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Abstract: Stemming from the overlap of objects and undertraining due to few samples, road dense
object detection is confronted with poor object identification performance and the inability to rec-
ognize edge objects. Based on this, one transfer learning-based YOLOv3 approach for identifying
dense objects on the road has been proposed. Firstly, the Darknet-53 network structure is adopted to
obtain a pre-trained YOLOv3 model. Then, the transfer training is introduced as the output layer for
the special dataset of 2000 images containing vehicles. In the proposed model, one random function
is adapted to initialize and optimize the weights of the transfer training model, which is separately
designed from the pre-trained YOLOv3. The object detection classifier replaces the fully connected
layer, which further improves the detection effect. The reduced size of the network model can further
reduce the training and detection time. As a result, it can be better applied to actual scenarios. The
experimental results demonstrate that the object detection accuracy of the presented approach is
87.75% for the Pascal VOC 2007 dataset, which is superior to the traditional YOLOv3 and the YOLOv5
by 4% and 0.59%, respectively. Additionally, the test was carried out using UA-DETRAC, a public
road vehicle detection dataset. The object detection accuracy of the presented approach reaches
79.23% in detecting images, which is 4.13% better than the traditional YOLOv3, and compared with
the existing relatively new object detection algorithm YOLOv5, the detection accuracy is 1.36% better.
Moreover, the detection speed of the proposed YOLOv3 method reaches 31.2 Fps/s in detecting
images, which is 7.6 Fps/s faster than the traditional YOLOv3, and compared with the existing new
object detection algorithm YOLOv7, the speed is 1.5 Fps/s faster. The proposed YOLOv3 performs
67.36 Bn of floating point operations per second in detecting video, which is obviously less than the
traditional YOLOv3 and the newer object detection algorithm YOLOv5.

Keywords: dense road; object detection; darknet-53 network; transfer learning

1. Introduction

With the continuous development of modern society, road and bridge construction
has a considerable scale, and the number of vehicles in the city is also increasing, which
has led to frequent traffic accidents in recent years; therefore, the need for better man-
agement and planning of vehicles on the road, road vehicle detection technology, came
into being. Through this road vehicle detection technology, traffic regulation personnel
can more efficiently monitor the violation behavior and can effectively administrate the
road pipeline. At the same time, road vehicle detection technology can be used in the
construction of intelligent transportation, through that technology, can achieve automatic
driving, automatic parking, automatic identification and other functions, improve the
efficiency of urban traffic operations, and also bring convenience to people’s driving.
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The dense detection of objects, such as vehicles and pedestrians, on road scenes
faces several problems: object overlapping or occlusion, uneven distribution of objects, and
difficulty in detecting edge objects. Traditional object detection techniques may be separated
into the following two broad categories: R-CNN (Region-Convolutional Neural Network),
which is based on candidate regions, including R-CNN [1], Fast R-CNN [2], Faster R-
CNN [3], and other two-stage networks; and regression-based single-stage networks, like
YOLO [4], SSD (Single Shot MultiBox Detector) [5]. R-CNN algorithms need to extract
the characteristics of the candidate regions before feeding them into a pre-trained CNN
model in order to obtain a characteristic for classification. Due to the large amount of
object overlapping in the candidate regions, the features from the overlapping regions will
be repeatedly calculated when extracting features, thereby the real-time performance is
poor; comparably, the YOLO model only requires one feed-forward neural network to
directly predict the classifications and positions of diverse objects for several independent
candidate regions, which has the advantages of simpler training, better detection efficiency,
etc [6]. YOLO has been widely used in object detection [7], and it has evolved to become
the YOLOv3. The subsequent YOLO series such as YOLOv5 and YOLOv7 are all improved
on the basis of YOLOv3 [8]. Compared to the common target-detection algorithms, the
YOLOv3 model has the stronger self-learning ability and larger capacity, which can solve
the problem of poor accuracy from the excessive high-resolution dataset and unbalanced
positive and negative samples; additionally, the YOLOv3 has more candidate frames and
can improve the intersection ratio during detection. For matching the special road dense
object detection scene, transfer learning [9] will be introduced to the YOLOv3 network to
fine-tune and accelerate the original training model, which is embedded in the output layer of
pre-trained YOLOv3 and, thereby, one new transfer learning-based YOLOv3 model is shaped.

The key contributions can be described as follows.

(1) Based on the pre-trained YOLOv3 model, the transfer training is introduced as the
output layer for the special dataset containing detecting objects; moreover, one random
function is adapted to initialize and optimize the weights of the transfer training
model, which is separately designed from the pre-trained YOLOv3.

The transfer learning used in this paper first calculates the eigenvector of the convolution
layer of the pre-trained model to all the training and test data, then freezes the convolution layer
of the pre-trained model and trains the remaining convolution layer and the fully connected
layer. There are three advantages to this operation. First, the initial performance of the model
is higher before the model parameters are fine-tuned. Secondly, in the training process, the
model improves faster. Finally, after the training, the obtained model converges better.

(2) In the proposed YOLOv3, the object detection classifier replaces the full convolutional
layer of the traditional YOLOv3, aiming to relieve the conflict distinguishing the
edge target features and other background features caused by the excessive receptive
field of the full connection layer; additionally, the introduced classifier can avoid the
excessive computation from the fully connected layer in the traditional YOLOv3.

In the traditional YOLOv3 network, the convolutional layer before the fully connected
layer is responsible for image feature extraction. After obtaining features, the traditional
method attaches the fully connected layer before activating classification. The idea of the
object detection classifier is to use average global pooling to replace the fully connected
layer, and more importantly, the empty space extracted by the previous convolutional layer
and, thus, the pooling layer is preserved. Intermediate and semantic information is used
so that the detection accuracy will be improved in practical applications. In addition, the
object detection classifier removes the limit on the input size and has essential applications
in the process of convolutional visualization.

2. Related Works

Road vehicle detection adapts the advanced technology and equipment in order
to realize the comprehensive monitoring and detection of vehicles running on the road.
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Through various sensors, cameras, and computer systems, the relevant information of
vehicles can be collected and processed in real time, providing essential data support to road
management departments and transportation enterprises and effectively improving road
safety and traffic management levels. By surveying the existing road vehicle detections, we
can see that the traditional methods mainly include infrared detection, ultrasonic detection,
radar detection, and object detection.

2.1. Infrared Detection

The infrared detection method consists of a modulated pulse generator that generates
a modulation pulse through the infrared probe radiation to the road; when there is a vehicle,
the infrared pulse from the vehicle’s body is reflected by the probe-receiving tube. This
method is more dependent on the optical environment, and dust particles in the light will
affect the routine work of the system. Ai Hong proposed the overall scheme, including the
hardware and software design of the vehicle flow monitoring system based on an infrared
sensor [10]. Furthermore, the section of the infrared sensor and the application of the
Fresnel lens are explained in detail. After two amplification stages, the infrared sensor is
compared with the window comparator to generate pulses into the MCU circuit; thereby,
the number of passing vehicles is obtained by analyzing and judging the pulse sequence.
The experimental results show that the proposed detection system runs fast, has a low
false-alarm rate, and has strong reliability.

2.2. Ultrasonic Detection

Ultrasonic detection considers the influence of a vehicle’s shape on ultrasonic. However,
because ultrasonic has a certain diffusion angle, a single ultrasonic can only measure the
distance and cannot measure the orientation, so multiple ultrasonic sensors from multiple
angles can be chosen; however, they have a larger cost and are unsuitable for daily scenes.
Zhao Yani proposed the ultrasonic vehicle detector [11], which consists of three parts: an
ultrasonic probe, a host, and communication; here, the data from the probe is directly analyzed,
processed, and stored and then sent back to the central processor. The experimental results
show that the detection accuracy of this detector can reach 99%, the average speed detection
accuracy can reach 90%, and the accuracy of the model classification can reach 94%.

2.3. Radar Detection

Radar detection recognizes vehicles by emitting microwaves toward the road surface
and receiving the reflected waves, but it can only detect vehicles that are in motion and must
also use a unique sensor design or signal processing software to detect stationary vehicles.
Jin Lu proposed a method of vehicle detection based on millimeter-wave (MMwave) radar
and visual multi-features [12], which is implemented by three steps. Firstly, a spatial
alignment algorithm is proposed to realize the spatial alignment of MMwave radar and
vision; then, the region of interest of the target vehicle is extracted according to the results of
spatial alignment and searching strategy; finally, vehicle detection is realized by integrating
features such as shadows under the car, symmetry axis, and left and right edges. The
method is proved the efficiency and reliability of the proposed radar vehicle detection.

2.4. Object Detection

With the rise of autonomous driving technology, deep learning-based object detection
technology has also developed, which usually comprises an electronic camera, image
processor, and display parts. The camera takes a continuous recording in a certain area
of the road, and in the image processor, the images are transformed into a digital signal.
Then, the microprocessor processes the image background to identify the existence of the
vehicle and the vehicle type. This method can detect multiple traffic parameters and has a
wide detection range with better real-time capability and flexibility, which has obtained a
wide application in road vehicle detection. Wang Tingting proposed the recursive YOLOv4
target detection based on an attention mechanism, namely the RC-YOLOv4 algorithm [13].
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RC-YOLOv4 combines the channel and spatial attention mechanism, aiming to help the
network model pay more attention to the key information and small target information
in the detected image. The experimental results show that the average precision of the
proposed RC-YOLOv4 algorithm is 12. 69% higher than the YOLOv4 in the self-made
vehicle detection data set. Xiong Liyan proposed vehicle detection based on lightweight
MobileVit [14]. This method adapted the MobileVit network as the backbone feature
extraction network of the model in order to fully extract the feature information and make
the model lightweight; in the prediction layer network, multiscale vehicle detection and
recognition based on the PANet network is presented to improve the detection performance
of the model for small targets. The experimental results show that the average detection
accuracy of this algorithm is 98.24%, the detection speed is 58 ms per picture, and the
comprehensive performance is better compared with the other algorithms. Yuan Lei
proposed the improved road object detection as CTC-YOLO (context transformer and
convolutional block attention module based on YOLOv5) [15], which can increase the
detection accuracy of small targets by improving the network detection head and adding
the multi-scale target detection layer. The experimental results show that the proposed CTC-
YOLO reaches 89.6%, 46.1%, and 57.0%, on the publicly available datasets KITTI, Cityscapes,
and BDD100K, respectively. A. Alshehri et al. proposed the Residual Neural Networks for
Origin–Destination Trip Matrix Estimation from Traffic Sensor Information [16]; it deduces
the correlation between traffic statistics and network topology from traffic characteristics.
In order to train the proposed deep learning architecture, random synthetic flow data
is generated from the historical demand data of the network. Large-scale networks are
used to test and validate the performance of the models. Xue Q W et al. proposed a three-
dimensional vehicle detection algorithm based on multi-modal feature fusion [17]; by fusing
the point cloud and image information with the average pixel value, the feature pyramid is
added to extract the fused advanced feature information, improve the detection accuracy
in complex road scenes, establish the feature fusion region recommendation structure, and
generate the region recommendation based on the advanced feature information. Wang
W H proposed that the subway obstacle detection system is designed based on infrared
and visible light imaging systems [18]. Based on the functional requirements analysis and
operating platform, the system function modules and hardware components are defined.
Due to the different imaging mechanisms of infrared and visible image sensors, there are
also some differences in the captured images. The Bi-dimensional integrated Empirical
Mode decomposition (BEEMD) algorithm is used to fuse the image, and the YOLO network
is used to detect the category of obstacles.

Table 1 summarizes these recently-emerged target detection algorithms for vehicle
detection and the Data set, Key aspects, Advantage, mAP, FPS, and Platform of the proposed
YOLOv3 are also provided.

As can be seen from Table 1, the proposed YOLOv3 can improve the detection speed
without the loss of detection accuracy, compared with the recently-emerged existing vehicle
detection algorithms.

Table 1. Comparison among the different algorithms.

Algorithms Data Set Key Aspects Advantage mAP FPS Platform

RC-YOLOv4 self-made vehicle
detection data set

Combine the channel
and spatial attention

mechanism

Pay more attention to
the key information

and small target
information

87.33% 43 Ubuntu 18.04

MobileVit KITTI

Introduce MobileVit
network as the

backbone feature
extraction network

Fully extract the
feature information
and make the model

lightweight

95.36% 58 Window 10
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Table 1. Cont.

Algorithms Data Set Key Aspects Advantage mAP FPS Platform

CTC-YOLO KITTI

Add the context
transformer and

convolutional block
attention module

Increase the detection
accuracy of small

targets by improving
the network detection

head and adding

89.6% 69 Window 10

The proposed
YOLOv3 KITTI

Adapt the transfer
learning and replace
the detection head of
the original network

While ensuring the
detection accuracy, the
training and detection

time is reduced

88.24% 78 Window 10

2.5. Characteristics of Vehicle Detection Sensors

The characteristics of various vehicle detection sensors are summarized in Table 2.

Table 2. Characteristics comparison of traffic sensors.

Methods Advantage Malpractice

Infrared detection
Solve the day–night conversion

problem, and provide a lot of traffic
management information

An excellent infrared focal plane detector
may be required, which requires increased
power and reduced reliability to achieve

high sensitivity

Ultrasonic detection Small size, easy to install; Long service life;
Movable; Multi-lane detection is possible

The performance decreases with the influence
of ambient humidity and air flow

Radar detection
Work in all weather, keep excellent

performance harsh weather; Detect static
vehicles; Detect multiple lanes in lateral mode

The higher detector installation requirements
because detection accuracy decline when the

road has an iron strip

Object detection

Provide visual images for incident
management; Provide a lot of traffic

management information; A single camera and
processer can detect multiple lanes

Smaller vehicles cannot be detected when
obscured by large vehicles

3. Algorithm Principle

Figure 1 shows the architecture of the dense road detection system based on YOLOv3,
which includes three parts: the YOLOv3 backbone network, a transfer training unit, and
optimization of network parameters. Firstly, the VOC 2007, VOC 2012, and COCO datasets
are selected for YOLOv3 network pre-training; then, the images containing vehicles are
extracted from the VOC 2007 dataset and re-labeled to form the special vehicle dataset,
and the transfer training-based YOLOv3 model is transferred and trained in this dataset;
finally, the test dense road pictures or videos are input into the proposed model, and
the output is obtained by feature extraction, multi-scale detection, and non-maximum
suppression (NMS) processing. Performance evaluations are performed by confidence,
mean precision (mAP, mean Average Precision), and precision recall (P-R, Precision Recall)
of object detection.
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Figure 1. Architecture of dense road object detection model.

3.1. Feature Extraction Network

Compared with the YOLOv2 network, the backbone portion of the YOLOv3 network
has evolved from Darknet-19 to Darknet-53, consequently expanding the number of net-
work layers [19] and adding the cross-layer sum operation in the residual network; YOLOv3
network has fifty-three convolutional layers (ResNet, Residual Network). Darknet-53 is an
entirely convolutional network comprised of 3 × 3 and 1 × 1 convolutional layers, includ-
ing 23 residual modules and layers of detection channels that are completely interconnected.
As depicted in Figure 2, the convolutional layers are interconnected by quick link [20] (that
is, SC, Shortcut Connections). This SC structure can greatly enhance the computation per-
formance of the network, enabling the network to obtain faster detection speed in a limited
number of network layers. In the detection architecture, YOLOv3 separates three channels
for feature detection into distinct grid sizes. These channels include feature maps with grid
sizes of 52 × 52, 26 × 26, and 13 × 13, which correspond to the detection of large-scale
(y1), medium-scale (y2), and small-scale (y3) picture features, respectively. Thereby, The
YOLOv3 can provide a higher detection accuracy with fewer network parameters and
fewer superfluous network layers, enabling it to improve both the detection speed and
the detection accuracy. By comparison, the conventional R-CNN relies on deepening the
network structure to enhance the recognition rate.
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Figure 2. Schematic diagram of quick link.

3.2. Training Strategy Design

The traditional deep learning network generally improves the recognition accuracy
by increasing the training set or deepening the network complexity. In the application of
road dense object detection, the real-time detection is an important indicator [21]. Transfer
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learning is introduced in an effort to improve the training process of the traditional YOLOv3
network, as shown in Figure 3.
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In Figure 3, the YOLOv3 backbone network is combined with the transfer training
model; during the pre-training process, the YOLOv3 network is trained in the VOC 2007
and VOC 2012 datasets to obtain the pre-trained model for 20 object types in the VOC
dataset. Additionally, the COCO dataset is trained to obtain 60 object types, and a total of
80 object types can be obtained; then, the transfer training unit substitutes the convolutional
layer of the YOLOv3 backbone network, its parameters are not fixed, which means they
can be randomly initialized and optimized [22], on the special vehicle dataset. During
pre-training, the epoch is set to 300, and the average precision (AP, Average Precision) and
mAP of the transfer training model are shown in Table 3.

Table 3. Performance of YOLOv3 model.

Classes AP TP FP mAP

car 81.25% 79.65% 20.34%

83.85%

person 76.43% 60% 40%
bicycle 74.12% 82.81% 17.18%

motorcycle 73.08% 74.14% 25.85%
bus 79.14% 81.06% 19.02%
dog 72.44% 77.07 22.92%
cat 73.34% 65.41% 34.58%

In the transfer training model, the proposed YOLOv3 retains the convolutional layer
in the traditional YOLOv3 after pre-training. When performing feature extraction, the pre-
trained convolutional layers [23] are selected to be a feature extractor, the structure of which
allows the input image to propagate forward. The convolutional layer parameters [24]
retained from the pre-trained model are frozen and they take the output of convolutional
layer L-1 as the proposed YOLOv3 extracted feature [25]. Such a convolutional layer can
enable the network to better obtain the semantic information of the target and train it,
thereby obtaining higher detection accuracy; then, the proposed YOLOv3 replaces the
full convolutional layer of the traditional YOLOv3 with the object detection classifier [26],
which can relieve the conflict of distinguishing between the edge target features and other
background features caused by the excessive receptive field of the full connection layer;
furthermore, it can reduce the problem of excessive computation caused by the fully
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connected layer, so that the proposed YOLOv3 can train and detect objects faster, and
the corresponding network parameters are accordingly optimized [27] to increase dense
detection precision on the road while simultaneously reducing training complexity.

In Table 2, AP represents the mean precision of each object type in the test set. The
term “correctly classifying a positive example as a positive example” (abbreviated “TP”)
refers to the degree of precision achieved when accurately identifying a positive example,
while “falsely classifying a negative example as a positive example” refers to incorrectly
identifying a negative example as a positive example (abbreviated as “FP”).

During the transfer training, nearly 2000 images containing vehicles are screened and
labeled. This is a special dataset built [28] for dense object detection in road situations.
Included among the road objects in the dataset are cars, people, bicycles, motorbikes, trucks,
cats, and dogs. There are 7 types that appear frequently in the road scene, as shown Table 4,
and the remaining 13 types are not common.

Table 4. Selected special dataset.

Class Name Car Person Bicycle Motorcycle Bus Dog Cat

Total number 1434 1360 860 430 300 220 180

From Table 3, a total of 1434 labeled car images in the dataset are selected as a special
dense road sub-dataset. The images are then divided into a training set and a test set
in a 4:1 ratio [29]. In addition, the classes of the special dense road sub-dataset must be
modified to 7 and the file path of “train”, “valid”, “names”, and “backup” must be modified
correspondingly for the transfer training model to correspond with the extracted special
dense road sub-dataset. This is necessary for the transfer training model to correspond
with the special dense road sub-dataset. Meanwhile, parameters Batch, LEARN-RATE and
IOU in config.py need to be optimized with the following considerations:

(1) The Batch function is set to 8. It can make the network complete an epoch in a few
iterations and reach a local optimal state while finding the best gradient descent
direction [30]. Increasing this value will prolong the training time but will better find
the gradient descent direction; decreasing this value may cause the training to fall
into a local optimum, or not converge.

(2) The LEARN-RATE function is set from 10−4 to 10−6. During the training proce-
dure [31], the total number of training cycles generally determines a learning rate that
continually adapts to new input. Ten rounds of training are set. Experiments indicate
that the learning rate is initially set at 0.0001 at the beginning of training and then
gradually slows down after a certain number of rounds have been completed. As the
training nears its conclusion, the learning rate is lowered until it hits 0.000001. The
setting of the learning rate, which is based on ten training rounds, solves the problems
of easy loss value explosion and easy oscillation caused by a learning rate that is too
large at the beginning of training; if it is too small, it is easy to over-fit, resulting in
slow network convergence.

(3) The IOU function is allocated the value 0.65. In computer detection tasks, the IOU
value is equal to one and the intersection is the same as the union if the actual
bounding box and the predicted bounding box entirely overlap [32]. Generally, a
value of 0.5 is utilized as the threshold to determine whether or not the predicted
bounding box is correct. It is possible to increase the detection accuracy of tiny items
and edge objects while dealing with the detection of dense road objects by setting
IOU to 0.65. This will enable the gathering of higher-quality samples and enhance the
identification of dense road objects.

Next, we performed ablation experiments on three parameters in the model, as shown
in Table 5.
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Table 5. The results of ablation experiment.

Batch Learn-Rate IOU Training Time/h mAP (%)

3.52 83.85√
3.12 82.73√
3.37 83.14√ √
2.93 82.93√ √ √
2.96 87.64

Based on Table 4, setting the batch function to 8 can reduce the training time of the
network by 0.4 h; setting the LEARN-RATE function from 1e-4 to 1e-6 can reduce the
training time of the network by 0.15 h; by setting these two parameters to fixed values, the
training time of the network can be reduced by 0.59 h, but the mAP is also reduced. Finally,
the IOU value was set to 0.65, which reduced the training time of the network by 0.56 h,
and the mAP value increased by 4.29%. Therefore, the three parameters in the network
model are fixed and set, which reduces the training time of the network and improves the
operation efficiency of the model under the condition of ensuring accuracy.

3.3. Loss Function Selection

In the proposed YOLOv3, the error loss mainly comes from the misjudgment of
prediction frame, confidence, and category. The error in the prediction frame is determined
by the rate of coincidence between the a priori frame and the prediction frame. If the rate
at which the prediction frame and the a priori frame agree is large, this implies that the
prediction is accurate and error margins are small; confidence error refers to the mistake
induced by random sampling during testing in the test set, sampling the test set, and then
estimating all test sets; category misjudgment error is the error caused by detecting one
type into another. These three types of losses are expressed as lbox, lobj, and lcls, respectively.

lbox = λcoord

s2

∑
i=0

B

∑
j=0

Iobj
i,j (2− wi × hi)[(xi − x̂i) + (yi − ŷi) + (wi − ŵi) + (hi − ĥi)] (1)

lcls = λclass

s2

∑
i=0

B

∑
j=0

Iobj
i,j ∑

c∈classes
pi(c) log( p̂i(c)) (2)

lobj = λnoobj

s2

∑
i=0

B

∑
j=0

Inoobj
i,j (ci − ĉi)

2 + λobj

s2

∑
i=0

B

∑
j=0

1noobj
i,j (ci − ĉi)

2 (3)

loss = lbox + lobj + lclcs (4)

Here, s is the grid size; B is amount of prediction frames;Iobj
i,j is the indicator function,

which stand for if the prediction frame at i, j has an object, its value is 1, otherwise it is 0;
Iobj
i,j is the indicator function, which stands for if the prediction box is at i, j has no object

and its value is 1, otherwise it is 0.
In this paper, ablation experiments were performed for each loss term in the loss

function, and the experimental results are shown in Table 6.
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Table 6. The results of the ablation experiment.

lbox lobj lcls F1 mAP (%)

57.31% 65.37√
63.27% 73.64√
62.45% 72.82√
64.87% 75.68√ √
69.39% 78.94√ √
68.76% 77.68√ √
70.32% 79.56√ √ √
71.47% 83.85

Based on Table 5, when the error in the prediction frame, confidence error, and category
error are used separately, the F1 coefficient and mAP of the network model are low and
cannot meet the requirements necessary for detecting road vehicles. When matching the
three kinds of errors in pairs, it can be seen that the accuracy of the network model has
been significantly improved; after the superposition of the three kinds of errors, the F1
coefficient and mAP in the network model reached 71.47% and 83.85%, respectively, which
were able to meet the requirements of road vehicle detection in most scenarios. It can be
seen from these seven groups of experiments that the error in the prediction frame and
the category error greatly improve the detection effect of the network model, while the
improvement effect of the confidence error is small.

4. Experimental Testing and Evaluation
4.1. Required Environment

The experimental configuration is shown in Table 7, using a Tensorflow (Developed by
the Google team, America)framework in deep learning and an Opencv Python framework
in computer vision.

Table 7. Configuration environment.

Operating
System CPU Memory GPU CUDA CUDNN

Windows
10(22H2) Intel i5 8GB

NVIDIA
GEFORCE

RTX 745
CUDA 10.04 CUDNN 7.04

4.2. Detection Performance Evaluation

There are many evaluation criteria for target detection effect, among which the more
common ones are intersection and combination ratio, P-R value, mAP, recall rate [33],
accuracy, average accuracy rate, FPS (Frame Per Second), etc. IOU is the ratio of intersection
and union of two rectangular frames, which is used to indicate the overlapping degree
of rectangular frames A and B, the definition formula is as shown in Formula (5), and
the accuracy, recall rate, and missing detection rate formula is as shown in Formula (7) to
Formula (9).

IOU =
|A ∪ B|
|A ∪ B| (5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

AP = ∑n−1
i=1 (ri+1 − ri)Pinter(ri + 1) (8)
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mAP =
∑k

i=1 APi

k
(9)

Here, “true positive” (TP) refers to the genuine example, “false positive” (FP) refers
to a false positive example, and “false negative” (FN) refers to a false negative example.
Furthermore, the index of mAP [34] is also adapted to show the mean average precision.
Where r1, r2...ri is the corresponding recall value at the first interpolation of the precision
interpolated segment in ascending order. The average of the AP across all categories is
the mAP.

Figure 4 displays the P-R curve generated by applying the proposed YOLOv3 to
the data for the car object detection in the road scene. If the classification results of all
test samples are positive, the recall rate of the model will be 1 and the accuracy rate will
be extremely low; if the classification results of almost all test samples are negative, the
accuracy rate will be high and the recall rate will be very low. Precision and recall are
two rather contradicting metrics. Figure 4 shows that the proposed YOLOv3 is capable
of reaching a high accuracy rate, that the recall rate slope drops in a moderate and steady
fashion, and that the accuracy rate and recall rate achieve a more balanced state.
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In the special dense road sub-dataset, the training set and test set are divided into two
sections with a 4:1 ratio. AP statistics are performed on the 7 types, as shown in Table 2, and
mAP is calculated. Table 8 shows the performance comparison between several algorithms.

Table 8. Algorithm performance comparison.

Algorithm

Index
Param/M FPS/Frames

per Second
FLOPS/Floating-Point
Operations per Second

Weight Size/M mAP

YOLOv3 61.53 54.6 132.69 Bn 120.5 83.85%
YOLOv5 52.5 55.3 116.54 Bn 100.6 87.26%
YOLOv7 36.49 87.1 102.37 Bn 74.8 89.32%

The proposed YOLOv3 29.84 91.2 97.62 Bn 68.2 87.85%

In Table 7, The proposed YOLOv3 network model can achieve a relatively good
performance, which is obviously superior to the 4% and 0.59% of the traditional YOLOv3
and YOLOv5, respectively; the number of parameters is 29.84 M, which is 6.65 M less than
the latest YOLOV7 algorithm; the number of frames per second can reach 91.2 frames/s,
which is obviously superior to the 4.1 frames/s of the latest YOLOV7 algorithm; the
floating-point operations per second can reach 97.62 Bn, which is 4.75 Bn less than the latest
YOLOV7 algorithm; the weight size is 63.2 M, which is 6.6 M less than the latest YOLOV7
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algorithm. In conclusion, the proposed YOLOv3 algorithm reduces the size of the model,
the amount of computation, and the number of parameters and also improves the detection
speed of the network on the premise of ensuring the accuracy.

4.3. Comparative Analysis of Different Algorithms

Using the UA-DETRAC dataset as the test set, for detecting static road pictures, Table 9
shows the detection accuracy of each algorithm. Compared to the traditional YOLOv3
and YOLOv5, the proposed YOLOv3 approach exhibits an obvious improvement in the
detection accuracy of each category and in the average detection accuracy.

Table 9. Comparison of the different algorithm performances.

Algorithm
mAP
mAP

Car Bus Van Others Average mAP

YOLOv3 79.61% 80.29% 76.21% 70.32% 75.1%
YOLOv5 83.32% 82.26% 79.64% 72.11% 77.87%

The proposed YOLOv3 82.73% 81.37% 80.36% 74.53% 79.23%

Figure 5 shows the original object image in the top row, the detection result of the
traditional YOLOv3 in the second row, and the proposed YOLOv3 detection result in the
third row. It is evident that the proposed YOLOv3 is capable of accurately differentiating
between different types of vehicles and pedestrians, as well as accurately detecting pedestri-
ans at the edge of the image; it is also capable of using a confidence box to indicate the object
type division probability, and to mark the object type division probability. Additionally,
the confidence will not decrease as the density of road objects increases.

Information 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

   
(a) Few object image (b) Medium object image (c) Dense object image 

   
(d) Few object image (YOLOv3) (e) Medium object image (YOLOv3) (f) Dense object image (YOLOv3) 

   
(g) Few object image (Proposed) (h) Medium object image (Proposed) (i) Dense object image (Proposed) 

Figure 5. Object detection results of a single picture. 

When detecting the real-time collected videos, the test results of the traditional 
YOLOv3 and the proposed YOLOv3 utilization of road dense objects are shown as Figure 
6 and Figure 7, respectively. 

  
(a) Close-range object detection (YOLOv3) (b) Long-range object detection (YOLOv3) 

Figure 6. Real-time video detection based on traditional YOLOv3. 

Figure 5. Object detection results of a single picture.



Information 2023, 14, 560 13 of 16

When detecting the real-time collected videos, the test results of the traditional
YOLOv3 and the proposed YOLOv3 utilization of road dense objects are shown as
Figures 6 and 7, respectively.
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As seen by comparing Figures 6 and 7, the proposed YOLOv3 can detect and divide
vehicles and pedestrians in real-time, and the detection confidence for different types of
objects can also be provided.

Considering the difference in object image resolutions, and for the traditional YOLOv3,
YOLOv5, YOLOv7 and the proposed YOLOv3, the detection time as shown in
Tables 10 and 11 shows the corresponding detection time of selecting the length of 42.6 s of
video as the input.

Table 10. Detection time for the images with different resolutions.

Algorithm 320 × 320 Detection
Time/ms

416 × 416 Detection
Time/ms

608 × 608 Detection
Time/ms

FPS/Frames per
Second

YOLOv3 22.8 29.4 51.9 43.6
YOLOv5 20.3 26.1 43.1 56.9
YOLOv7 19.8 26.7 41.2 59.7

The proposed YOLOv3 19.2 24.4 39.7 61.2
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Table 11. Detection time for the video.

Algorithm Detection Time/s FPS/Frames per Second FLOPS/Floating Point Operations per
Second

YOLOv3 66.9 78 84.37 Bn
YOLOv5 64.7 85 86.38 Bn
YOLOv7 62.4 83 91.68 Bn

The proposed YOLOv3 19.2 84.4 98.7 Bn

Table 10 shows that the proposed YOLOv3 has the faster detection time, which changes
proportionally with image resolution. Accordingly, the result can be taken from Table 10,
which demonstrates that the proposed YOLOv3 can identify 61.2 frames per second, which
is clearly superior to the 17.6 frames/s of the traditional YOLOv3 and superior to the
1.5 frames/s of the YOLOv7.

5. Conclusions

The application of the YOLOv3 network in road dense object detection is studied in
this paper, mainly focusing on the deepening of Backbone network layers in the YOLOv3
network structure and the cross-layer addition and operation in the residual network.
Different convolutional layers can realize the image detection of small, medium, and large
scale features, respectively. Thus, the traditional idea of deepening and improving the
recognition rate by relying on network structure is fundamentally improved. It can provide
higher recognition accuracy with fewer network parameters and network layers, and
the detection speed is also taken into account. The proposed algorithm can accurately
distinguish different types of vehicles and pedestrians, even pedestrians at the edge of the
detection area. A confidence box can be used to mark the probability of object classification,
and the confidence does not decrease with the increasing of road object density. In contrast,
although the YOLOv7 model has a good detection accuracy, the training and detection time
is relatively low compared with the proposed algorithm, and it cannot be easily applied
to real life. In addition, the proposed training strategy of transfer training in a special
dataset can also be extended to other dense object detection scenarios, which can achieve
high target detection precision and are simple to train. With the increasing investment of
the government in transportation infrastructure and the continuous progress of science
and technology, the technology of road vehicle testing is also constantly improving, and
the accuracy and efficiency of testing are higher, which provides a good development
opportunity for the road testing industry. At present, although the existing road detection
algorithm can achieve a good detection accuracy, it cannot be applied to real scenarios on a
large scale due to the large size of the network model and the slow detection time. Therefore,
finding out how to improve the efficiency of the network model for road detection on the
premise of ensuring detection accuracy should be the top priority for future research.
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Nomenclature List

Abbreviation Explanation
lbox The error generated by the position in the prediction box
lobj The error generated by confidence
lcls The error generated by the class
i, j Indicates the location of the predicted frame
x, y, w, h Indicates the location of the prediction box
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