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Abstract: Online food delivery services today are considered an essential service that gets significant
attention worldwide. Many companies and individuals are involved in this field as it offers good
income and numerous jobs to the community. In this research, we consider the problem of online food
delivery services and how we can increase the number of received orders by couriers and thereby
increase their income. Multi-agent reinforcement learning (MARL) is employed to guide the couriers
to areas with high demand for food delivery requests. A map of the city is divided into small grids,
and each grid represents a small area of the city that has different demand for online food delivery
orders. The MARL agent trains and learns which grid has the highest demand and then selects it.
Thus, couriers can get more food delivery orders and thereby increase long-term income. While
increasing the number of received orders is important, protecting customer location is also essential.
Therefore, the Protect User Location Method (PULM) is proposed in this research in order to protect
customer location information. The PULM injects differential privacy (DP) Laplace noise based on
two parameters: city area size and customer frequency of online food delivery orders. We use two
datasets—Shenzhen, China, and Iowa, USA—to demonstrate the results of our experiments. The
results show an increase in the number of received orders in the Shenzhen and Iowa City datasets.
We also show the similarity and data utility of courier trajectories after we use our obfuscation
(PULM) method.

Keywords: privacy; differential privacy; online food delivery; deep reinforcement learning; multi-agent
reinforcement learning

1. Introduction

Usage of emerging advanced technologies such as smartphones has grown rapidly
and has substantially impacted customer behaviour in online shopping, specifically during
the COVID-19 pandemic. Today, online food delivery businesses are considered one of
the most widespread businesses worldwide and have grown globally. It is expected that
online food delivery will grow to 2.5 bn users by 2027, and it is expected that in the grocery
delivery segment, the average revenue per user will be USD 449.00 in 2023 [1]. Today,
many people, especially in urban areas, do not have enough time to prepare meals for
many reasons such as long working hours; hence, they often turn to online food delivery
services that connect restaurants or food outlets with couriers, who then deliver the food to
the customer.

Online food delivery applications are considered essential for many people nowadays.
However, many of these applications experience many operational issues that reduce their
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efficiency. In cities, each area has a different number of food delivery orders compared
with other areas. Most food delivery couriers rely on their experience to find areas with
high food delivery order demands. However, sometimes they may go to areas with low
demand. This issue can reduce the number of orders received by the couriers and lead to a
decrease in their income in the long term and can increase the customer waiting time in
a busy area as there are not enough couriers, which could reduce customer satisfaction.
This is why many companies seek to improve their applications and attempt to increase
the number of acquired food delivery orders to help increase the company’s and couriers’
income and reduce the waiting time for customers in busy areas in order to increase
customer satisfaction.

This study introduces a method based on multi-agent reinforcement learning for online
food delivery services that utilizes two multi-agent reinforcement learning algorithms. The
primary objective of this method is to increase the number of received food delivery orders
and increase the long-term income for the couriers. This method also helps to reduce the
waiting time for customers in busy areas by guiding couriers to areas with high demand
for food orders. A map of the city is split into small grids, each grid represents a small city
area, and the agent has to learn to locate the area with high food delivery order demands.
This approach enables couriers to find areas with high demand for food delivery orders so
that the couriers get more orders, which helps them to increase their long-term income.

While enhancing online food delivery services is important and provides numerous
benefits for many people, protecting customer information in online food delivery services
is crucial. There are some privacy concerns about leaking sensitive information to users,
such as customer location information for online food delivery services. Thousands of food
delivery orders are received each day by these platforms, with vast amounts of information
collected from the users. These data may be hosted by a third party and may be further
processed for training and analysis purposes. Also, the IT department may be operated
by a third party. Various access authorities are granted access to different types of data,
which allows illegal access to customer data. Furthermore, adversaries can employ various
attacks, such as inference attacks, and be able to infer some private information that could
pose a serious threat to disclosing customer information, such as the customer’s location.

To tackle this issue, a defence method has been proposed to protect the customer’s
location. The proposed method, called the ’Protect User Location Method’ (PULM), aims
to maintain the privacy of the customer’s location in online food delivery services. This
method uses differential privacy (DP) and the Laplace mechanism by injecting Laplace
noise into the customer’s location and the courier’s trajectory. The privacy parameter ε
that affects the amount of injected noise depends on two parameters: the city area size and
the frequency of customers’ online food delivery orders. In small cities, the adversary has
a higher opportunity to identify the customer’s location due to the small area and fewer
number of routes, which makes it easier for the adversary to find the location of the user,
whereas it could be more difficult in large cities due to the large geographical area and
increased number of roads. Also, when there are a number of food delivery requests from
the same customer, the adversary may be able to link the records of the same customer and
obtain the customer’s private information. Therefore, we inject more noise into the records
requested from small cities and for customers with a high number of records of online food
delivery orders.

The main contributions of this research are the following:

(i) We propose a method that aims to improve the efficiency of online food delivery
applications by guiding the courier to areas with high demand in order to increase
income in the long term.

(ii) We consider weekdays and weekends as a factor in the agent’s learning process to
gain better results as the number of orders can vary on weekdays vs. weekends.

(iii) To show more results and comparisons, this research employs two multi-agent
reinforcement learning methods, QMIX and IQL, which aim to increase the number
of received orders by couriers and raise long-term income.
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(iv) We use two datasets with different city sizes and different geographic areas to
present more results.

(v) We invent a privacy method called the ’Protect User Location Method’ (PULM).
This method uses the city area size and customer frequency of online food delivery
orders to determine the privacy parameter.

(vi) We employ differential privacy (DP) by injecting Laplace noise to preserve the
customer’s location along with the courier’s trajectory.

2. Literature Review

The section shows the previous work related to the online food delivery service
problem and location privacy preservation along with a brief explanation of our solution.

2.1. Online Food Delivery Service

In the literature, online food delivery has been broadly studied, yet it remains a
challenging problem. Many researchers have tackled the online food delivery problem,
and different methods have been proposed. The following are reviews of some previous
studies in this field.

Chen et al. [2] focus on same-day delivery by drones and vehicles. By vehicles,
multiple packages can be delivered along one route, but the travel is fairly slow. By drones,
travel is much faster, but they frequently require battery charging and have limited capacity.
Their proposed method is based on a deep Q-learning approach. The method learns to
assign a delivery to a new customer via either vehicles or drones or gives the option
of not providing the service at all. Liu et al. [3] focus on route planning. In order to
capture the preferences of delivery personnel from their historical GPS trajectories and
recommend preferred routes, they developed a deep inverse reinforcement learning (IRL)
algorithm. Also, the Dijkstra algorithm was adopted in their work instead of value iteration
to define the current policy and compute the IRL gradient. Xing et al. [4] consider path
problems. To optimize the delivery path, they used the improved method heuristics in deep
reinforcement learning (DRL). They analyse the aspects of delivery such as time constraints,
timeliness, and high coordination. Also, they compare their method with the traditional
tabu search algorithm.

Ding et al. [5] consider an alternative to traditional delivery: delivery by the crowd.
Based on public transport, they develop a crowdsourcing delivery system, and they con-
sider multiple aspects like multi-hop delivery, time constraints, and profits. From mas-
sive package data and passenger data, reinforcement learning is used to learn optimal
order-dispatching strategies. Bozanta et al. [6] propose a model incorporating the order
destination, order origin, and courier location. Every courier has a task to gather the given
order and deliver it to the wanted place. This model is designed to increase income from
served requests with a limited number of couriers over a period of time. The model of the
Markov decision process is considered to simulate an actual food delivery service. The
model has been applied to Q-learning and double deep Q-networks. Jahanshahi et al. [7]
propose a model that employs deep reinforcement learning algorithms to solve a meal
delivery service problem. The primary objective is to increase total profit by giving orders
to the most suitable couriers to reduce expected delays or by postponing or rejecting orders.
Their results show that the model significantly enhances the overall quality of service by in-
corporating the restaurants’ geographical locations, customers, and the depot. Zou et al. [8]
propose a reinforcement learning double deep Q-network (DQN) framework that gradually
learns and tests the dispatch order policy by communicating with an online-to-offline
(O2O) business simulation model designed by SUMO. Hu et al. [9] consider the dispatch
problem in instant delivery services, where they dispatch a large number of orders to a
small number of couriers, especially during peak hours. Based on multi-agent actor–critic,
the method of courier displacement reinforcement learning (CDRL) is proposed to solve
this problem. The method not only can balance supply (courier’s capacity) and demand
(picking up orders), it can also enhance the effectiveness of delivering orders by decreasing
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idle displacing time. Table 1 presents a summary of some relevant previous studies on
online food delivery service.

Table 1. Summary of some relevant previous studies on online food delivery service.

Author Method Domain Methodology Objective

Hu et al. [9] CDRL Delivery
services Multi-agent actor–critic

Consider the dispatch problem of courier and balance the demand (picking up or-
ders) and supply (couriers’ capacity) and improve the efficiency of order delivery
by reducing idle displacing time.

Zou et al. [8] Delivery
services Double deep Q-network

Propose a dispatch framework that gradually learns and tests the dispatch order
policy by assigning the order to the selected courier, and if the order is finished
within the time limit, a positive reward is given for the action. Otherwise, a negative
reward is assigned for the action.

Jahanshahi et al. [7] Delivery
services Deep reinforcement learning

Consider a meal delivery service and increase the total income and quality of the
service by giving the orders to the most suitable couriers in order to reduce the
expected delays or by postponing or rejecting orders.

Bozanta et al. [6] Delivery
services

Q-learning and double deep
reinforcement learning

Consider food delivery service and increase the income derived from served orders
for a limited number of couriers over a time period by utilising the order destina-
tion, order origin, and courier location.

Ding et al. [5] Delivery
services Reinforcement learning

Consider the delivery service problem and develop a crowdsourcing delivery sys-
tem that uses public transport. This system incorporates some factors that impact
the system, such as multi-hop delivery, profits, and time constraints.

2.2. Privacy Preservation

Many scholars and experts have recently conducted much research on location and
trajectory privacy preservation. Most research concentrates on the method of anonymity,
and there is fairly little research on differential privacy (DP). The model of k-anonymity is
commonly used by researchers to achieve trajectory protection in anonymity. The following
will demonstrate the status of the research in preserving privacy by using anonymity and
differential privacy (DP) [10].

Zhang et al. [11], by using a trusted anonymous server (TAS), developed a scheme
of trajectory privacy preservation that aims to not allow a location-based service provider
(LSP) to perform an inference attack. A group of requests generated by TAS meets the
spatial k-anonymity of the user group. The TAS is the continued query that checks if the
user is going to leave his/her security zone and determines if the group request needs to
be resent in order to decrease the chance that the LSP rebuilds the actual trajectory of the
user. Tu et al. [12] focus on semantic attacks, as if the data of the trajectory are published
without appropriate handling, it could lead to severe privacy leakage, and existing solutions
do not provide adequate protection to protect against semantic attacks. This means the
attacker could obtain an individual’s private information by using the semantic features
of frequently visited locations on the trajectory. Therefore, they propose an algorithm
that provides high privacy safeguards against semantic attacks and re-identification while
keeping the data utility at the highest level. Chiba et al. [13] propose an algorithm that
over a certain range, when the position information is acquired, the algorithm mismatches
the time with the position information. They defined indicators that represent position
distortions and information about the time. Zhou and Wang [14] propose a defence
algorithm based on k-anonymity and fog computing. A scheme of trajectory protection is
designed for the protection of offline data in trajectory publication and the protection of
real-time trajectory data with continuous queries. Their solution incorporates the mobility
and local storage provided by fog computing to guarantee physical control along with a
cloaking region constructed by k-anonymity for each snapshot.

The DP model has been favoured by many scholars as it has a rigorous mathematical
background. With DP and by adding noise to DP data, attackers cannot determine if the
database contains data records, which achieves privacy protection purposes. Moreover,
in machine learning, privacy attacks are usually addressed by using the technique of dif-
ferential privacy [15]. Andrés et al. [16] propose a formal privacy notion of geoind for
location-based systems that protect the user’s exact location while permitting the release of
the approximate information that is usually required to get a certain service. By adding to
the user’s location managed random noise, geoind achieves privacy preservation. Deldar
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and Abadi [17] study how to not increase the risk of a privacy breach and how different ge-
ographical map locations can meet the requirements of individual user privacy protection.
To achieve user location privacy preservation, the personalized location differential privacy
(PLDP) concept was introduced for trajectory databases. A personalized noisy trajectory
tree is used by PLDP-TD and is built from the underlying trajectory database to provide a
response to statistical queries by using the differential privacy method. Zhao et al. [10] pro-
posed, based on clustering and using DP, a novel trajectory-privacy-preservation method.
In the cluster, to prevent an attack of continuous queries, Laplace noise is added to the
count of the trajectory location. The radius-constrained Laplace noise is added to the
trajectory location data in the cluster to avoid too much noise affecting the clustering. The
noise clustering centre in the cluster is obtained according to the noise location data and
the count of the noise location. Yang et al. [18] consider the issue of user location privacy
protection. As the centralized server is required to obtain each user’s location precisely to
ensure optimal task allocation, this raises a privacy concern of exposing the workers’ exact
locations. To tackle this issue, a crowdsensing data release mechanism that meets DP is
proposed to provide strong protection of worker locations. Table 2 presents a summary of
some relevant previous studies on privacy preservation.

Table 2. Summary of some relevant previous studies on privacy preservation.

Author Method Domain Methodology Objective

Andrés et al. [16] geoind Location privacy Differential private

Consider the location privacy problem and protect actual location information. Pro-
pose a formal privacy notion of geoind for location-based systems that protects the
user’s exact location and permits the release of approximate information that is usu-
ally required for certain services.

Deldar and Abadi
[17] PLDP Location privacy Differential private Consider location privacy and guarantee that the privacy of each sensitive location

or moving object is protected.

Zhao et al. [10] Location privacy Differential private
Consider protecting the location and trajectory information privacy from being
disclosed by attackers. Based on clustering using differential privacy, proposed a
trajectory-privacy-preservation method in order to protect trajectory information.

Yang et al. [18] Location privacy Differential private
Consider location privacy and the privacy of the workers’ location information. Pro-
posed data release mechanism crowdsensing techniques that aim to protect the pri-
vacy of the worker location information.

2.3. Discussion of Related Work

Much research tackles the food delivery problem by using different methods, such
as assigning the delivery request to the most appropriate courier, trying to minimise the
number of rejected requests, or proposing an effective dispatch mechanism. In this work,
we consider this issue and employ multi-agent reinforcement learning. We used two novel
algorithms—QMIX and IQL—to guide the courier to the area with high order demand to
increase the number of orders received by the courier and raise his/her long-term income.

While improving the efficiency of food delivery services is necessary, preserving
the privacy of the users’ locations is crucial. Numerous researchers have studied this
issue, and methods such as k-anonymity and DP have been used to protect the user’s
location. Our work proposes the PULM method to protect the user’s location. The PULM
employs the DP mechanism and injects Laplace noise into the user location along with the
courier trajectory. This method considers two critical factors—the city area size and the
frequency of customers ordering online food delivery—in order to identify the amount of
injected noise.

3. Preliminary
3.1. Dueling Network Architecture

Dueling DQN is a reinforcement learning model-free network that solves the Bellman
Equation iteratively [19]. It was proposed in 2015 by Wang et al. [20] as an improvement
to DQN. The main insight of this new architecture is that there is no need to estimate the
value of each action choice for many states. For example, knowing whether to move left
or right in the Enduro game setting only matters when a crash is close. It is essential to
know which action to take in some states, while in other states, the chosen action does not
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affect what happens [20]. In this algorithm, the main improvement is that the Q-values
Q(s, a), which the network tries to approximate, can be split into two parts: the advantage
of actions of the state A(s, a) and the value of the state V(s). Based on the definition
Q(s, a) = V(s) + A(s, a), the advantage A(s, a) is assumed to bridge the gap from A(s) to
Q(s, a). We can suppose the advantage A(s, a) is delta, which tells us how much reward we
can earn from each specific action in each particular state. In general, the advantage can be
negative or positive and can have any magnitude [21]. There is no sequential architecture
such as deep learning in dueling DQN. The model layers are divided into two different
streams after the convolutional layers. Each stream has its own fully connected layer and
output layers [22]. The outputs of the two separate estimators can be integrated as follows:

Q(s, a; θ, α, β) = V(s; θ, β) +
(

A(s, a; θ, α)− 1
|A| ∑a′ A(s, a′; θ, α)

)
The parameters of the convolutional layers are denoted by θ, while α and β are the

parameters of the two streams of fully connected layers.

3.2. Multi-Agent Reinforcement Learning

One of the widespread solutions for sequential decision-making problems is reinforce-
ment learning. In the setting of multi-agent reinforcement learning (MARL), we move to
the problem of having more than one agent in the environment and abandon the problem
of having one single agent. MARL is about the intersection of two concepts: the task is
achieved by reinforcement learning, and agents interact with other agents [23]. In this set-
ting, we have more than one agent interacting in our environment and aiming to maximize
our rewards [24].

The Markov decision process is used in fully observable domains as a model of MARL
and can be described as six tuples containing: (1) I = {1, . . . , j}, representing the set of
agents, where j is the number of the agent; (2) the environment true state S at each time
step; (3) A = {a1, . . . , an}, the agent’s available actions, where n is the action index; (4) the
transition function T, which depend on the agent’s action; (5) the agent reward function R;
and (6) γ, the discount factor of every agent. The domain at each step t is in state s ∈ S; The
agent takes action a ∈ A; this action transits the domain to a new state s′ with probability
T(s′|s, a); the agent then gets a reward r based on R(s, a); this process is repeated until the
agent stops. The agent’s main objective is to learn a policy π that will raise its expected
discounted future reward E[∑0≤t<∞ γtrt] as the number of sequential steps is t [23,25,26].

3.2.1. QMIX Algorithm

In a multi-agent framework, every agent selects an action, creating a collective action
at, and then the global, immediate reward rt is shared, which assesses the collective
action taken previously. For the collective action, there is collective agent–value function
Qtot(st, at) = Est+1 : ∞,at+1 : ∞[Rt|st, at], where at time t, the discounted return is Rt. One of
the main challenges in MARL is how to assess every agent’s contribution individually and
precisely to get from the collective action–value function to the individual value function.
The agent Ai individual value function is represented by Qi(ot, at). QMIX is an advanced
technique of value-based aims to train uncentralized policies in an end-to-end centralized
method [27]. To perform this, QMIX needs to overcome two challenges: The first challenge
is in the process of centralized training. Every agent needs to calculate the influence action
based on a single global reward. The second challenge is to guarantee that the ensemble of
the optimal actions of agents is the optimal action of the ensemble of agents when agents
interact in a decentralized manner [28]. There is a belief in QMIX that it can interpret the
total action–value function as the mixing network of each action–value function or as a
linear combination of each action–value function. Thus, it is expected that the QMIX-based
method acts in cooperation with nearby agents [29].
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3.2.2. Independent Q-Learning

Independent Q-learning (IQL) was proposed by Tampuu et al. (2017) [30]. Indepen-
dent Q-learning is an algorithm that abandons centralized training: for each agent in IQL,
Q-learning is performed separately. In some way, this method avoids the implementation
issue of the CTDE framework. Consequently, there is a high probability that a single
agent action can interfere with the overall environment and with other agents of the state.
Therefore, this makes it so that IQL cannot converge in a complex environment. The IQL
algorithm still has a number of applications in small scenarios of reinforcement learning
applications such as Atari games.

In IQL, each agent trains decentralized Q-functions, while QMIX is a method learned
from end-to-end for decentralised policies in a centralised setting. QMIX is composed of
networks of agents representing every Qa and a mixing network that combines them into
Qtot. IQL is the most commonly applied method in multi-agent learning, and it consists of
a group of concurrent single agents that use and share the same environment but where
every agent learns individually [27,29,31,32]. In our research, we intend to use different
MARL settings in order to show more results from our experiments.

3.3. Trajectory Protection

Assume the universe of locations is L = {L1, L2, · · ·, L|L|}, |L| is the size of the
universe, the locations are discrete spatial areas on a map, and trajectories are formed from
series of order locations that are drawn from the universe.

Definition 1 (Trajectory). The trajectory T of length |T| is an ordered list of locations T = t1 →
t2 → · · · → t|T|, where ∀1 6 i 6 |T|.

In T, the locations can occur consecutively and can occur multiple times. Therefore,
a correct trajectory can be L = {L1, L2, L3, L4} , T = L1 → L2 → L3. The timestamps, in
some cases, can be included in the trajectory. The trajectory database consists of multiple
trajectories, and the record owner of the movement history is shown for every trajectory.
The following is the formal definition:

Definition 2 (Trajectory Database). A trajectory database D of size |D| is a multiset of trajectories
D = {D1, D2, · · ·, D|D|}.

Table 3 shows a sample of database trajectories with L = {L1, L2, L3, L4} [33]. The
attacker may get the user’s location via analysis of trajectory data. In this research, a defence
method based on DP is provided for some attack models existing in trajectory analysis.
A properly calibrated randomization mechanism is injected with a meaningful amount
of differential privacy noise drawn from a trajectory sensitivity function as described in
Section 3.4. This creates differential privacy spatio–temporal data; the sanitization of a
trajectory path is the result of the perturbation of these traces. Therefore, the perturbed
trajectory path prevents the attacker from determining the original trajectory path and
preserves user privacy.

Table 3. Sample trajectory database

Rec # Path

1 L4 → L5 → L6
2 L2 → L3
3 L2 → L4 → L5
4 L3 → L5 → L6
5 L4 → L5
6 L1 → L3
7 L3 → L2
8 L1 → L3 → L5 → L2
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3.4. Differential Privacy

Today, with the advancement of data analysis and mining, data privacy threats are
vastly increasing. Differential privacy (DP) is mainly a mathematical model that ensures
the privacy of a statistical dataset [34]. Dwork et al. [35,36] provide robust standards to
maintain privacy in data analysis. With no previous knowledge of the trader’s background
knowledge, DP is the standard model for privacy preservation that is used to maintain
privacy [37]. Let X be considered a finite data universe. The variable d is attributes of
universe X , and r is the sample record. From domain X , D is a set of n records that are
unordered. If D and D′ datasets are different in one record only, then they are considered
neighbouring datasets. The function f is a map of a query of the D dataset to an abstract
range R : f : D → R. To maintain privacy, we mask the difference of query f between the
neighbouring datasets. In DP, the sensitivity ∆ f is an essential concept that represents the
result of the highest difference of query f , which defines how much perturbation is needed
for the private-preserving answer. The algorithm of randomization M is used to perform
this goal as it reaches the database and executes several functions. The following is the
definition of DP [38]:

Definition 3 (Differential privacy). A randomized mechanismM providing differential privacy
(ε, δ) for any two neighbouring datasets D and D′ for which for every set of output Z ,M satisfies:

Pr(M(D) ∈ Z) ≤ exp(ε) · Pr
(
M
(

D′
)
∈ Z

)
+ δ (1)

The randomized mechanismM provides its strictest definition if δ = 0.

Definition 4 (Sensitivity). for neighbouring inputs (D , D′ ∈ D) and query f : D → R, the
sensitivity f is defined as:

∆ f = max
D,D′
|| f (D)− f (D′)|| (2)

Sensitivity is the parameter that defines how much perturbation is needed for a certain
query. The highest difference between the results of the query on neighbouring datasets is
considered by the sensitivity ∆ f .

Definition 5 (Laplace mechanism). for the function f : D → R with dataset D, the mechanism
M gives ε differential privacy [37,39,40].

M(D) = f (D) + Lap(
∆ f
ε
) (3)

The mechanism of Laplace is used with numeric outputs, as the mechanism inserts
independent noise into the original answer.

4. Methods
4.1. Model Overview and Problem Statement

In most cities, particularly large cities, the demand volume varies from one particular
area to another and from time to time. To increase the number of received online food
delivery orders, many food delivery couriers try to locate areas with high food delivery
demand based on their experience. However, sometimes they may go to an area with low
food delivery demand and receive fewer food delivery requests.

The main objective of our proposed model is to increase the number of received orders
by the courier and thereby increase the courier’s long-term income. Our method can
minimize the waiting time in rush hours, as there will be enough couriers in areas with
high demand for food orders. Figure 1 shows the flowchart showing the steps of execution
of the online food delivery service method. We consider urban areas and specific areas of
cities, which we then divide into multiple parts. We assume this area to be a rectangular
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shape that can be split into N ×M cells. Every divided cell illustrates a small area in the
city, as demonstrated in Figure 2. The yellow cars represents the couriers, and the red circles
represent areas with high demand for food delivery requests. A courier of food delivery
in a cell waits and receives a delivery request from a customer without any previous data,
as customer data are available only after the customer requests the service. The courier
has to learn to choose a cell with high food delivery requests based on analysis of the
data collected by an agent. Each time, the courier tries to improve by selecting the most
appropriate cell to increase the number of received orders and increase long-term income.

Figure 1. Flowchart showing the steps of execution of online food delivery service method.

Figure 2. Overview of the model: the yellow cars represent the delivery cars that are being guided,
and the red circles represent areas with high demand for food delivery requests.

While enhancing online food delivery services is important, protecting customer infor-
mation is essential. This research considers preserving customer privacy information by
protecting customer location information. We utilize the DP Laplace mechanism, where the
privacy parameter ε that affects the amount of injected noise depends on two parameters:
the city area size and the frequency of customers’ online food delivery orders. To protect
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the customer location information, we inject Laplace noise into the user locations and
courier trajectories.

4.2. Multi-Agent Reinforcement Learning Formulation

The Markov decision process is used to formulate our model. The transition probability
in our case is unknown. The idea of being model-free is more appropriate for such situations.
Below are more details about the main components of the model and the Markov decision
process formulation.

4.2.1. Agent

In our environment, more than one agent has been created {A1, A2, . . . , An}, so we
must allocate the learning policy to each agent respectively. This MARL problem considers
the courier as the agent. The agent’s main goal is to pick a cell with high demand of food
delivery requests, where the courier can increase the number of received food delivery
requests and increase the courier’s income. Initially, the agent policy is uncertain and
requires interaction with the environment to learn. The agents evaluate the policy and
iterate consecutively.

4.2.2. State

The global state st is maintained at each time t, and the couriers’ spatial distribution is
considered. In our dynamic model, the states are defined based on grid location and time.
The state space for our problem is characterized as follows:

• The grid location: A certain area of the city map is considered and is divided into
N ×M cells. Every divided cell illustrates a small area in the city. The agent interacts
with the environment and updates his/her status. The agent then analyses and
computes the available information about the environment and tries to pick a cell with
high food delivery demand.

• Weekdays and weekends: On the one hand, during weekdays and weekends, different
situations need to be noted and considered by the model. Therefore, in this model, we
consider weekdays and weekends during the learning process for better performance.

4.2.3. Action

For each state, the agent chooses the cell that makes the courier get more food order
requests and increase long-term revenue. The map is split into N ×M cells, and each cell
represents a particular area that may or may not have restaurants. The model calculates the
number of orders in each cell and analyses the data based on that.

The agent has to perform an action on this by picking the most proper cell to raise
his/her rewards. In this case, the agent has N ×M actions and needs to choose one cell
each time.

4.2.4. Reward Function

The agent in the environment performs the action, and then the agent receives the
rewards from the environment. Only if the agent is able to increase the number of received
orders and meet or exceed the approximate average number A is the received reward
positive; otherwise, the reward is negative. This can be defined as follows:

r(k) =

{
1, i f N ≥ A .
1−, Otherwise .

(4)

where r(k) is the reward function, N is the number of orders, and A is the approximate
average number of orders for every single agent.
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4.2.5. State Transition

In our setting, the action is passed from agents and is received by the environment. The
state st is then generated, the agents observe the new state, and the agents take collective
action at. The environment assesses this action, and the environment returns a reward rt. A
tuple of state transition {st, at, rt, st+1} is formed at this point, and then MARL is used to
find the relationships between these tuples.

4.2.6. Multi-Agent Reinforcement Learning for Online Food Delivery

An overview of the QMIX algorithm for online food delivery is presented in Algorithm 1.
During the training process and by using gradient descent, the loss function is minimized
with consideration of the parameter θ at iteration i. For this purpose, a neural network
is employed as an approximator. In the beginning, with size N , we initialize the reply
buffer D. In lines 2 to 4, with random weight θ, we initialize the action value function,
copy weight θ̄ ← θ, initialize the target action value function, and then initialize the QMIX
mixing network. In lines 5 and 6, if the episode has not ended, the environment then resets.
In lines 9 to 11, the current observation is observed by agents, and the agent then chooses
an action based on probability ε or else chooses the highest value from argmaxat(ot, at : θ).
In line 13, the agent performs the action and obtains corresponding rewards; then, the agent
observes the next state. In line 14, experience tuples, such as the taken action, state, next
state, and obtained reward, are inserted to memory. From the reply buffer D, we extract
the sample and compute the loss function L. In line 18, we implement the step of gradient
descent. In lines 19 and 20, the parameter θ̄ of the target network and the exploration rate ε
are updated.

Algorithm 1 QMIX algorithm for online food delivery environment.

1: With size N , initialize reply buffer D
2: With random weight θ, initialize action value function
3: With θ̄ ← θ, initialize target action value function
4: Mixing network φ is initialized
5: while Episode training not finished do
6: Environment reset
7: while the state not in termination do
8: for agent in Agents do
9: Observing the state ot

i by the agent
10: Select a random action at with probability ε
11: Else select argmaxat (ot, at : θ)
12: end for
13: Perform action at, move next state st+1, and obtain reward rt and termination information
14: Insert (ot, at, st+1, rt ) to D reply buffer
15: Random sample K minibatch from D
16: Qtot = mixing((Q1(o1

t , a1
t ) + Q2(o2

t , a2
t ) + ...Qn(on

t , an
t ))

17: Loss function computed L =
(
rt + γmaxat Qtot(st, at|θ̄)−Qtot(st, at|θ)

)2

18: On L, implement the step of gradient descent into network parameter θ
19: Updating the θ̄ parameter of the target network
20: Rate ε of exploration is updated
21: end while
22: end while

4.3. Protect User Location Method

Safeguarding the privacy of customer locations in online food delivery applications
is essential. In this section, we focus on how to safeguard the user location in a delivery
application. Therefore, we designed the PULM method to protect the user’s location by
injecting noise into the user’s location and the courier’s trajectory. Figure 3 is a flowchart
showing the steps of execution of the PULM method. We use DP along with the Laplace
mechanism to guarantee that the user’s location is not disclosed. We determined the privacy
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parameter in this method based on two parameters. The first parameter is the city area size
and the second parameter is the customers’ frequency of online food delivery orders.

Figure 3. Flowchart showing the steps of execution of the PULM method.

4.3.1. Overview of PULM Algorithm

Preserving the privacy of user locations is crucial and essential. DP shows robustness
and effectiveness in providing adequate privacy to datasets. Algorithm 2 shows the
execution of the PULM method and how it works. In the beginning, the trajectory datasets
of the courier are entered in the form of location points containing longitude and latitude
from the start point to the destination. In lines 2 and 3, the frequency of a customer’s
ordering and the city area size are calculated and entered. The sensitivity ∆ f is calculated
in line 4 and is based on Equation (2). In line 5, the privacy parameter ε is calculated. To
calculate the privacy parameter, we sum the result of the city area size with a weight of 2.5
with the result of the frequency of online food ordering with a weight of 2.5; a smaller value
for the privacy parameter is stronger privacy. For example, the Iowa City area <500 km2

gives 0.5. If we have a customer with five orders and in the dataset max(x) = 10, min = 1,
this will be calculated as (5–10)/(1–10) × 2.5 = 1.388. In this case, the privacy parameter is
0.5 + 1.388 = 1.88. In line 6, random points are taken from the trajectory dataset, including
the location of the customer. In line 7, Laplace noise is added based on the sensitivity ∆ f
and privacy parameter ε. The output perturbates the user location with the trajectory.
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Algorithm 2 Protect User Location Method (PULM)

1: Input user trajectory datasets D
2: Input customer frequency of ordering online food delivery.
3: Input city size
4: Based on Equation (2), obtain the sensitivity ∆ f of the trajectory metric space
5: Calculate the privacy parameter ε based on city size and customer order frequency
6: Select random points from the input trajectory dataset D, including the user location
7: Add Laplace noise to the selected points based on ∆ f and ε
8: Output Perturbate user location with trajectory

4.3.2. City Area Size

The city area size is an important factor, as it can affect the ability to infer the user
location and courier trajectory. Figure 4 shows the difference between the two examples of
city area size that we consider in this research. For a large city area size, the population,
the number of roads, and the number of cars are more. Therefore, inferring the trajectory
and customer location may be more difficult compared with a smaller city area size. For
example, Figure 4 shows the sizes of Iowa City and Shenzhen, where the area of Iowa City
is about 67.83 km2 compared with about 2050 km2 for Shenzhen; the population in Iowa
City is about 74,596 compared with about 17.56 million in Shenzhen.

Figure 4. Comparison of the city size of Iowa City on the left and Shenzhen on the right side.

The city area size varies from 50 km2 to more than 8000 km2, such as Tokyo with
2191 km2 city area size [41] and a small city such as Iowa City with 66.3 km2 [42]. To allocate
the proper noise in our model, we need to classify the city based on the area size. Most of
the city classifications are based on the city population. For example, UK Parliament [43]
classified cities based on population into core cities such as London, Sheffield, and Glasgow;
other cities; large towns; medium towns; small towns; and villages. Also, Liu and Chen
[44] classify cities as super cities for populations of more than 10 million, megacities for
populations between 5 and 10 million, large cities for populations between 1 and 5 million,
medium cities for populations between 0.5 and 1 million, and small cities for populations
less than 0.5 million. In our model, we attempted to classify cities based on area size, and
we approximately mimicked the population factor. Equation (5) shows the distribution of
noise parameters based on the city area size that we used in our model.
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f (x) =



0.5, if x <= 500.
1, if 500 < x <= 1000.
1.5, if 1000 < x <= 1500.
2, if 1500 < x <= 2000.
2.5, if x > 2000.

(5)

4.3.3. Customer Frequency of Online Food Delivery Orders

In our method, we consider the factor of how frequently a customer makes orders.
When there are many orders for the same customer, there is a high chance of inferring the
information of the customer. The attacker may be able to infer the customer’s location
and pattern or any other information, especially if there are many repeat orders from the
same user. An example of the ability of the attacker to infer some private information
from a particular user is that the attacker could infer if a particular individual has health
issues if the user frequently visits a hospital location that is not his home or workplace
[12]. Consequently, we consider this factor and aim to protect the user location by injecting
more noise into the user locations and courier trajectories for users with high-frequency
orders. We calculate the privacy parameter based on two parameters: the city area size
and the frequency of a customer’s order. The frequency of orders for the customer can be
determined using this equation:

Y = ((x−Max(x)) / (Min(x)−Max(x)))× 2.5 (6)

where x represents each customer’s frequency of order number, Max(x) is the dataset’s
maximum frequent order number, and Min(x) is the dataset’s minimum frequent
order number.

5. Experiment Design

In this section, we show the experiment setup for multi-agent reinforcement learn-
ing for online food delivery services built based on multi-agent reinforcement learning.
Furthermore, we show the setup for preserving the privacy of customer locations and the
details about the datasets we used in these experiments.

5.1. Multi-Agent Reinforcement Learning for Online Food Delivery Services

In this part, we present breakdown details on how each experiment of online food
delivery methods is set up. We deliver some experiments to show how the agent can
accumulate rewards by using different algorithms of reinforcement learning on various
datasets and how much the agent can increase the number of food delivery orders over
time. We considered the weekdays and weekends during the learning process for better
performance, and we assume the first record in the dataset is the first day of the week.

5.1.1. Applying Different Algorithms for Deep Reinforcement Learning

An extensive experiment was done to show the results of using multi-agent reinforce-
ment learning in online food delivery methods. Two MARL algorithms were used along
with one single agent. We used QMIX and IQL to implement MARL and dueling deep
Q-networks to implement the single agent algorithm. We tried to simulate the results from
a single agent by multiplying the results from a single agent to be equal to the number
of agents in MARL. We ran these algorithms with different datasets from different cities
that have different city area sizes. In each episode, the agents were run multiple times.
The used datasets were Shenzhen, China; and Iowa City, USA. Moreover, we applied the
algorithm to a synthetic dataset (random data) to show more comparisons and the effects
of our proposed method.
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5.1.2. Number of Food Delivery Orders

In this experiment, we implement multi-agent reinforcement learning for the online
food delivery method, showing the number of orders the courier can gain and how much
the courier’s orders can increase over time. QMIX was used on two datasets: Shenzhen
and Iowa City. The results of the total number of orders for three agents were shown. The
experiment demonstrates to what extent all agents can gain more orders in Shenzhen and
Iowa City datasets.

5.2. Trajectory Protection Method

Preserving location privacy for the user is vital. In this experiment, we used the
PULM, which employs a DP Laplace mechanism to preserve the user location. We inject
noise into the customer location along with the courier trajectory. The method considers
two important factors to determine the privacy parameter ε. The first parameter is city
area size and the second parameter is customer frequency of online food orders. These
factors determine the amount of injected noise based on the DP algorithm. To evaluate our
approach, we use Shenzhen, China; and Iowa City, Iowa, USA; datasets. We use the Google
Maps API to retrieve the trajectory by sending the start and end points and then retrieve
the trajectory of the courier. We then use the PULM method to obfuscate the trajectory by
injecting noise into selected points of the trajectory.

5.2.1. Trajectory Data Utility

Adding Laplace noise to the trajectory inevitably affects the data utility. In order to evaluate
the data utility in the trajectory after adding noise, we used the Hausdorff distance (HD). The
Hausdorff distance is a widely used metric to measure the similarity of two datasets of points
and allows the measurement of the utility of dataset D with respect to dataset D̃ [45]:

utility(D) = max(h(D, D̃), h(D̃, D)) (7)

This experiment demonstrates the results of the Hausdorff distance (HD) for Shenzhen,
China; and Iowa, USA; datasets, along with the average of the Hausdorff distances for
both datasets.

5.2.2. Analysing Privacy Parameter Intensity

In this part, the distribution of privacy parameters generated by PULM is analysed.
The privacy parameter is changed frequently based on the city area size and the customer
frequency of online food orders for each customer. The privacy parameter affects the
amount of noise generated by the Laplace mechanism. We analyse the generated privacy
parameter based on two datasets: Shenzhen, China; and Iowa City, Iowa, USA.

5.3. Dataset Description

Two different datasets with different city area sizes were used for our experiments
to test the approach that applies to the online food delivery service and the Protect User
Location Method (PULM).

The first dataset is provided by Alibaba Local Service Lab [5] and contains on-demand
food delivery order data. The dataset for Shenzhen, China, has 1,048,575 orders and
93 restaurants along with the location of the restaurants, delivery locations, the times
of pickups of meals from restaurants, and the delivery times. The second dataset used
in our experiment is provided by Ulmer et al. [46]. This dataset contains data of meal
delivery services in Iowa City, Iowa , USA. In this dataset, there are 111 restaurants and
1,200,391 delivery records. In this dataset, the actual locations are used with random
generation of orders and equal request probability for each point of time and location. For
both cities, we consider a particular area to implement our experiment. The data may have
been modified from the source for certain purposes, such as obfuscating exact locations.
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6. Results
6.1. Multi-Agent Reinforcement Learning for Online Food Delivery Service

In multiple domains, DRL has been proven to resolve complicated sequential decision-
making problems [28]. In this, we show our results by using multi-agent reinforcement
learning techniques QMIX and IQL along with a single agent of dueling deep Q-networks
on different varied datasets.

Figure 5 shows the results of the average accumulated reward by using QMIX in black,
IQL in blue, and a single agent of dueling deep Q-networks in red. The Shenzhen, China,
dataset was used in this experiment, and we show the results of different runs of 5000,
10,000, and 20,000. The agents in this experiment increase cumulative rewards over time
and are able to reach the highest level. The single agent increases its accumulative rewards
over time and shows that it has higher results. This experiment was repeated on Iowa, USA,
and synthetic random datasets as shown in Figures 6 and 7, respectively, which show that
the agents can increase cumulative rewards over time and are able to reach the highest level.
The double agents increase their accumulative rewards over time, and they demonstrates
that they achieve higher outcomes in comparison with the single agent.

Figure 8 illustrates the average number of food delivery orders that the courier can
gain after implementing multi-agent reinforcement learning for the online food delivery
method using QMIX with the two datasets: Shenzhen and Iowa City. It shows that the
agents were able to increase the number of orders from 80 orders to 140 orders for all agents
in the Shenzhen dataset and from 10 to 40 in the Iowa City dataset for all agents.

Figure 5. Comparison of the results of the online food delivery method using the Shenzhen dataset
with two MARLs and a single agent with different numbers of runs.

Figure 6. Comparison of the results of the online food delivery method using the Iowa City dataset
with two MARLs and a single agent with different numbers of runs.
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Figure 7. Comparison of the results of the online food delivery method using a random synthetic
dataset with two MARLs and a single agent with different numbers of runs.

Figure 8. The average number of food delivery orders obtained by drivers after using MARL QMIX
with the Shenzhen and Iowa City datasets.

6.2. Trajectory Protection Mechanism

Preserving the privacy of customer locations is vital. This experiment shows the
results of using the PULM method, where we aim to protect the customer location along
with the courier trajectory. We use the Google Maps API to get the trajectory by sending
the start and end destination points to the Google Maps server and retrieving the trajectory.
By using our approach, proper noise is injected into a selected point in order to obfuscate
the trajectory and user location.

After Laplace noise is injected into the trajectory, the utility of the data is definitely
impacted. To evaluate the data utility in the trajectory after adding noise and to see how
much the obfuscated trajectory was impacted, we used the Hausdorff distance, which is a
commonly used method to determine how much similarity exists between two datasets’
points. Figure 9 shows the result of the Hausdorff Distance along with the average Haus-
dorff Distance in Shenzhen and Iowa. The figure shows slight similarity of HDs between
the two datasets with some fluctuation that normally happens with obfuscation functions.

The PULM determines the privacy parameter ε. In this matter, the privacy parameter
changes frequently based on the city area size and the customer frequency of ordering food
online. Figure 10 shows a few samples of the distribution of privacy parameter ε generated
by the PULM algorithm over the two datasets: Shenzhen, China; and Iowa City, USA. The
generated parameter can range between 0.5 to 5. The figure shows that the distribution of
the privacy parameter ε in the Shenzhen dataset ranges from 4.25 to 4.5, and in the Iowa
City dataset, it ranges from 1.3 to 3.
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Figure 9. The results of using Hausdorff distance to evaluate the data utility after using PULM and
adding Laplace noise to the trajectory and user location for Shenzhen and Iowa City datasets. The
X-axis demonstrates the number of used samples, and the Y-axis indicates the corresponding results
of the Hausdorff distance in blue and the average Hausdorff Distance in orange.

Figure 10. The results of the privacy parameter ε distribution generated by the PULM algorithm over
the Shenzhen and Iowa City datasets. The Y-axis indicates the privacy parameter ε, and the X-axis
represents the samples.

7. Conclusions

This research considers how to increase the number of received online food orders
by couriers and increase their income. Multi-agent reinforcement learning is used to train
the model and guide the agents to areas with high food delivery order demand. The city
map is divided into small grids, and each grid represents a small area of the city. The
agent has to learn which grid has the highest demand. To protect the customer location,
we propose PULM. The PULM injects DP Laplace noise based on the city area size and
customer frequency of ordering food online. We used two datasets—Shenzhen, China; and
Iowa, USA—to demonstrate our experiment results.

8. Future Work

Although this research proposes a solution to online food delivery services and the
related privacy issues, there is still space to improve this work and develop different
methods that can achieve better results. There is an excellent opportunity to propose a new
multi-agent reinforcement learning method or to improve the current work to enhance the
learning rate of the agent and thereby improve the agent’s performance.

Even though there is increased demand for online food delivery services, there is a
huge concern about data privacy. Various mechanisms have been proposed to tackle the
privacy issue, and there is a need to have an algorithm that can provide a tradeoff between
utility and obfuscating the information.
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