows, and unique facial actions with respect to adults, auto-
mated detection of facial action units in infants is challenging. More thorough experiments
are needed to assess the applicability and robustness of the cited methods when tested on
newborn and child data. Furthermore, emotion recognition classifiers typically forecast
isolated emotions. A strategy for addressing complex, compound emotions may involve
integrating multiple modalities and other types of sensors (e.g., thermal cameras), thus
including temporal, auditory, and visual data, to enhance the precision and robustness of
the models, as demonstrated in [104].

3. Body Analysis

Introducing automatic methods to analyse the movements of babies and children
(behavioural coding) is becoming increasingly needed. On the one side, when reported
by parents or general practitioners, it relieves the workload on specialized health profes-
sionals, reducing costs and time to obtain a diagnosis. On the other side, it enables the
possibility of continuous screening of a larger population, making early diagnosis of even-
tual diseases even before symptoms become evident to non-expert observers possible [12].
These automatic methods leverage human pose estimation algorithms. Deep Learning
architectures have obtained significant results for human pose estimation in the last few
years, but they have been trained on images picturing adults. The estimation of the pose of
children (infants, toddlers, children) is sparsely studied despite it can be extremely useful in
different application domains [105]. In this section, the works dealing with the estimation
of the body posture of babies and children are reported and discussed. In particular, at
first, existing benchmarks are introduced and subsequently, the most relevant works in the
literature introducing algorithmic pipelines exploited for the healthcare of young subjects
are discussed. For each work, the clinical aim and eventually how they addressed the
additional bias of dealing with children have been pointed out.

A coarse selection of related papers was initially carried out by using the following
queries in the research databases:

• Scopus
QUERY “TITLE-ABS-KEY ( ( children OR infants OR babies ) AND ( body OR limbs OR
head ) AND ( motion OR movements ) AND computer AND vision ) AND PUBYEAR >
2014 AND PUBYEAR < 2024 that returned 105 documents;

• Web of Science Core Collection
((((ALL=(children)) OR ALL=(infants)) OR ALL=(babies)) AND ALL=(computer ) AND
ALL=(vision) AND ((ALL=(motion)) OR ALL=(movements)) AND ( (ALL=(body)) OR

https://github.com/1996scarlet/ArcFace-Multiplex-Recognition
https://github.com/1996scarlet/ArcFace-Multiplex-Recognition
https://github.com/1996scarlet/ArcFace-Multiplex-Recognition
https://github.com/deepcam-cn/yolov5-face/tree/master
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(ALL=(limbs)) OR (ALL=(head)) )), refined in the YEARS from 2015 to 2023, that re-
turned 60 documents;
and

• Scholar
allintitle: children OR babies OR infants OR motion OR movements “computer vision”,
refined in the YEARS from 2015 to 2023, that returned 132 documents.

Among all the documents retrieved from the databases, a fine selection was therefore
conducted based mainly on the scientific content (some documents were in fact not relevant
for the purposes of the proposed survey), the type of publication (journals were preferred
to conferences in case of comparable ideas) and finally also on the number of citations
(articles prior to 2020 with less than 10 citations were not considered).

This led to the following content organization: at first, in Section 3.1, documents
describing datasets and common tools exploited for pose estimation are reported. Then,
the remaining documents have been split depending on how the infants were acquired, i.e.,
lying in a bed/crib or standing/walking and two different subsections are used to describe
them accordingly. Similarly to Section 2, in each subsection some tables have been used to
organize information within them. Finally, in Section 3.4, new research directions for more
accurate infants’ pose estimation are reported and discussed.

3.1. Common Datasets and Tools for Human Pose Estimation

Healthcare would enjoy powerful and reliable algorithms fine-tuned on specific goals
(i.e., pathology classification or evaluation of its stage); nevertheless interdisciplinary
specialists could be advantaged in having tools oriented to more generic processing and
providing semi-raw data ready for further analysis. This includes many tools that allow the
research community to set up pipelines aiming at the final goal of analysing infant move-
ments. Such an approach enables a wider range of scientists to analyse child movement
patterns and, at the same time, represents a starting point for the image-processing research
community. Among these tools, the most common library for human pose detection is
OpenPose. It is a real-time multi-person human pose detection library [106] that maps
25 points on the body including shoulders, elbows, wrists, hips (+mid-hip), knees, ankles,
heels, big toes, little toes, eyes, ears, and nose. It was trained on adults but, as reported in
the following section, it has been largely used also on infants with or without a specific
domain adaptation learning phase. It is available at https://github.com/CMU-Perceptual-
Computing-Lab/openpose (accessed on 15 September 2023). OpenPose has then been
integrated into AutoViDev [107], a system specifically created for automated video action
recognition. It provides a highly modular implementation of 188 primitives, on which
users can flexibly create pipelines. It also supports automated tuners and an easy-to-use
GUI to help researchers/practitioners develop prototypes. AutoVideo is released under
MIT license at https://github.com/datamllab/autovideo (accessed on 13 February 2023).

Another efficient deep architecture for markerless pose estimation and semantic
features detection is DeepLabCut (DLC) [108]. Open source Python code for select-
ing training frames, checking human annotator labels, generating training data in the
required format, and evaluating the performance on test frames is available at https:
//github.com/DeepLabCut/DeepLabCut (accessed on 13 February 2023).

Some useful annotation tools are introduced to build image databases for computer
vision research. The early one introduced is LabelMe [109] that works online at http:
//labelme2.csail.mit.edu/Release3.0/index.php (accessed on 13 April 2023). Another is
Kinovea, designed for sports analysis, open-source and freely available at www.kinovea.org
(accessed on 29 Match 2023). Finally, the tool in [110] is more oriented to pose estimation, it
is interactive and it relies on a heuristic weakly supervised human pose (HW-HuP) solution
to estimate 3D human poses in contexts where no ground truth 3D pose data are accessible,
even for fine-tuning.

Unfortunately, all the above-mentioned instruments suffer from a bias in terms of
target patients. They are designed and/or trained for adults, reducing their reliability when

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/datamllab/autovideo
https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/DeepLabCut
http://labelme2.csail.mit.edu/Release3.0/index.php
http://labelme2.csail.mit.edu/Release3.0/index.php
www.kinovea.org
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applied to infants. This allows specifically child-oriented tools to shine in this landscape. A
tool specifically designed for the semi-automatic annotation of baby joints, namely Movelab,
has been recently introduced in [111] instead. It consists of a GUI that allows users to
browse videos and to choose an algorithm for baby pose detection among MediaPipe
Pose [112] and two ResNet architectures fine-tuned on a proprietary dataset of 600 videos
of children lying on a bed.

AVIM is another tool, developed using the OpenCV image processing library and
specifically designed for an objective analysis of infants from 10 days to the 24th week of
age. It acquires and records images and signals from a webcam and a microphone and
allows users to perform audio and video editing [113]. It is similar to MOVIDEA, a software
developed using MATLAB [114]. Both tools rely on manual annotation of interesting points
of the body and provide cinematic measurements.

All these discussions raise a problem that concerns artificial intelligence and which
becomes more serious in highly specialised environments: lack of data. Retrieving data,
providing accurate annotations and complying with all regulations could be extremely
tedious and time-consuming. In addition, the specific care required by the category of
children and the need for long-term monitoring make datasets from this sector extremely
rare. Some of the most relevant ones are resumed in Table 6. Some of them have been
introduced to help in pose estimation and markerless joint detection and tracking. Under
this umbrella, we can cite the Moving INfants In RGB-D (MINI-RGBD) [115] dataset that
was generated by mapping real infant movements to the Skinned Multi-Infant Linear body
model (SMIL) with realistic shapes and textures and generating RGB and depth images
with precise ground truth 2D and 3D joint positions. The dataset is available for research
purposes at http://s.fhg.de/mini-rgbd (accessed on 23 August 2023).

Another relevant contribution to this topic has been recently provided in [116], where
hybrid synthetic and real infant pose (SyRIP) were collected and made publicly available.
It came with a multi-stage invariant representation learning strategy that could transfer the
knowledge from the adjacent domains of adult poses and synthetic infant images into a
fine-tuned domain-adapted infant pose (FiDIP) estimation model. The code is available at
https://github.com/ostadabbas/Infant-Pose-Estimation (accessed on 23 August 2023).

Other relevant datasets for infant body parsing and pose estimation from videos are
the BHT dataset [117], the AIMS dataset [118] and the Youtube-infant dataset [119]. BHT
consists of 20 movement videos of infants aged from 0–6 months. YouTube-infant has
90 infant movement videos collected from YouTube. Both datasets contain annotations
for five classes: background, head, arm, torso and leg. Pose annotation was made by
the LabelMe online annotation tool and the dataset comes with BINS scores describing
neurological risks associated with each infant [120]. The AIMS dataset contains 750 real
and 4000 synthetic infant images with Alberta Infant Motor Scale (AIMS) pose labels [121].
Code and data referenced in [119] are provided at https://github.com/cchamber/Infant_
movement_assessment/ (accessed on 23 August 2023).

In [122,123], the BabyPose dataset, consisting of 16 depth videos of 16 preterm infants
recorded during the actual clinical practice in a neonatal intensive care unit (NICU), has
been introduced. Each video lasts 100 s (at 10 fps). Each frame was annotated with the limb-
joint locations. Twelve joints were annotated, i.e., left and right shoulder, elbow, wrist, hip,
knee and ankle. The database is freely accessible at https://zenodo.org/record/3891404
(accessed on 13 February 2023).

Concerning autism-related behaviours, the Self-Stimulatory Behaviour Dataset (SSBD) [124]
collected stimming behaviour videos of children available on public domain websites and video
portals, such as Youtube, Vimeo, Dailymotion, etc. The dataset contains 75 videos grouped
into three categories each containing 25 videos. The mean duration of a video is 90 s. The
resolution of the videos varies, but is greater than 320 × 240 pixels. Videos are related to
Armflapping, Headbanging, and Spinning repetitive behaviours. The dataset can be found
at https://github.com/antran89/clipping_ssbd_videos (accessed on 23 August 2023) with
annotated data.

http://s.fhg.de/mini-rgbd
https://github.com/ostadabbas/Infant-Pose-Estimation
https://github.com/cchamber/Infant_movement_assessment/
https://github.com/cchamber/Infant_movement_assessment/
https://zenodo.org/record/3891404
https://github.com/antran89/clipping_ssbd_videos
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Table 6. Datasets reporting children’s poses. BINS stands for Bayley Infant Neurodevelopmental
Screener [120], AIMS stands for Alberta Infant Motor Scale [121].

Dataset Reference Number of Subjects Type of Data Age of Subjects Year Publicly Available

SSBD [124] 75
RGB videos

(attributes of
the behaviour)

Neonates:
(age: 0–7 m) 2013 Yes

MINI-RGBD [115] 12
Synthetic videos

(RGB, Depth, 2D-3D
joint positions)

Neonates:
(age: 0–7 m) 2018 Yes

BHT [117] 20 RGB images (body
parts segmentation)

Neonates:
(age: 0–6 m) 2019 No

babyPose [122,123] 16 depth Videos
(limb-joint locations)

Neonates: (Gestation
Period: 24–37 w) 2019 Yes

Youtube-infant [119] 104 Videos: (BINS score) Neonates:
(age: 6–9 w)

2020 Yes

SyRip [116] 140
Synthetic and Real
Images: (fully 2D

body joints)

Neonates:
(age: 0–12 m) 2021 Yes

AIMS [118] NA
Synthetic and Real

Images: (AIMS
pose label)

Neonates:
(age: 0–6 m) 2022 No

3.2. Monitoring of Lying Children

Early diagnosis plays a key role in most healthcare scopes, including neurological
disorder. It is clear that a diagnosis in the first weeks of a child’s life is crucial, especially
in preterm infants, to recognise signs of possible lesions in the developing brain and to
plan timely and appropriate rehabilitation interventions. Unfortunately, this can only be
achieved by monitoring the child lying down, with two main constraints: on the one hand,
it is mandatory to use completely non-invasive methods, and on the other hand, consid-
ering the specific movement dynamics under investigation, ad hoc datasets are required,
underlining what was discussed in the previous section. Beyond this critical analysis,
further monitoring can be carried out to track vital signs or movements of discomfort that
represent manifestations of the child’s distress. All these kind of analysis are generally
performed using a camera mounted at the top of the crib at a neonatal intensive care unit
(NICU) as shown in the typical setup for data acquisition and processing is reported in
Figure 2.

Figure 2. A typical experimental setup for children monitoring in a NICU. Image has been taken
from [125].
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Most relevant work is resumed in Table 7.

Table 7. A summary of selected work concerning the analysis of the body of infants lying in a
crib. SVM = Support Vector Machine, AUC = Area Under Curve, FVGAN = factorized video gen-
erative adversarial network, GMA = Prechtl General Movement Assessment [126], acc = accuracy
(correct predictions / total number of predictions with respect to the clinical goal occurrences tested),
RF = Random Forest, RMSE = root-mean-square error (it measures the differences between values pre-
dicted by a model and the values provided by experts, b.p.m. = beats per minute, r.p.m. = respirations
per minute.

Work (Year) Method Clinical Task Metrics Dataset Population/Age
(w = weeks, y = years)

[127] (2019) Optical flow + SVM Discomfort Moments
acc = 0.86

AUC of 0.94
11

(34 w)

[128] (2019)
Skin detection +

Motion magnification Vital Sign
Limit of agreement =
[−8.3,+17.4] b.p.m.,
[−22;+23.6] r.p.m.

10
(23 w–40 w)

[129] (2019) Motion Detection Vital Sign acc = 87% 1/unknown

[119] (2020)
OpenPose +

kinematic features +
Naïve Bayesian Class

Neuromotor Risk RMSE = 0.92 19
(10 w)

[130] (2021) OpenPose
Reaching

Trajectories
95% confidence

in hands tracking
12

(48 w)

[131] (2022) basic tracking primitives GMA qualitative 8
(3 m–5 m)

[132] (2022)
DeepLabCut +

kinematic features + RF Neuromotor Risk acc = 0.62 142
(40 w)

[133] (2023) FVGAN +SiamParseNet GMA 96.46 ± 2.11 161
(49 w–60 w)

The easiest approaches rely on optical flow’s motion information to estimate pixel
motion vectors between frames. One of the former applications related to infants’ health
care was recognising comfort or discomfort. In [127], the authors calculated the motion
acceleration rate and 18 time- and frequency-domain features characterizing motion pat-
terns and provided them with a support vector machine (SVM) classifier. The method
was evaluated using 183 video segments for 11 infants from 17 heel prick events. The
experimental results show an AUC of 0.94 for discomfort detection and an average accuracy
of 0.86 when combining all proposed features, which is promising for clinical use.

A more effective computer-aided pipeline to characterize and classify infants’ mo-
tion from 2D video recordings has been proposed in [132]. The authors used data from
142 preterm infants, acquired from a viewpoint perpendicular to the plane where the
infants lay, at 40 weeks of gestational age. The final goal was detecting anomalous motion
patterns. The ground truth was built starting from brain MRI evidence at birth and neu-
rological examinations 30 months after the video recording. DeepLabCut was exploited,
but it was fine-tuned to detect a small set of meaningful landmark points (nose, hands
and feet) on the infants’ bodies. The authors discussed these choices. They wrote that
classical full-body pose estimation algorithms, if not fine-tuned on infants’ poses, have
proven to not always be appropriate for infants since they are trained and implemented
for detecting adults’ poses. Since fine-tuning requires a significant amount of data, the
authors focused only on some key points that provide meaningful information regarding
infants’ motion, guaranteeing this way a higher per-point accuracy and a higher control on
the interpretability of the results. Starting from the trajectories of the detected landmark
points, quantitative parameters describing infants’ motion patterns were extracted and
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classified between normal or abnormal motion patterns by means of different shallow and
deep classifiers. Despite the accurate setup, the mean overall accuracy was not over 60%.
The problems were the unbalanced dataset and the sparsity of landmarks tracked over time.
Obtaining a dense body motion analysis of babies is particularly challenging indeed, as the
body part dimensions between infants and adults vary significantly. Similarly, in [119], a
framework that predicts the neuromotor risk level of 19 infants (more or less than 10 weeks
of age) was proposed. The training was conducted using 420 YouTube video segments.
OpenPose was used to extract pose information. Due to differences between adults and
infants in their appearance and pose, pose tracking using OpenPose was initially limited
in performance. Therefore, the authors specialized OpenPose for infants by creating a
dataset of infant images with labels of joint positions. Root-mean-square error on joint
positioning decreased from 0.05 by standard OpenPose to 0.02 after the specialization of
the algorithm on infants. The adapted pose estimator allowed authors to extract movement
trajectories from videos of infants moving. Finally, the authors combined many features
into one estimate for assessing neuromotor risk, demonstrating a correlation between the
score and the risk associated with each infant by clinicians.

Recently, in [133], a method to assess the general movement assessment (GMA) of
infant movement videos has been proposed. It uses a semi-supervised model, termed
SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts seg-
mentation and another for inter-frame label propagation. Another important contribution
is the adoption of two training strategies to alternatively employ different training modes
to achieve optimal performance. Factorized video GAN was exploited to augment training.
Similarly, in [131], the automated analysis of general movements was achieved using low-
cost instrumentation in the home. Videos from a single commercial RGB-D sensor were
processed using DeepLabCut to estimate the 2D trajectories of selected points and then to
reconstruct 3D trajectories by aligning data recorded with the depth sensor. Eight infants
were recorded in the home at 3, 4, and 5 months of age.

The potential ability of computer vision to accurately characterize infant reaching
motion is the topic of the paper in [130,134]. Analysing reaching motion (fast movement
towards a given target, usually a toy) may contribute to the early diagnosis and assessment
of infants at risk for upper extremity motor impairments. In [130] the analysed videos
obtained were from 12 infants (5 with developmental disorders) of about 12 months of age
or less. The total number of reaching actions analysed was 65. The x and y coordinates
of hand key points were obtained from OpenPose and compared with those manually
annotated (frame-by-frame), resulting in 95% confidence intervals. The authors concluded
that OpenPose may be used for markerless automatic tracking of infant reaching mo-
tion from recorded videos, but did not provide evidence of the ability to automatically
classify disorders.

In [134], a lightweight network was tested on videos of infants (up to 12 months of age)
performing reaching/grabbing actions collected from an online video-sharing platform
and semiautomatically annotated by exploiting the toll kinovea. A total of 193 reaches
performed by 21 distinct subjects were processed with a precision of 0.57–0.66 and recall of
0.72–0.49 for reaching and no-reaching action, respectively.

Persistent asymmetrical body behaviour in early life provides a prominent prodro-
mal risk marker of neurodevelopmental conditions like autism spectrum disorder and
congenital muscular torticollis. The authors in [135] proposed a computer vision method
for assessing bilateral infant postural symmetry from images, based on 3D human pose
estimation, adapted to the challenging setting of infant bodies. In particular, the HW-HuP
interactive annotation tool was modified to correct 3D poses predicted on infants in the
SyRIP dataset. A Bayesian estimator of the ground truth derived from a probabilistic
graphical model of fallible human raters was proposed.

A less debated area of research is devoted for measuring vital signs (especially in the
neonatal intensive care unit) in a contactless fashion by exploiting RGB or RGBD data.
These solutions are aimed at avoiding trauma and pain observed in traditional sensors-
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based monitoring when removing the strong adhesive bond between the electrode and
epidermis of pre-term infants. A preliminary study of a proposed non-contact system
based on photoplethysmography (PPGi) and motion magnification is reported in [128]. The
proposed non-contact system framework involved skin colour and motion magnification,
region of interest (ROI) selection, spectral analysis and peak detection. Non-contact heart
rate (HR) and respiratory rate (RR) in 10 infants were monitored and compared with ECG
data. The authors concluded that the non-contact technique requires further investigations
to improve the accuracy necessary for use with neonates. One of the main factors of failure
was spotted in the reduced ROI to be analysed with respect to experiments involving
adults. A similar approach was also proposed in [129], but just a baby was used to create
a dataset and two different motion detection methods (based on frame differences and
background subtraction, respectively) were applied individually and integrated to achieve
better accuracy. For the same aim in [136], authors used depth information captured by two
RGB-D cameras in order to reconstruct a 3D surface of a patient’s torso with high spatial
coverage. The volume was computed based on an octree subdivision technique of the 3D
space. Finally, respiratory parameters were calculated from the estimated volume-time
curve, but experiments were carried out only on a baby mannequin with an artificial test
lung for infants. The lung was branched to a mechanical ventilator. Recently, in [125]
remotely monitored both HR and RR of neonates in the NICU using colour and motion-
based methods. The most interesting contribution of the paper is the use of YOLO V3
weights to achieve a baby detection model, detecting this way ROI automatically.

3.3. Posture/Gait Analysis

Problems related to standing infants are linked to motor deficits or temporary or
chronic illnesses, problems involving the way a child walks, stands or sits that require
precise quantitative assessment to evaluate both the severity of the pathology and the
effectiveness of clinical treatments. From this perspective, the spectrum of dynamics
involved is much broader and includes monitoring how they walk or sit and how they
perform specific actions.

In this area, we can find works presenting tools for the diagnosis of motor impairments,
for assessing temporal or chronic diseases, and for evaluating the efficacy of drugs or the
outcomes of therapeutic sessions. Most relevant work is resumed in Table 8. It is worth
noting that by examining these works, once again, it becomes clear how the demand for
specific datasets can be pivotal for the development and assessment of specific algorithms.

Table 8. A Summary of selected work for posture/gait analysis. AUC = Area Under Curve, acc = ac-
curacy (correct predictions/total number of predictions with respect to the clinical goal occurrences
tested, ASD = Autism Spectrum Disorders.

Work (Year) Method Clinical Task Metrics Dataset Population/Age (in years)

[137] (2020) OpenPose + Motion Param + CNN
Gait Analysis

to predict surgery AUC = 0.71
1026

(5–11)

[138] (2020)
AutoViDev +

arms and legs time series distance assessing coordination qualitative
24
(1)

[139] (2022) Optical flow + RGB + 3D CNN ASD/Healthy acc = 86.04%
60

(3–6)

[140] (2022) OpenPose + motion parameters Evaluating dystrophy qualitative
11

(13)

The work in [140] focuses on Duchenne muscular dystrophy (DMD) and is aimed at
developing a digital platform to enable innovative outcome measures. Eleven participants
were involved (the median age was 13). Six participants were ambulant and five non-
ambulant. Each participant was acquired AT HOME while performing tasks decided by
medical experts. Video analysis was then performed using OpenPose software and different
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parameters, such as trajectory, smoothness and symmetry of movement, and voluntary or
compensatory movements were extracted. Data from the videos of DMD participants were
compared to data from the healthy control on four tasks: walking, Hands-to-head while
standing, Hands-to-head while sitting and Sit-to-stand then hands-to-head while standing.
Front and side views were used.

In [139], videos of children with ASD in an uncontrolled environment were analysed
by a multi-modality fusion network (RGB and optical flow) based on 3D CNNs. The final
goal was recognizing autistic behaviours in videos. The method is based on I3D architecture
pre-trained on a large-scale action recognition dataset and fine-tuned on a small dataset
of stereotypic actions. The child was detected by Yolov5 [141] and tracked by DeepSORT
algorithms[142]. Optical flow extraction was performed by the RAFT algorithm [143].
Extensive experiments on different deep learning frameworks were performed to propose
a baseline. The best-gathered accuracy was 86.04% using a fusion of RGB and flow streams.

The authors in [137] analysed clinical gait analysis videos from young patients (aver-
age patient age was 11 years). For each video, they used OpenPose to extract time series
of anatomical landmarks. Next, these time series were processed to create features for
supervised machine learning models (CNN, RF, and RR) to predict gait parameters and
clinical decisions. The approach relying on CNN for classification outperformed the others
with an AUC of 0.71 in correctly predicting surgery decisions.

An interesting research was conducted in [138], in which authors observed the coor-
dination patterns in 11-month-old pre-walking infants with a range of cruising (moving
sideways in an upright posture while holding onto support) and crawling experiences.
Computer vision tasks were delegated to the AutoViDev system. Subsequently, authors
identified infants’ coordination patterns demonstrating how infants learn to assemble
solutions in real-time as they encounter new problems. This evolutionary model could be
used to assess motor or neurological impairments.

3.4. New Research Directions for More Accurate Infants Pose Estimation

In this section, up-to-date computer vision strategies for human pose estimation are
reported and discussed with reference to their possible application on infants and viable
research directions. First, it is important to observe that all the listed strategies have been
trained and tested on adults, and then an assessment of their performance on children is
the first pathway to be suggested to the research community hoping that their efficiency in
terms of outcomes (and sometimes also having a reduced computational workload) will
be kept also on datasets involving children. Recently, transformer-based solutions have
shown great success in 3D human pose estimation. Under this premise, a breakthrough
work is the one introducing PoseFormer [144], a pure transformer-based approach for
3D pose estimation from 2D videos. The spatial transformer module encodes the local
relationships between the 2D joints and the temporal transformer module captures global
dependencies across the arbitrary frames regardless of the distance. Extensive experiments
show that the PoseFormer model achieved state-of-the-art performance on popular 3D
pose datasets. Code is available at https://github.com/zczcwh/PoseFormer (accessed
on 4 September 2023). Another important related achievement that deserves a mention is
PoseAug [145], a novel auto-augmentation framework that learns to augment the available
training poses towards greater diversity and thus enhances the generalization power of the
trained 2D-to-3D pose estimator. It has been conceived to address the existing problem of
inferior generalization performance to new datasets of existing 3D human pose estimation
methods. In other words, it augments the diversity of 2D–3D pose pairs in the training
data. The code is available at https://github.com/jfzhang95/PoseAug (accessed on 4
September 2023). Both methods can speed up the clinical assessment and diagnosis of
children due to their capability to localize joints with higher precision independently
from specific acquisition setups and camera views. In [146], a Spatio-Temporal Criss-
cross attention (STC) block has been introduced to improve joint correlation computation
for comparing trajectories into the 3D space, including spatial and temporal analysis.

https://github.com/zczcwh/PoseFormer
https://github.com/jfzhang95/PoseAug
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The system works very well on complicated pose articulation (as those of children are,
especially while they lie in a bed). These systems are highly complex: to overcome this,
a tokenization mechanism can allow us to operate on temporally sparse input poses but
still generate dense 3D pose sequences as proposed in [147]. The code and models can
be accessed at https://github.com/goldbricklemon/uplift-upsample-3dhpe (accessed on
4 September 2023). This could particularly help with children where occlusions often
appear and reduce the availability of 2D data. Viable alternatives to transformers, also
beyond CNN, have been also recently proposed. For example, in [148], capsule networks
(CapsNets) have been introduced for 3D human pose estimation, ensuring viewpoint-
equivariance and drastically reducing both the dataset size and the network complexity,
while retaining high output accuracy. Its peculiarities make this approach very suitable for
modelling children’s poses with few shots, even using domestic setups.

4. Discussion

Protecting and safeguarding children’s health is a key priority that benefits society
as a whole. The World Health Organization and the United Nations Children’s Fund
have specialised in improving children’s health, including care before and after birth [149].
There is evidence from longitudinal studies showing that the benefits of healthy childhood
development extend to older ages [150].

Advances in the use of health technologies have the potential to bring further benefits
to neonatal and paediatric healthcare, as it is recognised by the same health organisa-
tions [10]. Ambient intelligence and CV, as a means of unobtrusive, contactless, remote
monitoring of children’s physical, motor and mental health status and activities in both
healthcare and private settings, can assist in a range of clinical tasks and thereby contribute
to a better understanding of child physiology and pathophysiology [151].

The scientific and technological communities have become more aware of this potential
in recent years, as is evidenced by the rising trend in the number of publications we have
retrieved in the past five years (i.e., 54 out of the 65 papers retrieved have been published
in the last 5 years).

Research in the field is spread across several countries. In Italy, there is a vibrant
and lively community of scientists and scholars working to advance the scientific fron-
tiers. Initially, research has mostly focused on monitoring and improving the interaction
with children with ASD [41,56,105,152,153]. Most recently, attention has moved to the
prediction of neurological development disorders [12,132], especially in relation to general
movements [111,114,123] and for preterms [122,132].

Although great strides have been made in the past few years, several open issues and
challenges still need to be addressed, also in relation to ethical and legal concerns, to reach
a significant level of performance and to allow the instruments to be effectively used in
clinical practice, as we will discuss in the following subsections.

4.1. Gaps and Open Challenges

Among existing challenges, the lack of task-specific public datasets, missing in several
areas, represents one of the most critical issues. On the one side, this lack wastes the
energy of several research groups to build datasets from scratch and, besides, it makes
difficult a fair algorithms comparison. Of course, collecting datasets of children is even
more challenging due to several reasons:

• Privacy and ethical concerns: Collecting data from children requires strict adherence
to privacy laws and regulations, such as the General Data Protection Regulation
(GDPR) and the Children’s Online Privacy Protection Act (COPPA) in the United
States. These laws require obtaining explicit consent from parents or guardians and
ensuring the anonymity and security of children’s personal information. Meeting
these requirements can be complex and time-consuming.

• Parental consent: Obtaining parental consent for data collection can be difficult,
especially if it involves sensitive information or requires active participation from

https://github.com/goldbricklemon/uplift-upsample-3dhpe
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children. Parents may be concerned about the potential risks of data misuse or the
potential impact on their child’s privacy. Building trust and addressing these concerns
is crucial, and it often involves clear communication and transparency about data
handling practices.

• Limited accessibility: Children may have limited access to technology or may not be
able to provide consistent or reliable data due to various factors like socioeconomic
disparities, geographical location, or cultural norms. This can result in biased or
incomplete datasets, which can negatively impact the performance and fairness of
AI models.

• Dynamic and diverse nature of children’s behaviour: Children’s behaviour, cognition,
and language skills undergo rapid development and change over time. Creating a
dataset that adequately captures this dynamic nature requires extensive longitudinal
studies, which can be resource-intensive and time-consuming.

• Ethical considerations in data collection: Collecting data from vulnerable populations,
such as children, requires special care to ensure their well-being and protection. Re-
searchers must consider the potential emotional or psychological impact on children
and ensure that the data collection process is designed ethically and with sensitivity.

• Limited sample size: Children constitute a smaller population subset compared to
adults, making it challenging to gather a sufficiently large and diverse dataset. Limited
data can lead to overfitting, where the AI model performs well on the training data
but fails to generalize to new examples.

• Consent withdrawal and data management: Children’s participation in data collection
should be voluntary, and they or their parents should have the right to withdraw con-
sent at any time. Managing and removing data associated with withdrawn consent can
be challenging, especially if it has already been incorporated into AI training models.

The use of large, shared datasets is a long way but there are other gaps and limitations
in this topic that should be addressed. From the analysis of the literature, it has emerged
that a large number of metrics are used to assess introduced machine learning and computer
vision methods. How to select the most suited metric for each specific task is a big challenge
and that choice should be shared and therefore universally accepted among research groups.
In fact, even if data would have been available, experimental baselines must share common
reference metrics. This is a big challenge, especially in the case of face analysis. Indeed,
by observing the tables in Sections 2 and 3, it is possible to see a large number of used
metrics, depending on the specifically addressed task. Some metrics look at the broad
clinical problem (normal/atypical), whereas other ones concentrate on the finer visual
task (e.g., landmark positioning) demanding a supervisor (human or automatic) to make
a diagnosis. This way methods become not easily comparable, and it is not trivial to
understand which one might help in clinical practice. On the other side, there are still
many qualitative evaluations that do not help the clinician follow up on clinical practice
since subjectiveness is not pushed away but even strengthened since it masters the process
automatization. Another limitation that slows the development of effective machine
learning approaches involving children is the need for long-term follow-up: many medical
conditions require long-term follow-up to accurately observe and evaluate the clinical
evolution. This extended time frame is necessary to assess the effectiveness of treatments,
the progression of diseases, or the occurrence of relevant events. Waiting for this follow-
up period adds to the time required for verification. This can also affect the statistical
significance and sample size. Efforts in this research direction could also allow researchers
to deploy foundation models, which are at the edge of machine learning research right now
and are pushing ahead the so-called generalist medical AI [154].

Addressing these challenges requires interdisciplinary collaboration between researchers,
ethicists, and legal experts to ensure that the collection and use of children’s data for AI
model training aligns with ethical and legal guidelines while prioritising the privacy and
well-being of children. In the following section, we overview some of the most common
ethical and legal concerns and suggest possible solutions where available.
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4.2. Ethico-Legal Considerations

The debate on ethical and legal issues in neonatology and paediatrics is broad and
long-standing and has been addressed in a large body of literature in the field, both from a
general perspective [155] and in specific scenarios [156,157]. The ethical mandates to which
clinical practice should adhere include respect for parental autonomy, the primacy of the
best interests of the child, doing no harm, and the right to be informed and to give consent.

As far as ambient intelligence and CV are concerned, an ethical approach to technology
development and a thorough understanding of all the relevant ethical, legal and social
issues raised by monitoring technologies should be a top priority for researchers and
innovators. This is the only way to ensure immediate acceptance and long-term use. The
debate in this respect is more mature when ambient intelligence and assistive technologies
are targeted at older adults and their caregivers [158]. In neonatology and paediatrics, a
child-focused approach is certainly the way forward to ensure a safe, effective, ethical and
equitable future for these technologies.

Most of the papers published to date have addressed ethics and bioethics for any
technological aid in clinical practice [159,160], while some recent publications have ad-
dressed the ethical and legal implications of the use of artificial intelligence in child educa-
tion [161,162], child entertainment [163] and child care [164,165].

Overall, we can identify some key ethical and legal issues that researchers in CV
and ambient intelligence in childcare should be aware of. These are privacy, extensive
validation, transparency and accountability, and are discussed below along with some
recommendations to address them.

Privacy: the privacy and confidentiality of children and their parents are treated with
high standards, as already introduced in the previous section. This hinders the rapid
development of technology to some extent but ensures that children’s dignity and respect
are properly taken into account. It is worth noting that when ambient intelligence comes
into play, privacy becomes an issue not only for patients and parents but also for clinicians
and caregivers. Addressing this issue at the technical level requires the adoption of privacy-
preservation approaches such as those based on privacy-preserving visual sensors (e.g.,
depth or thermal sensors) or those based on ad hoc techniques able to ensure context-aware
visual privacy and retain all the information contained in RGB cameras [166]. This may
help reduce the feeling of intrusion in parents and caregivers.
Extensive validation: scientists are aware of the inherent limitations of data-inductive
techniques, such as those CV methods that use machine learning approaches. The accuracy
of these methods is closely related to the type and quality of data used to train and
develop them. For this reason, it is very important to perform extensive technical and
clinical validation of such methods to verify their ability to generalise and handle unknown
conditions. Standardised external validation and multi-centre studies should be carefully
planned, together with standardised evaluation metrics, to demonstrate the reliability of
the methods developed, particularly in terms of generalisability, safety and clinical value.
Transparency: the use of technology should be made clear and transparent, thus avoiding
any grey areas and uncertainties in their adoption. This entails accounting for the relevant
details about the data used, the actors involved, the choices and processes enacted during
development along with the main scope and limitations of the CV and ambient intelligence
tools. In addition, meaningful motivations behind their outputs should be provided,
especially when they are used to support diagnostic and prognostic processes. Only
this way, end-users and beneficiaries, mainly children, caregivers, clinicians, nurses and
parents can really be aware and empowered by the CV- and AI-powered technologies
and gather trust in them [167–169]. The final goal is actually to contribute to collaborative
decision-making, by augmenting caregivers and recipients with powerful information-
processing tools.
Accountability: healthcare professionals are responsible for justifying their actions and
decisions to patients and their families, and are liable for any potential positive or negative
impact on the patient’s health. The use of decision support technologies, such as those
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based on CV and ambient intelligence, should be clearly modelled in the legal framework
of medical liability to avoid any grey area when clinicians decide to use the results of a tool
or follow a suggestion received. This is still a very controversial issue. On a technical level,
CV applications can implement traceability tools that document their entire development
lifecycle, making it easier to deal with cases where something goes wrong.

5. Conclusions

This paper surveyed, for the first time in the literature, the works covering children’s
health-related issues by ambient intelligence methods and systems relying on computer
vision. A taxonomy has been introduced by dividing works according to the part they con-
centrate on, e.g., the face for extracting gaze direction and facial expressions, or the whole
body, for gait analysis, posture estimation, and human–object interaction. For each research
area, publicly available datasets and new computer vision perspectives have been discussed
with particular attention on some challenges that still need to be addressed to reach a level
of performance that allows the instruments to be effectively used in clinical practice.

In the coming years, we expect to see a significant increase in work in this area, both
from the ethico-legal community and from the scientific and technological community. In
particular, with regard to scientific and technological advances, future developments are
expected to take place in several directions:

• The collection and availability of larger datasets, also covering longer periods of
children monitoring;

• The improvement of current solutions thanks to more precise and advanced methods,
also based on foundational vision models;

• The integration of different types of visual sensors, such as thermal cameras that might
provide relevant information for instance about the development of the thermoregula-
tory system of newborns;

• The integrated processing of multimodal data, such as audio signals (e.g., to monitor
children’s crying), IoT data (e.g., from smart mattresses) and videos, thereby allowing,
for example, a comprehensive monitoring of the health and well-being status of
newborns in nurseries or in NICUs;

• The optimization of computing and sensing facilities to enable technology diffusion in
resource-limited and most needy countries.

Overall, considering the new perspectives that CV and machine learning tools can
open, we deem it relevant to stress that researchers and innovators should strive to comply
with several mandates at technical, socio-ethical and organizational levels. Solutions should
strictly comply with existing and emerging regulations, such as that the Artificial Intelli-
gence Act (COM/2021/206 final—available at https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:52021PC0206, accessed on 15 September 2023). Only this way, they
can aspire to have real-life adoption and, thus, have an actual impact. Currently, innovation
endeavours in this field are still in their early stages, but we are sure they can benefit from
the more mature discussion going on in the field of ambient intelligence and Active and
Assisted Living, towards a really beneficial application for children, parents, caregivers
and society at a large [158].
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