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Abstract: Recently, the precise location of sensor nodes has emerged as a significant challenge in the
realm of Internet of Things (IoT) applications, including Wireless Sensor Networks (WSNs). The
accurate determination of geographical coordinates for detected events holds pivotal importance in
these applications. Despite DV-Hop gaining popularity due to its cost-effectiveness, feasibility, and
lack of additional hardware requirements, it remains hindered by a relatively notable localization error.
To overcome this limitation, our study introduces three new localization approaches that combine
DV-Hop with Chicken Swarm Optimization (CSO). The primary objective is to improve the precision
of DV-Hop-based approaches. In this paper, we compare the efficiency of the proposed localization
algorithms with other existing approaches, including several algorithms based on Particle Swarm
Optimization (PSO), while considering random network topologies. The simulation results validate
the efficiency of our proposed algorithms. The proposed HW-DV-HopCSO algorithm achieves a
considerable improvement in positioning accuracy compared to those of existing models.

Keywords: IoT; PSO; CSO; WSN; DV-Hop

1. Introduction

The convergence of Micro-Electro-Mechanical Systems (MEMS) and the Internet of
Things (IoT) has contributed to the development of tiny networked devices capable of
detecting, monitoring, processing, and transmitting physical phenomena such as pressure
and temperature [1,2]. RFID, Zigbee, and 5G are among the communication technologies
used by these devices [3–7]. Each sensor node, which is associated with CPUs, power
units, and transceivers, has the ability to transmit data to a central base station (BS) for
analysis and interpretation [8]. These devices play an important role in WSNs, and are
used in such diverse fields as military operations, target tracking, and environmental
monitoring. Localization is a critical process in IoT applications such as smart cities,
healthcare monitoring, traffic management, disaster alerts, and geographic routing [9–15].
Accurately determining a device’s location allows for in-depth analysis of events reported
by sensor nodes. The interpretation and meaningful understanding of detected events
are significantly limited because of the lack of accurate localization. Figure 1 depicts the
importance and necessity of localization in a variety of application fields. As illustrated by
Figure 1, precisely determining a device’s location is a key challenge for IoT applications.

GPS [16] is a widely recommended technology for accurately determining device
locations in various application domains. However, due to the high cost of extra hardware,
integrating auto-positioning technologies such as GPS into sensor devices may not consis-
tently be the most cost-effective strategy. This has the potential to decrease the lifetime of
the network. To address this concern, several localization techniques have been formulated
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revolving around the deployment of a limited set of GPS-equipped sensors referred to as
anchor nodes. These anchor nodes have known positions and are used to approximate the
unknown nodes’ positions within wireless sensor networks. They aid in determining the lo-
cation of randomly deployed nodes throughout the network using a localization technique,
offering an alternative approach to achieve localization in IoT applications without the need
for alternative devices to be associated with GPS receivers or auto-positioning capabilities.
This cost-effective approach enables accurate device localization, thereby enhancing the
comprehensive assessment and comprehension of real-time events. However, as depicted
in Figure 2, obtaining precise sensor node locations remains a significant challenge.

Figure 1. Relevance of localization in various domains.

Figure 2. Example showing the process of localization.

Over the last few years, several localization approaches have been presented; these
can be grouped into two main technologies, range-based and range-free [17]. Range-based
categories include technologies such as Time of Arrival (ToA), Received Signal Strength
Intensity (RSSI), Time Difference of Arrival (TDoA), and Angle of Arrival (AoA) [18–21].
These approaches apply either triangulation or trilateration techniques to determine the
sensors’ location by applying angles or distance information between synchronized sen-
sor nodes.

Range-free approaches operate within critical scenarios; they need extra hardware,
resulting in increased overhead, particularly in large-scale WSNs, as discussed in [22]. Alter-



Information 2023, 14, 592 3 of 24

natively, range-free techniques drive the sensor node positions from anchor node positions
without requiring extra hardware. Range-free methods consider only information about
the interconnection between anchors and unknown nodes, making them a more feasible
alternative. These approaches use the exact location of nearby anchors to enable unknown
nodes to calculate their locations within WSNs. Examples of range-free approaches include
the DV-Hop algorithm, APIT technique, Centroid algorithm, and Amorphous [23–26].
APIT [24] calculates the locations of sensor nodes using the positions of a minimum of
three anchor nodes. The algorithm obtains improved performance with a high percentage
of anchors. The Centroid method [25] considers the barycenter of nearby anchors as the
determined positions of nodes, avoiding the need for additional materials. Amorphous [26]
is similar to DV-Hop in that it accurately determines the locations of unknown nodes.
DV-Hop [23] is a well-known approach that has become the most recommended candidate
for the localization of sensors in different kinds of topologies using a limited number of
anchor nodes within a wireless sensor network [27]. In this approach, the sensor node
position estimate is based on the average distance and the hops number, both of which are
derived from each anchor node in the network. In this approach, the positions of nodes
are calculated using a multilateration technique, which is applicable even when there are
fewer than three neighboring anchor nodes.

In the existing literature, a number of localization algorithms that use the DV-Hop
technique have been suggested to reduce the errors in estimated sensor node positions.
Despite these efforts, localization accuracy remains inadequate, prompting a need for more
enhancements. To address this gap, in this study we introduce three novel localization
algorithms that combine DV-Hop with Chicken Swarm Optimization (CSO) [28]. These
algorithms are developed to enhance and refine the localization accuracy of sensor nodes
within WSNs. The key contributions of this study can be stated as follows:

• Three new algorithms to increase localization accuracy, denoted as DV-HopCSO,
W-DV-HopCSO, and HW-DV-HopCSO.

• New and enhanced steps to increase localization accuracy.
• Evaluation of the presented algorithms considering four distinct types of complex

topology.
• Verification of the reliability of the proposed localization approaches regarding their

accuracy and error considering four distinct types of complex topology through
comparisons with existing algorithms (DV-Hop, PSODV-Hop, MDV-Hop, W-DV-Hop,
and HW-DV-Hop) involving the communication range, number of anchor nodes, total
number of nodes, and maximum number of iterations.

The rest of this paper is structured as follows: Section 2 covers the background on
localization algorithms from the literature; Section 3 presents the proposed algorithms based
on DV-Hop and chicken swarm optimization; Section 4 presents the simulation results and
performance analysis’ and Section 5 concludes the paper and suggests future work.

2. Related Works and Background

In this work, our focus lies on approaches in the range-free category, and in particularly
on the advancement of localization techniques based on the DV-Hop technique. One notable
issue is that computing the average hop size value during the DV-Hop localization process
can result in inaccurate estimates of the distance between nodes. Improving the accuracy
when calculating the distance between sensor nodes could lead to a lower localization
error. Various DV-Hop enhancements to tackle these concerns have been claimed in the
state-of-the-art. Many researchers have recently made major attempts to encourage the use
of weighted schemes and bio-inspired techniques to optimize and improve localization
accuracy in both anisotropic and isotropic network topologies.

In [29], the authors presented a new scheme based on DV-Hop that uses weighted
redundancy and optimized beacons. Their paper presented a weighted iterative technique
for determining the best number of iterations and average hop size whlie integrating the
weighted mean square error criterion. The hop error between anchors was utilized to assign
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weights to the signals, while the distance computation employed the optimal average hop
size achieved in the previous phase. As a result, the positions of unknown nodes were
derived using only a selection of beacon nodes with lower localization errors. Simulations
revealed that the proposed variants outperformed previous localization methods, including
the original DV Hop.

In [30], the authors proposed a modified hop count technique using mobile anchor
nodes to reduce the localization error. The proposed technique was assessed based on
communication range and the number of anchor nodes. The authors studied static wireless
sensor networks with different numbers of mobile anchor nodes, and used their technique
to design a similar solution with a static anchor node. Regarding the localization error,
their results demonstrated that the suggested scheme surpasses the original DV-Hop.

In [31], the authors proposed an alternative modification to the DV-Hop technique
to increase localization accuracy in anisotropic networks. The DV-Hop approach was
improved in three steps, while the PSO and simulated annealing (SA) methods were
combined to handle nonlinear equations and increase the localization accuracy of the sensor
nodes. The results demonstrated the efficiency of their proposed DV-Hop compared to
competitive methods in the literature. However, in this approach, communication overload
among the sensor nodes in the network increases during multi-hop information forwarding.

In [32], the authors discussed an enhanced localization algorithm called DEIDV-
Hop. This approach combines enhanced DV-Hop and DE techniques. The major aim of
DEIDV-Hop is to correct any inaccuracies caused by the distance of the average hop size.
To increase population diversity, the authors included a random mutation mechanism
that impacts random individuals. This phase seeks to prevent the DE algorithm from
experiencing premature convergence and search stagnation. Moreover, during the crossover
process, they incorporated a segment of social learning from the PSO based on the newly
created individual. Simulation results revealed that this DEIDV-Hop approach had a lower
localization error and better stability compared to the current techniques in four distinct
network settings.

In [33], the authors introduced an improved algorithm called LSDV-Hop. This novel
approach us es the least squares theory to improve the precision of node localization.
LSDV-Hop computes a transformation vector using the least-squares method in order to
align the true and estimated positions of the anchor nodes. The simulation results showed
that this LSDV-Hop approach surpasses the original DV-Hop.

In [34], the authors presented an online sequential strategy for DV-Hop-based localiza-
tion. This approach is divided into three main stages. In the first phase, a unique technique
is introduced for computing the average hop size between anchors. The typical DV-Hop
technique is then modified, allowing it to be used as an online sequential localization
technique in the next phase. To determine the locations of target nodes, the final phase
applies a sequential technique in conjunction with a specified anchor set. In simulations,
this scheme outperformed the original DV-Hop in terms of localization accuracy. Another
enhanced scheme based on DV-Hop was presented in [35]. The proposed technique applies
a new method to report the hop size distance, and uses Hyperbolic 2D instead of multilat-
eration to estimate node locations. Simulations demonstrated that this scheme outperforms
the original DV-Hop.

In [36], the authors proposed various enhancements based on DV-Hop, which they
denoted iDV Hop1, iDV-Hop2, and Quad DV-Hop. Geometrical approaches are used in all
three variants. The performance of these algorithms was evaluated using C-shaped and
uniform network topologies. In terms of localization accuracy, their findings revealed that
the iDV-Hop1, iDV-Hop2, and Quad DV-Hop algorithms all outperform DV-Hop.

In [37], a new DV-Hop-based scheme was presented that incorporates the PSO meta-
heuristic technique to reduce the localization error. The authors described two ways
to reduce localization errors in a range-free localization approach, and addressed node
localization faults by applying a well-defined set of equations. Their improved node local-
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ization technique resulted in a lower localization. Simulations revealed that this approach
outperforms the original DV-Hop.

In [38], the authors presented a new optimized scheme that uses CSO to enhance local-
ization precision when estimating node locations. They conducted an experiment in which
they varied the network features and the number of hens in the algorithm to evaluate the
performance of their new approach. They assessed its ability to improve on conventional
CSO-based approaches and carried out a comparison between their scheme and PSO, find-
ing that their technique can outperform PSO. This confirms the significance and potential
of CSO-based approaches for enhancing network node localization. Table 1 below provides
a comprehensive summary of DV-Hop localization algorithm variants. In the next section,
we provide an extensive overview of the localization process in DV-Hop-based approaches
and briefly discuss our previous weight-based DV-HOP localization algorithms.

2.1. Weight-Based Enhancements to DV-Hop

In this section, we provide a comprehensive explanation of the localization process
in the DV-Hop approach. Additionally, we introduce two localization algorithms that we
previously proposed in [39–41], denoted W-DV-Hop and HW-DV-Hop. These localization
algorithms are designed with the intent of significantly improving the accuracy when
estimating the sensor positions.

2.1.1. Basic DV-HOP Algorithm

In this section, we detail the process of localization using DV-Hop in WSNs. DV-Hop
has demonstrated its ability to precisely determine the locations of sensor devices in both
IoT applications and WSNs. The algorithm estimates the locations of these devices based
on the relative distances between nearby anchor nodes. This solution enables precise
positioning, making it the preferred choice for localization tasks in the aforementioned
contexts. The basic DV-Hop algorithm consists of three main stages: (i) disseminating
information; (ii) determining the average hop size distance; and (iii) estimating the position.
These stages collectively contribute to estimation of the location of devices within a network.

In the first stage of the DV-Hop localization process, the anchor node (denoted as Ai)
broadcasts a hello packet to initialize the network. As the hello packet is relayed through
the network, the hop count value, which is initially 0, increases; each hop count reflects
the number of traversed nodes. When a node, either an anchor or a target/unknown node
(unknown nodes are denoted as U), receives the hello packet for the first time, it saves the
location of the sending anchor node Ai and initializes Hi;u as the hop count value collected
in the packet. This hop count value is computed as the minimum number of hops required
for node U to reach anchor node Ai. When node U receives a hello packet, it alters its
Hi;u. If the received packet has a lower hop count than the existing Hi;u value, then node U
updates its Hi;u with the new lower hop count and keeps the packet for further processing;
otherwise, node U ignores this new higher Hi;u value.

Throughout this stage, all sensor nodes diligently gather and maintain the hop count
and send information to every anchor Ai. This meticulous recordkeeping ensures that
accurate hop count data are available for other localization steps, facilitating the precise
estimation of node locations within the network.
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Table 1. Comprehensive summary of DV-Hop localization algorithm variants.

Authors Summary Strength of
Approach

Anchors
Based Node Density Localization

Error
Approaches of

Localization Complexity Accuracy

Chen et al. in [29]

A novel method that integrates
redundancy, optimized beacons,

and iterative techniques using hop
error-based signal weighting and an
optimal average hop size to improve

localization.

Weighted redundancy
and optimized

beacons are used.
Yes High Medium Iterative Medium Medium

Yanfei et al. in [30]

An approach that involves modifying
the hop count technique and

incorporating a mobile anchor node.
The hop count computation is modified.

Both static and mobile
anchor nodes are

used.
Yes High Medium Distributed Medium Medium

Shi et al. in [31]

A modified approach that combines
Particle Swarm Optimization (PSO) and

Simulated Annealing (SA) to handle
nonlinear equations.

Uses the PSO and SA
methods to address
nonlinear equations.

The anisotropic
networks.

Yes High Lower Iterative High High

Han et al. in [32]

DEIDV-Hop combines an enhanced
DV-Hop algorithm with Differential

Evolution (DE) to correct inaccuracies
caused by the average hop size in the

network.

Uses PSO with four
distinct network

topologies.
Yes High Lower Iterative High High

Zhang et al. in [33]

A localization approach called
LSDV-Hop that leverages the least

squares theory to enhance the precision
of node localization.

Transformation vector
using the

least-squares method.
Yes High Medium Distributed Medium Medium

Messous et al.
in [34]

An online sequential localization
algorithm based on the DV-Hop

technique.

Modifies DV-Hop into
an online sequential

localization algorithm
Yes High Medium Distributed High Medium

Song et al. [35]
An approach based on a novel method

for hop size distance calculation with 2D
hyperbolic techniques.

Uses a new average
hop size and 2D

hyperbolic techniques
Yes High Medium Iterative Medium Medium
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Table 1. Cont.

Authors Summary Strength of
Approach

Anchors
Based Node Density Localization

Error
Approaches of

Localization Complexity Accuracy

Tomic et al. in [36]
Three enhanced algorithms (iDV-Hop1,

iDV-Hop2, and Quad DV-Hop) based on
the DV-Hop technique.

New approaches
based on geometry. Yes High Medium Distributed High Medium

Singh et al. in [37]
A new DV-Hop-based scheme that
incorporates PSO to minimize the

localization error.

Combines DV-Hop
and PSO Yes High High Iterative High High

Rabhi et al. in [38] An optimized algorithm based on the
chicken swarm optimization approach.

Uses chicken swarm
optimization to
achieve superior

results in comparison
with the PSO method.

Yes High High Iterative High High
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During this localization process stage, sensor nodes convey the hop value to the
anchors. In the second step, anchor Ai determines the average hop distance AHSizei.
After the computation of AHSizei, anchor Ai propagates this value across the network.
The formula employed for determining the average hop distance AHSizei for each anchor
Ai is expressed as follows:

AHSizei =

∑
j 6=i

√
(xi − xj)2 + (yi − yj)2

∑
j 6=i

Hi,j
(1)

Here, Hi;j is the hop count from Ai to Aj, where (xi, yi) and (xj, yj) represent the
coordinates of anchors Ai and Ai, respectively. Additionally, Hi;u is the hop count value
from node Ai to the specific target node U.

Based on this formula, Ai, which is an anchor, saves its unique average hop size
AHSizei, which plays a crucial role in estimating the unknown nodes during the localization
steps. When this has been computed, anchor node Ai broadcasts this information across
the network, ensuring that all network nodes have access to it.

In the third stage, when a node U obtains AHSizei, it multiplies it by Hi;u (the number
of hops to Ai) in order to obtain the estimated distance to every anchor node Ai, denoted
as di, which can be estimated as follows:

di = AHSizei × Hi, (2)

where the value of i varies between 1 and k anchor nodes and Hi is the number of hops to
anchor node Ai.

Therefore, the estimated position of node U, denoted as (x, y), can be found using the
following equation. 

(x− x1)
2 + (y− y1)

2 = d2
1

(x− x2)
2 + (y− y2)

2 = d2
2

...
(x− xk)

2 + (y− yk)
2 = d2

k

(3)

By applying the least squares approach to solve the aforementioned equation, an un-
known node U can determine its estimated location UDV−Hop as follows:

UDV−Hop :
[

x
y

]
= (AT A)−1 AT B, (4)

where

A = −2×


x1 − xk y1 − yk
x2 − xk y2 − yk

... ...
xk−1 − xk yk−1 − yk

 (5)

B =


d2

1 − d2
k − x2

1 + x2
k − y2

1 + y2
k

d2
2 − d2

k − x2
2 + x2

k − y2
2 + y2

k
...

d2
k−1 − d2

k − x2
k−1 + x2

k − y2
k−1 + y2

k

. (6)

It is important to note that the anchor nodes must not lie on a single line. If they do,
the matrix (AT A)−1 becomes nonexistent due to the singularity of AT A.

2.1.2. W-DV-Hop Localization Algorithm

In our prior research papers [39,40], we introduced a new scheme for the typical
DV-Hop algorithm, which we denoted as W-DV-Hop. Similar to DV-Hop, W-DV-Hop uses
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three main steps: (i) dissemination of information within the network; (ii) a new technique
for computing the average hop distance; and (iii) estimating the locations of the unknown
nodes using trilateration.

More specifically, the first stage of the improved W-DV-Hop algorithm closely resem-
bles the standard DV-Hop. A hello message containing the location of anchor node Ai is
broadcast in the network, with the hop count from anchor to anchor initialized as 0. In the
second stage, the average hop size between anchors Ai is determined through the use of a
new weighted formula based on the mean [42]. In addition, in the improved W-DV-Hop
algorithm the average hop size is determined using the mean square error approach [43].
The formula applied to compute AHSizei is as follows:

ξ1 =
1

k− 1 ∑
j 6=i

(di,j − AHSizei × H2
i,j), (7)

where k represents the ratio of anchors, AHSizei is estimated under the assumption that
(∂ξ1/AHSizei = 0), di;j is the distance between anchor nodes Ai and Aj based on their
exact positions, which can be obtained through the GPS module, and Hi;j is the minimum
hop count between anchors Ai and Aj.

AHSizei =

∑
j 6=i

Hi,j × di,j

∑
j 6=i

H2
i,j

(8)

To compute the updated AHSizenew, the following formula is applied:

AHSizenew =

k
∑

i=1
Wi × AHSizei

m
∑

i=1
Wi

, (9)

where

Wi =
1

∑
j 6=i

∣∣AHSizei − AHSizej
∣∣. (10)

Here, Wi represents the weight assigned to every anchor Ai and k represents the
percentage of anchors.

In the third phase, the unknown nodes apply the multilateration technique to es-
timate their locations. Upon receiving AHSizenew, a normal node U multiplies its hop
count Hi; u (hops to Ai) by Hi;j. This yields the estimated distance to Ai, denoted as di
(di = AHSizenew × Hi), where i ∈ {1, 2, . . . , k} represents the anchor nodes. The following
equation is then created using the estimated position (x, y) of node U.

(x− x1)
2 + (y− y1)

2 = d2
1

(x− x2)
2 + (y− y2)

2 = d2
2

...
(x− xk)

2 + (y− yk)
2 = d2

k

(11)

Using the least square technique, the solution to the aforementioned equation enables
an unknown node U to acquire its estimated position UWDV−Hop through the following
formula:

UWDV−Hop :
[

x
y

]
= (AT A)−1 AT B, (12)
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where

A = −2×


x1 − xk y1 − yk
x2 − xk y2 − yk

... ...
xk−1 − xk yk−1 − yk

 (13)

B =


d2

1 − d2
k − x2

1 + x2
k − y2

1 + y2
k

d2
2 − d2

k − x2
2 + x2

k − y2
2 + y2

k
...

d2
k−1 − d2

k − x2
k−1 + x2

k − y2
k−1 + y2

k

. (14)

It is important to note that the anchor nodes must not lie on a single line. If they do,
the matrix (AT A)−1 becomes nonexistent due to the singularity of AT A.

A = ((GTG)−1)GTb (15)

The location of node U is then calculated as follows.{
xu = A(1)
yu = A(2)

(16)

2.1.3. HW-DV-Hop Localization Algorithm

The HW-DV-Hop approach (Hyperbolic Weighted DV-Hop) is another improved
method based on DV-Hop. HW-DV-Hop uses the following steps: (i) the anchors dissemi-
nate their precise locations; (ii) a new technique improves the average hop size; and (iii) the
hyperbolic 2D schema is used to estimate the position of unknown nodes instead of the
usual method.

The first stage of HW-DV-Hop is similar to the DV-Hop and W-DV-Hop approaches.
Each anchor Ai sends a message that includes its position and number of hops between the
anchor nodes. In the second step, AHSizei is determined using a new formula:

AHSizenew =

m
∑

i=1
Wi × AHSizei

m
∑

i=1
Wi

, (17)

where

Wi =
1

∑
j 6=i

∣∣AHSizei − AHSizej
∣∣. (18)

In the third phase, rather than applying the multilateration approach, the 2D hyper-
bolic location schema [44] is used to estimate the locations of the unknown nodes.

This approach assumes that (xi, yi) represents the coordinates of anchor node Ai and
(xu, yu) represents the coordinates of unknown node U. The following formula is used to
calculate di,u, which is the approximate distance between Ai and U.

d2
i,u = (xi − xu)

2 + (yi − yu)
2 (19)

If Ri = x2
i + y2

i and Si = x2
u + y2

u, Equation (18) can be reformulated as follows.

d2
i,u − R2 = −2xixk − 2yiyk + Si (20)
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Equation (19) can be represented in matrix form as

GA = b, (21)

where A = [xu, yu, Su]T , G =


−2x1 −2y1 1
−2x2 −2y2 1

: : :
−2xk −2yk 1

, b =


d2

1,u − R1
d2

2,u − R2
:

d2
k,u − Rk

.

According to Equation (20), A can be solved using the following formula.

A = ((GTG)−1)GTb (22)

Thus, the coordinates of node U are calculated using the formula below.{
xu = A(1)
yu = A(2)

(23)

3. Proposed Localization Algorithms

In this section, we introduce a set of three novel localization approaches aimed at
overcoming the limitations of DV-Hop and enhancing its accuracy by combining it with
intelligent swarm optimization. While DV-Hop is widely recommended in WSNs, it often
yields inaccurate positions for the sensor nodes, particularly in fields such as military and
environmental monitoring. To enhance localization accuracy, we integrate CSO, which is a
biologically inspired intelligent approach widely recognized for its efficiency in addressing
complex problem scenarios.

3.1. Motivation Behind Using Intelligent Swarm Optimization

DV-Hop is known to suffer from localization errors caused by uncertainty in distance
estimation, particularly as relates to the minimum hop count and average hop size. This
leads to significant deviations between estimated and actual distances that greatly affect
its localization precision. Localization in WSNs is a challenging NP-hard optimization
problem. Nature-inspired approaches have emerged as suitable solutions for this prob-
lem, with swarm intelligence optimizations being particularly promising thanks to their
adaptability, simplicity, self-organizing capacity, decentralization, and robustness. These
algorithms draw inspiration from social behaviors observed in animal communities such as
ants, fish, birds, and even chickens. Swarm intelligence optimization encompasses various
approaches, including the PSO, Ant Colony Optimization, Chicken Swarm Optimization,
and Artificial Bee Colony algorithms [28,45–47]. Recent research comparisons indicate
that CSO and PSO are among the most effective optimization algorithms for localization
problems in WSNs, offering numerous advantages over other techniques. For instance, PSO
is advantageous in its utilization of minimal parameters to adjust the particle population,
resulting in simplified parameter tuning. Moreover, it exhibits low spatial complexity
thanks to its efficient utilization of small temporary storage to minimize memory require-
ments. The fast convergence speed of PSO is attributed to its selective sharing of solutions,
where only the most optimistic particle can influence others. This enhances the algorithm’s
ability to rapidly converge towards optimal solutions. Furthermore, as demonstrated by
its successful use in tackling an extensive variety of problem areas, PSO has excellent
adaptability. Lastly, PSO offers an intuitive approach to interpreting and adapting solutions
to specific problem contexts, facilitating ease of implementation and customization.

The aim of this paper is to improve the localization accuracy of algorithms based
on chicken swarm optimization while achieving faster convergence. Our goal is to refine
the positions of nodes within a specific area. To achieve this, we introduce extensions
to the existing DV-Hop technique, which we call W-DV-Hop and HW-DV-Hop. These



Information 2023, 14, 592 12 of 24

modifications incorporate biologically inspired optimization techniques by integrating
CSO into the localization process. The process of localization consists of four key stages:
(i) broadcasting and minimal hop computation; (ii) determining the average hop distance;
(iii) localization for estimating the positions of unknown nodes; and (iv) CSO integration
for determining the optimal positions of unknown nodes. Through this work, we endeavor
to demonstrate the efficacy of leveraging CSO to improve the localization process and
achieve improved accuracy in locating unknown sensor positions within WSNs.

3.2. CSO Optimization Approach

Chicken swarm optimization is a biologically inspired heuristic optimization approach
that draws inspiration from the collective behavior of chickens. It falls under the category
of swarm intelligence algorithms, which are widely used to tackle complex optimization
problems by continuously seeking the best solution based on specific quality measures.

The CSO approach is based on the principles of self-organization, simplicity, and de-
centralization. Each member of the swarm represents a potential solution, and adapts its
position and behavior to explore the search space. The interactions among swarm members
facilitate information sharing, leading to updates in their positions and improvements in
their individual and collective performance. This collective intelligence enables CSO to
converge toward optimal solutions effectively. Due to its demonstrated effectiveness and
competitiveness in various problem domains, CSO has become a favored optimization
algorithm. By harnessing the collective behavior of chickens, CSO offers an efficient and
adaptable approach to solving complex optimization problems. CSO uses a minimal num-
ber of parameters to adjust the particle population to simplify the optimization process.
Furthermore, it guarantees efficient memory utilization, as it features low spatial complex-
ity while using small temporary storage. CSO guarantees fast convergence by allowing the
most optimistic chicken particles to share their solutions with others, offering an interactive
and adaptable approach to interpreting and customizing solutions to specific problem
contexts. The diversity of applications is ensured as well, as CSO has proven itself in many
different areas.

The optimization process of CSO consists of four steps: (i) population initialization,
parameter definition, and determining the fitness value of each individual calculation;
(ii) sorting individuals by fitness value and determining their identities and subgroups;
(iii) iteration of individuals with distinct identities based on different formulas and re-
sorting them at regular intervals based on their new fitness values; (iv) iteration stops when
the conditions are met, and the optimal solution is selected from among the population.

In the CSO approach, roosters with better fitness values are better able to find food in
wider areas. Roosters with the best fitness values can cover a larger distance to find food
than those with lower fitness values. The rooster movement function is as follows:

X(t+1)
(p,q) = Xt

(p,q) × (1 + Randn(0, σ2)) (24)

σ2 =

1 if fp ≤ fk

exp
(

fk− fp
| fp |+ε

)
otherwise

for k ∈ [1, N], k 6= p (25)

where the normal distribution of Randn(0, σ2) is around a mean of 0 and standard deviation
σ2, The index k refers to the stochastically determined rooster, fk is the fitness value of the
k-th rooster, and the minimum constant ε is applied to avoid the zero-division error.

The hens follow the roosters as group mates to find food, and can engage in stochastic
pilfering of food discovered by the roosters. This can be illustrated using the following
formulas:

X(t+1)
(p,q) = Xt

(p,q) + ϕ1 × Rand× (Xt
(r1,q) − Xt

(p,q)) + ϕ2 × Rand× (Xt
(r2,q) − Xt

(p,q)), (26)
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ϕ1 = exp
(

fp − fr1

| fp|+ ε

)
, (27)

ϕ2 = exp( fr2 − fp), (28)

where Rand represents a uniform random number in the range [0, 1], f represents the fitness
value, r1 represents an index of a roosters and it serves as the partner for the p-th hen, r2
denotes the index of the selected rooster or hen from the group of individuals, where r1
and r2 are different, and ϕ1 and ϕ2 represent the selection coefficients. In their search for
food, the chicks trail behind the mother hen; their behavior is expressed as follows:

X(t+1)
(p,q) = Xt

(p,q) + FL× (Xt
(s,q) − Xt

(p,q)), (29)

where Xt
(s,q) signifies the position of the mother hen of the s-th chick’s mother and FL is a

constant randomly selected from the range of [0, 2].
Generally, in the realm of 2D WSNs the network localization challenge can be modeled

by the following concept. Consider a network denoted as Net = {Sn1, Sn2, . . . , Snk+n} in
which there are n nodes and k anchors. The location of each sensor is represented by
Ai(xi, yi) and Ui(xui, yui) for i = 1 to k + n. In this problem, it is assumed that the k anchor
nodes Ai know their positions and that the objective is to estimate the n unknown nodes’
positions of Ui. More precisely, the di can be estimated as shown in the second phase of
each proposed DV-Hop variant. However, the estimation of this distance value always
involves a higher degree of error.

In this paper, we present novel localization approaches using chicken swarm optimiza-
tion to address the localization challenges in WSNs. In this study, the objective function of
chicken swarm optimization is defined as follows.

f(x,y) = min

(
k

∑
i=1

∣∣∣∣√(x− xi)2 + (y− yi)2 − di

∣∣∣∣
)

(30)

Using the objective function defined in Equation (26), the fitness function formula is
as follows.

f itness = f (x, y) (31)

Likewise, all chickens (roosters, hens, and chicks) update their positions using
Equations (24), (26), and (29), respectively. The fitness of each particle is assessed us-
ing Equation (30). The optimal solution is considered to be the optimized position of the
sensor node during this phase. Figure 3 provides the comprehensive localization process
utilized in our proposed approach. In the following subsection, the CSO approach is
applied to bridge the accuracy gap between DV-Hop and our improved algorithms.

3.3. CSO-Based Enhanced DV-Hop Algorithm

In this section, we discuss three localization approaches that are used in WSNs to
enhance the accuracy and efficiency of sensor node position estimation. In Section 2,
we introduced the W-DV-Hop and HW-DV-Hop algorithms. The DV-Hop, W-DV-Hop,
and HW-DV-Hop approaches are further improved using an optimization technique based
on the Chicken Swarm Optimization (CSO) approach. These improvements aim to accu-
rately determine node locations in WSNs.

We assess different scenarios to confirm the efficacy of several localization algorithms
in comparison with DV-Hop: MDV-Hop [35], PSODV-Hop [48], W-DV-Hop [39], and HW-
DV-Hop [40]. All of the proposed techniques were developed and implemented in MAT-
LAB, and we analyze their performance in static WSNs. The three new enhanced localiza-
tion schemes are denoted as DV-HopCSO, W-DV-HopCSO, and HW-DV-HopCSO. These
approaches consist of four stages, introduced as follows: (i) the locations of anchors are
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broadcast; (ii) the computation of the average hop size is enhanced; (iii) the hyperbolic 2D
technique is adopted to optimize the unknown nodes’ positions; and (iv) the CSO approach
is integrated to enhance the accuracy of the localization process.

Figure 3. Flowchart of the proposed algorithms.

In the DV-Hop algorithm, the conventional three phases are kept and an additional
fourth phase is introduced to integrate CSO. This phase results in improved accuracy when
locating the positions of sensor nodes within the network.

For W-DV-HopCSO, the first and third stages are equivalent to those of W-DV-Hop,
which is discussed in Section 2. Throughout the first phase, the anchor nodes transmit their
position information. The weighted mean approach is used in the second phase to find
the average hop size for each anchor node. Multilateration is used in the third phase to
approximate the locations of unknown nodes. Finally, CSO is used in the fourth phase to
minimize the positioning error of unknown nodes. Similarly, HW-DV-HopCSO is divided
into four stages: (i) the locations of the anchors are broadcast; (ii) the average hop size
computation is enhanced; (iii) the hyperbolic 2D solution is selected to determine the node
positions; and (iv) CSO is used to optimize and refine the unknown node locations.

During the first step, the anchor nodes disseminate a message specifying their exact
positions in the network. In the second step, we adopt the mean weighted method [42]
to calculate the AHSizei utilizing the novel formula discussed in Section 3. In the third
phase, the 2D hyperbolic location approach [43] is employed instead of multilateration
to precisely identify the unknown nodes’ coordinates. In the fourth stage, we use CSO
to improve and refine the estimated positions. Furthermore, as detailed in this research,
we use CSO to improve the precision of unknown node positions. The flowchart shown
in Figure 3 provides an overview of the proposed hybrid localization methods, and the
comprehensive pseudocode is illustrated in Algorithm 1.
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Algorithm 1: Pseudocode of the Proposed Algorithms
1: Input: n nodes; k anchors; communication range R
2:
3: Network topology distribution: square random; H-shaped; O-shaped; W-shaped
4: for i = 1 to n do
5: for j = 1 to n do
6: Distance calculation
7: di,j =

√
(xi − xj)2 + (yi − yj)2

8: and initialize hop-count Hi,j = 0;
9: if di,j <= R then
10: Hi,j = 1;
11: else if i == j then
12: Hi,j = 1;
13: else
14: Hi,j = in f ;
15: end if
16: end for
17: end for
18:
19: Creation of the Matrix of hop count between anchors based on the path algorithm;
20: Creation of distance matrix between anchors based on the path algorithm;
21:
22: for i = 1 to k do
23: Average hop size distance calculation AHSizei per anchor node based on Equation (1);
24: end for
25:
26: for i = 1 to k do
27: Wi weighted values calculation per anchor nodes based on Equation (18);
28: end for
29:
30: New corrected average hop size distance AHSizenew according to Equation (17);
31: for i = 1 to k do
32: di,k = AHSizenew × Hi,k from i-th anchor to k-th unknown node;
33: end for
34:
35: Determine the position of the unknown node using a 2D-hyperbolic based on Equation (23);
36:
37: CSO parameters initialization and using the coordinate of nodes calculated according to
38: 2D-hyperbolic;
39: Evaluate the chickens’ fitness values;
40: Made iteratively an update of the positions according to Equations (24), (26), and (29);
41: Stop the iteration when the goals are reached;
42: Output: the best locations of unknown nodes.

4. Simulation Results and Discussions

Comprehensive simulations were carried out using a MATLAB-based simulator to
assess the performance of all the introduced algorithms. MATLAB is a widely endorsed
numeric computing platform favored by many researchers for algorithm analysis, data
examination, and scenario modeling. Hence, in this study we employed MATLAB 2019a to
assess the performance of our algorithms for localization within static WSNs. Moreover,
the performance of our developed algorithms was contrasted with that of the original
DV-Hop, a PSO variant called PSODV-Hop [48], and the enhanced DV-Hop algorithms
MDV-Hop [33], W-DV-Hop [38], and HW-DV-Hop [39] through a series of simulations.
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The localization error and localization accuracy of each algorithm were evaluated by
varying the simulation parameters, including the number of sensor nodes, ratio of sensor
nodes to anchor nodes, range of communication R, and maximum number of iterations
considering a square random network topology and three distinct types of complex network
topologies (H-shaped, O-shaped, and W-shaped).

The localization accuracy used to confirm the efficiency of the introduced approach was
determined by calculating the average localization error using the formula in Equation (33):

Localization error =
√
(xi

exact − xi
estimated)

2 + (yi
exact − yi

estimated)
2 (32)

Localization accuracy =
∑N

i=1

√
(xi

exact − xi
estimated)

2 + (yi
exact − yi

estimated)
2

N × R
(33)

where (xi
exact, yi

exact) represents the exact coordinate of sensor i and (xi
estimated, yi

estimated)
represents the estimated coordinate of sensor i.

The localization error signifies the disparity between the accurate and estimated
geographical position of the unknown node. This error is quantified according to the
formula presented in Equation (32).

The evaluation of the new algorithms involved the following parameters: (i) the
network topology, characterized by the ratio of sensor nodes to anchor nodes and the
communication range R; (ii) the distribution of sensor nodes in a selected 100 m × 100 m
area; and (iii) the communication range R used by all sensors in the network. A total of
30 experiments were carried out, and the reported values represent the average result
derived from each of these experiments. Table 2 describes the simulation parameters
in detail.

Table 2. Detailed simulation parameters.

Parameter Value

Network

Network topology Square random, H-shaped, O-shaped, and W-shaped
Total runs 30

Length of area 100 m × 100 m
Number of nodes 200, 250, 300, 350, 400, 450, and 500

Number of anchor nodes 15%, 20%, 25%, 30%, 35%, and 40%
Communication range R 15 m, 20 m, 25 m, 30 m, and 35 m

PSO

Number of iterations 50
particle sizes 20

Random values σ1 and σ1 [0, 1]
Learning coefficient C1, C2 1.5 and 2

Particle’s velocity Vmax 10

CSO

Number of iterations 50
Size of chicken swarm 20

Number of roosters 8
Number of chicks 1
Number of hens 15

The efficiency of the introduced algorithms regarding localization accuracy was exam-
ined considering parameters such as the numbers of sensor nodes and anchor nodes, range
of communication, maximum number of iterations, and time of complexity in four distinct
types of topologies: square random, H-shaped, O-shaped, and W-shaped. The nodes within
the square were distributed randomly in a defined area of interest. This distribution is the



Information 2023, 14, 592 17 of 24

most commonly utilized topology for localization techniques. The H-shaped, O-shaped,
and W-shaped topologies of networks are irregular, and are based on empty regions on two
sides for the H-shaped topology, an internal side for the O-shaped topology, and three sides
for the W-shaped topology. Figure 4 depicts the four network topologies used in our simu-
lations. In the following subsections, we thoroughly discuss the simulation performance
for each of the mentioned topologies.

(a) (b)

(c) (d)

Figure 4. Node distribution vs. networks: (a) square random, (b) H-shaped, (c) O-shaped, (d) W-
shaped (400 nodes, 30% of anchors, and R = 15 m).

4.1. Impact of Communication Range

This section presents a comprehensive analysis of the introduced algorithms in order
to assess their impacts and performance on four different kind of network topologies while
varying the communication range: square random, H-shaped, O-shaped, and W-shaped.
In this scenario, the number of nodes remained constant at 200, the percentage of anchors
was set at 20%, and the range of communication R was varied from 15 m to 35 m.

The results, as depicted in Figures 5a–8a, reveal the influence of communication range
on localization accuracy for each algorithm within the four network topologies. For each
topology, the network becomes more connected as the communication range increases.
The HW-DV-HopCSO exhibits respective localization accuracy improvements of 46%, 42%,
46%, and 33% compared to DV-Hop and W-DV-Hop and respective improvements of 36%,
33%, 26%, and 32% compared to HW-DV-Hop, MDV-Hop, and PSODV-Hop in random
square, H-shaped, O-shaped, and W-shaped networks. In contrast, DV-HopCSO, W-DV-
HopCSO, and HW-DV-HopCSO consistently outperform other localization algorithms
across various network topologies. In addition, these algorithms outshine competitive
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localization algorithms, including PSODV-Hop, MDV-Hop, and HW-DV-Hop, across dif-
ferent network topologies. The HW-DV-HopCSO algorithm demonstrates the highest
efficiency among the tested algorithms.
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Figure 5. Localization accuracy in the square random network: (a) 15% of anchors and 200 nodes,
(b) R = 30 m and 200 nodes, (c) 15% of anchors and R = 30 m.
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Figure 6. Localization accuracy in the H-shaped network: (a) 15% of anchors and 200 nodes,
(b) R = 30 m and 200 nodes, (c) 15% of anchors and R = 30 m.
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Figure 7. Localization accuracy in the O-shaped network: (a) 15% of anchors and 200 nodes,
(b) R = 30 m and 200 nodes, (c) 15% of anchor nodes and R = 30 m.
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Figure 8. Localization accuracy in the W-shaped network: (a) 15% of anchors and 200 nodes,
(b) R = 30 m and 200 nodes, (c) 15% of anchors and R = 30 m.
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4.2. Impact of the Percentage of Anchor Nodes

In this section, we present a thorough examination of the proposed approaches to eval-
uate their performance on the same four distinct networks while changing the percentage
of anchor nodes within the network. In this configuration, the number of sensor nodes
remained fixed at 200 and the communication range remained constant at 30 m while the
percentage of anchor nodes was varied between 15% and 40%. The findings reveal that
the accuracy of all the proposed localization methods is impacted by the percentage of
anchor nodes.

Figures 5b–8b depict the results with respect to the percentage of anchor nodes. It can
be seen that DV-Hop, W-DV-Hop, MDV-Hop, and HW-DV-Hop exhibit lower localization
accuracy compared to HW-DV-HopCSO across the four different network topologies.
Furthermore, HW-DV-HopCSO respectively enhances localization accuracy by 51%, 45%,
49%, and 43% compared to DV-Hop and W-DV-Hop and by about 34%, 33%, 25%, and 26%
compared to HW-DV-Hop, MDV-Hop, and PSODV-Hop in the random square, H-shaped,
O-shaped, and W-shaped networks. In addition, the proposed W-DV-HopCSO and HW-
DV-HopCSO algorithms surpass the other approaches in terms of localization accuracy,
offering significantly improved results compared to competitive algorithms in all of the
different network topologies.

4.3. Impact of the Total Number of Nodes

In this section, our focus is on assessing the accuracy of localization for the proposed
techniques within square random, H-shaped, O-shaped, and W-shaped network topologies.
We comprehensively analyze their performance by examining the algorithm’s ability to re-
spond to changing the number of sensor nodes in the network. In this scenario, the number
of sensor nodes ranged from 200 to 500, the communication range remained fixed at 30 m,
and the percentage of anchor nodes was set at 20%. The results provide a comprehensive
comparison of the proposed localization algorithms based on the number of sensor nodes.
Figures 5c–8c depict the simulation results based on the number of nodes. It is essential to
highlight that as the density of sensor nodes increases within the region of interest, the net-
work achieves greater interconnectivity. In this scenarion, the HW-DV-HopCSO algorithm
demonstrates significantly higher localization accuracy, approximately 48%, 47%, 50%,
and 43% better than DV-Hop and W-DV-Hop and approximately 34%, 36%, 27%, and 26%
better than HW-DV-Hop, PSODV-Hop, and MDV-Hop for random square, H-shaped, O-
shaped, and W-shaped network topologies, respectively. Furthermore, in this experiment
we observed that our DV-HopCSO, W-DV-HopCSO, and HW-DV-HopCSO algorithms
yield better results regarding localization accuracy when contrasted with the competing
methods. The HW-DV-HopCSO algorithm exhibits the most outstanding performance
among the algorithms under consideration.

In all considered scenarios, there is a significant improvement in the performance of
the HW-DV-HopCSO localization algorithm across the four different network topologies
when modifying various simulation parameters. Our results indicate that integrating the
CSO method to refine the locations of sensor nodes represents a valuable approach to
localization in WSNs.

Table 3 provides a concise summary comparing the introduced and competing algo-
rithms in terms of minimum, maximum, and mean localization accuracy.

Table 3. Simulation results and analysis for the random square, H-shaped, O-shaped, and W-shaped
networks (200 nodes, 40 anchors, R = 30 m).

Network Topology Random Square H-Shaped O-Shaped W-Shaped

Algorithm MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

DV-Hop 0.032 0.693 0.282 0.021 1.065 0.379 0.053 0.806 0.282 0.017 0.772 0.274
DV-HopPSO 0.039 1.11 0.272 0.013 1.148 0.288 0.007 0.892 0.236 0.009 0.854 0.225
MDV-Hop 0.025 0.647 0.258 0.022 0.974 0.327 0.025 0.522 0.208 0.031 0.79 0.299
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Table 3. Cont.

Network Topology Random Square H-Shaped O-Shaped W-Shaped

Algorithm MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

DV-HopCSO 0.017 0.595 0.201 0.021 0.804 0.233 0.019 0.564 0.191 0.017 0.772 0.212
W-DV-Hop 0.012 0.976 0.278 0.012 1.595 0.38 0.017 0.713 0.267 0.013 1.09 0.278

W-DV-HopCSO 0.012 0.708 0.182 0.012 0.969 0.252 0.017 0.61 0.186 0.013 0.752 0.187
HW-DV-Hop 0.034 0.816 0.243 0.009 0.821 0.269 0.024 0.785 0.244 0.006 0.71 0.286

HW-DV-HopCSO 0.016 0.646 0.174 0.009 0.729 0.200 0.008 0.456 0.194 0.006 0.538 0.201

4.4. Number of Iterations Analysis

In this section, we examine the influence of the iteration number on the presented
localization approaches based on PSO and chicken swarm optimization (PSODV-Hop,
DV-HopCSO, W-DV-HopCSO, and HW-DV-HopCSO) considering the same four distinct
types of complex network topologies. In this configuration, the number of nodes remained
constant at 200, the percentage of anchor nodes was set to 15%, and the communication
range was 30 m, while the number of iteration was varied from 1 to 50. For CSO, the num-
ber of roosters was fixed at 8, the number of chicks at 1, and the number of hens at 15.
Additionally, the particle velocity Vmax and learning coefficients C1 and C2 for PSO were
fixed at 10, 1.5, and 2, respectively, and the swarm size for both PSO and CSO was fixed at
20. Table 2 provides a summary of the parameters used for this simulation.

The results depicted in Figure 9 reveal that the HW-DV-Hop algorithm based on
CSO is faster in terms of convergence speed in all four network topologies, in contrast
to PSODV-Hop. The HW-DV-HopCSO algorithm demonstrates the robustness of using
CSO for localization. It maintains a stable localization error compared to PSODV-Hop
when increasing the maximum number of iterations, with the latter exhibiting an unstable
localization error across different simulation scenarios and presented types of networks.
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Figure 9. Localization accuracy vs. number of iterations in different network topologies: (a) square
random, (b) H-shaped, (c) O-shaped, and (d) W-shaped (200 sensor nodes, 15% of anchors, R = 30 m).

Table 4 provides a summary comparing the performance of the proposed algorithms
to the existing ones as a function of the number of simulation trials.

Table 4. Simulation results and analysis in the random square, H-shaped, O-shaped, and W-shaped
network topologies (200 nodes, 40 anchors, R = 30 m).

Network Topology Random Square H-Shaped O-Shaped W-Shaped

Algorithm 30 80 100 30 80 100 30 80 100 30 80 100

DV-Hop 0.282 0.303 0.316 0.379 0.374 0.370 0.282 0.305 0.300 0.274 0.324 0.322
PSODV-Hop 0.272 0.243 0.247 0.288 0.286 0.287 0.236 0.257 0.256 0.225 0.243 0.245
MDV-Hop 0.258 0.225 0.230 0.327 0.288 0.286 0.208 0.199 0.197 0.299 0.255 0.265
DV-HopCSO 0.201 0.200 0.204 0.233 0.233 0.233 0.191 0.211 0.208 0.212 0.225 0.222
W-DV-Hop 0.278 0.288 0.298 0.38 0.367 0.365 0.267 0.289 0.281 0.278 0.310 0.312
W-DV-HopCSO 0.182 0.190 0.194 0.252 0.232 0.234 0.186 0.197 0.192 0.187 0.215 0.221
HW-DV-Hop 0.243 0.248 0.243 0.269 0.329 0.327 0.244 0.212 0.214 0.286 0.276 0.276
HW-DV-HopCSO 0.174 0.177 0.176 0.200 0.226 0.222 0.194 0.186 0.171 0.201 0.208 0.211
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4.5. Analysis of Time Complexity

Wireless sensor networks comprise many small devices, each with a limited battery,
and operate under stringent constraints in terms of capacity and energy consumption. Im-
plementing complex algorithms in WSNs presents a considerable challenge in many fields.
Due to these considerations, it is essential to conduct an evaluation of the time complexity
of the proposed algorithms. This is particularly important when considering the NP-hard
nature of the WSN localization problem. This scenario considered a WSN consisting of n
sensor nodes with unknown locations and k anchors; the generation maximum for CSO
and PSO were MaxG1 and MaxG2, respectively, the population size for CSO and PSO was
NP1 and NP2, respectively, and the time interval for status updates in the chicken swarm
was T. We employed the complexity to evaluate the time to completion required by an
algorithm or, in the worst-case scenario, its overall execution time.

The time complexity of all presented algorithms was examined. During the first stage,
all algorithms similarly create a hop count matrix; the time complexity of this stage is O(k2).
In the second step, the complexity for DV-Hop and PSODV-Hop is O(k2) due to the way in
which they calculate the average hop size. The W-DV-Hop, W-DV-HopCSO, HW-DV-Hop,
HW-DV-HopCSO, and MDV-Hop algorithms all apply different weighted formulas to
calculate the average hop size; despite these differences, the time complexity remains
O(k2). In the third step, the complexity for DV-Hop, PSODV-Hop, and DV-HopCSO is
O(k ∗ (n− K)), as these algorithms all use the least squares approach to calculate the nodes’
location. The time complexity for W-DV-Hop, W-DV-HopCSO, HW-DV-Hop, HW-DV-
HopCSO, and MDV-Hop is O(k ∗ (n− K)) in this stage, which is due to their reliance on
the hyperbolic 2D integration technique rather than the trilateration approach.

In the fourth phase, the time complexity of PSODV-Hop is O(MaxG1 ∗ NP1 ∗ (n− k)),
while for W-DV-HopCSO and HW-DV-HopCSO, which use CSO, it is O(MaxG2 ∗ NP2 ∗
(n− k)). An extra time cost of O(k ∗ NP1) is required due to the fitness function calculation
for the PSO-based algorithms, while O(k ∗ NP2) is needed for the CSO-based proposed
algorithms. In addition, O(MaxG1 ∗ NP1) and O(Max21 ∗ NP2) are required to update
the locations, resulting in the time complexity of the W-DV-HopCSO and HW-DV-HopCSO
algorithms, which use CSO, being O(MaxG2 ∗ NP2 ∗ (n− k)). Table 5 provides a summary
of the time complexity for the tested algorithms.

Table 5. Time complexity analysis.

Algorithm Time Complexity Space Complexity

DV-Hop O(k2) O(1)
PSODV-Hop O(MaxG1 ∗ NP1 ∗ (n− k)) O(NP1)
MDV-Hop O(MaxG1 ∗ NP1 ∗ (n− k)) O(NP1)

DV-HopCSO O(MaxG2 ∗ NP2 ∗ (n− k)) O(NP2)
W-DV-Hop O(k2) O(1)

W-DV-HopCSO O(MaxG2 ∗ NP2 ∗ (n− k)) O(NP2)
HW-DV-Hop O(k2) O(1)

HW-DV-HopCSO O(MaxG2 ∗ NP2 ∗ (n− k)) O(NP2)

5. Conclusions

In this paper, we showcase several novel localization algorithms designed to accurately
determine the locations of unknown sensor nodes. We proceed to evaluate and analyze
these new algorithms across four distinct network topologies, focusing on metrics such as
localization error and accuracy.

More specifically, we enhance the basic DV-Hop algorithm by incorporating additional
steps to enhance the precision of position estimation for unknown nodes. Through exten-
sive simulations, we thoroughly assess the performance of these new algorithms within
four different random network topologies in static WSNs. These simulations involve a
number of variations in parameters, including the number of nodes, percentage of anchor
nodes, communication range, and maximum number of iterations. Our results highlight the
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exceptional performance of the HW-DV-HopCSO algorithm as compared to the standard
DV-Hop and other competing algorithms in all the considered network experiments. Both
the HW-DV-HopCSO and W-DV-HopCSO algorithms exhibit lower localization errors
compared to the standard DV-Hop and other algorithms in the tested random square,
H-shaped, O-shaped, and W-shaped network topologies. Furthermore, the simulation out-
comes demonstrate that the HW-DV-HopCSO and W-DV-HopCSO algorithms consistently
outperform the standard DV-Hop and other state-of-the-art approaches. In our ongoing
research work, we intend to conduct future simulations to further evaluate the proposed
algorithms in mobile wireless sensor networks. Additionally, the presented algorithms can
be extended to more accurately calculate the locations of sensor nodes in three dimensions.
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