
Citation: Yang, Y.; Song, G.

Enhancing Privacy Preservation in

Verifiable Computation through

Random Permutation Masking to

Prevent Leakage. Information 2023, 14,

603. https://doi.org/10.3390/

info14110603

Academic Editor: Leandros Maglaras

Received: 22 September 2023

Revised: 30 October 2023

Accepted: 31 October 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Enhancing Privacy Preservation in Verifiable Computation
through Random Permutation Masking to Prevent Leakage
Yang Yang and Guanghua Song *

School of Information and Safety Engineering, Zhongnan University of Economics and Law,
Wuhan 430073, China
* Correspondence: z0004358@zuel.edu.cn

Abstract: Outsourcing computation has become increasingly popular due to its cost-effectiveness,
enabling users with limited resources to conduct large-scale computations on potentially untrusted
cloud platforms. In order to safeguard privacy, verifiable computing (VC) has emerged as a secure
approach, ensuring that the cloud cannot discern users’ input and output. Random permutation
masking (RPM) is a widely adopted technique in VC protocols to provide robust privacy protection.
This work presents a precise definition of the privacy-preserving property of RPM by employing
indistinguishability experiments. Moreover, an innovative attack exploiting the greatest common
divisor and the least common multiple of each row and column in the encrypted matrices is intro-
duced against RPM. Unlike previous density-based attacks, this novel approach offers a significant
advantage by allowing the reconstruction of matrix values from the ciphertext based on RPM. A
comprehensive demonstration was provided to illustrate the failure of protocols based on RPM in
maintaining the privacy-preserving property under this proposed attack. Furthermore, an extensive
series of experiments is conducted to thoroughly validate the effectiveness and advantages of the
attack against RPM. The findings of this research highlight vulnerabilities in RPM-based VC proto-
cols and underline the pressing need for further enhancements and alternative privacy-preserving
mechanisms in outsourcing computation.

Keywords: outsourcing computation; privacy leakage; verifiable computing; privacy protection;
random permutation masking

1. Introduction

The prevalence of outsourcing computation has significantly increased due to the rapid
advancements in cloud computing. This practice allows users with limited resources to
delegate computationally demanding tasks to robust cloud infrastructures. Consequently,
cloud users can achieve substantial cost savings by offloading expensive calculations to
potent cloud environments, thereby mitigating the need for substantial investments in
hardware and software equipment required for conducting large-scale computations.

The emergence of cloud computing has paved the way for various advantages as-
sociated with outsourcing computation. First, cloud service providers possess powerful
computing resources and scalable infrastructure that can efficiently handle intricate calcula-
tions. This obviates the need for users to expend substantial finances on hardware upgrades
or acquire specialized software licenses, resulting in significant cost reduction. Moreover,
cloud platforms offer on-demand provisioning, enabling users to access computational
resources according to their specific requirements, further minimizing upfront expenses.

Matrix-related computation is widely applied in practical applications. For example,
the extraction of facial features in image processing can be implemented using singular
value decomposition of matrices [1], and the prediction of data classification in machine
learning can be converted into computing linear matrix equations [2]. Unfortunately,
these matrix-related calculations might be so large-scale that resource-limited users cannot

Information 2023, 14, 603. https://doi.org/10.3390/info14110603 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14110603
https://doi.org/10.3390/info14110603
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info14110603
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14110603?type=check_update&version=1

Information 2023, 14, 603 2 of 19

complete them in a reasonable time. Thanks to cloud computing, it is an economical
alternative for data owners to outsource their matrix-related computations to a powerful
cloud. Even if matrix-related calculations are on a moderate scale, outsourcing computation
is also preferred for data owners to save computing resources. As a consequence, it is
meaningful to design a verifiable computation (VC) protocol for securely outsourcing
matrix-related computation to a powerful cloud.

Despite the tremendous benefits, some intrinsic security concerns emerge at the same
time [3]. The first crucial problem is whether the results of outsourcing computation are
correct. On one hand, software bugs and hardware failures in the cloud might cause
miscalculations. On the other hand, the cloud might deliberately inject errors in the
computation or simply feedback on a plausible result for computing savings. This concern
by cloud users is due to the fact that the computation of outsourced data is out of their
control, which is referred to as the security of the outsourcing computation [4]. To meet this
challenge, cloud users should have the ability to detect incorrect results. The next significant
problem is whether user privacy is exposed to the cloud. Since user data might be sensitive
and valuable, e.g., individual photos and business secrets, the cloud might make a profit
from selling this information. To address this problem, cloud users need to hide their actual
data from the cloud, which is called the privacy of the outsourcing computation [4]. Based
on the above discussion, outsourcing computation should satisfy security and privacy
requirements. To achieve these two requirements, cloud users have to take some time to
perform several local computations. One thing to note is that this time is suggested to be
substantially cheaper than cloud users’ time to complete the original computations locally.
Otherwise, there is no need for cloud users to outsource their computations.

Up to now, there are a large number of VC protocols for securely outsourcing matrix-
related computation, including matrix inversion, and matrix–matrix multiplication, to just
list a few. Most of them are based on random permutation masking (RPM) [5–12]. The rea-
son is as follows: On one hand, user matrices can be easily encrypted by multiplying some
well-designed 1-sparse matrices in which each row and column have only one nonzero
element. On the other hand, the computational results of the encrypted matrices can be
quickly decrypted by multiplying the inversions of the masking matrices, which is proven
to be still 1-sparse. In such a way, cloud users can efficiently utilize RPM to protect the
privacy of the outsourced data without performing expensive cryptographic operations.
Consequently, RPM is very popular in the design of VC protocols for securely outsourcing
matrix-related computation.

There are two natural questions about the existing RPM-based protocols: one is
whether the privacy-preserving definition is properly formalized; the other is whether
they achieve the privacy-preserving property. Focusing on these two issues, Zhao et al.
first utilized equal ratio [13] to design two attacks, which can be utilized to break the
privacy-preserving property of the following two types of VC protocols: one is to encrypt
the plaintext by performing the diagonal matrix–matrix multiplication; the other is to
encode the plaintext by using the random matrix–matrix addition. However, these two
attacks cannot be used to crack the privacy-preserving property of the RPM-based VC
protocols, which is due to the complex construction of the RPM-based encryption. To meet
this challenge, Zhao et al. [14] proposed an improved attack against the RPM-based VC
protocols for securely outsourcing large-scale matrix-related computations, which is further
extended in the latter [15]. The key of the attack in [15] is to count the number of zero-valued
elements in the RPM-based ciphertexts. Additionally, a strict proof is provided to show
that all of the RPM-based VC protocols do not hold the privacy-preserving property under
the attack in [15]. However, if two distinct inputs have the same number of zero-valued
elements, an adversary cannot distinguish these two inputs by using the attack in [15]. In
practice, users’ possible matrices might usually contain the same number of zero-valued
elements, making the attack in [15] disabled. For example, the matrices in the signal process
always contain no zero-valued elements. This results in a limited application range of the
attack in [15].

Information 2023, 14, 603 3 of 19

This paper continues the line of privacy research on the RPM-based protocols. We first
dig out a natural question of RPM-based protocols; i.e., for an encrypted matrix based on
the RPM, all elements in each row are masked by multiplying an identical random number,
and all elements in each column are masked by dividing another identical random number,
which provides a chance to crack the multiplier of each row and the divisor of each column
by computing the greatest common division (GCM) of each row and the least common
multiple (LCM) of each column. Based on this, we then develop a novel attack against the
privacy-preserving property of the RPM-based VC protocols, which relies heavily on the
GCM and LCM of each row and column in the encrypted matrices.

1.1. Related Work

More and more researchers pay attention to outsourcing computation due to its tremen-
dous benefits. The design of outsourcing computation should achieve security, privacy,
and efficiency. To meet these requirements, the most common solution is to implement
outsourcing computation in a verifiable way. The initial works [16–18] concentrated on
designing a general VC protocol for securely outsourcing any computation, which is based
on fully homomorphic encryption (FHE). Although such solutions are attractive, they are
far from the practice, which is because their operations are extremely complicated even in
small cases [19]. To reduce the complexity, Ananth et al. [20] developed an improved gen-
eral solution based on the one-way functions or the decisional Diffie–Hellman assumption,
which, however, is still too expensive.

Thus, the research priority of the VC protocols is shifted to enhance their operational
efficiency. A feasible solution is to design the VC protocols for specific purposes, in which
heavy cryptographic operations can be avoided. Earlier works were conducted by Atal-
lah et al. [5,21], which introduced a framework for resource-limited users to outsource
numerical and scientific computations to a trusted cloud. However, these two protocols do
not consider how to verify the correctness of the cloud computational results, making them
impractical. Later, Atallah et al. [22,23] proposed another two protocols, which, however,
are still unsatisfactory. The former is designed using the secret sharing technique, leading
to a high communication cost; the latter relies on two untrusted clouds without colluding
with each other. To address these problems, a large number of improved solutions were pro-
posed. For example, the VC protocols for securely outsourcing linear programming [24,25],
matrix inversion [6,11], matrix–matrix multiplication [7,26], matrix determinant [8], linear
regression [27,28], the large-scale system of linear equations [10,29–35], compressed sensing
reconstruction [12], and non-negative matrix factorization [36] have been investigated.
Tang et al. [37] presented a methodology called PILE for privacy-preserving federated
learning with verifiable perturbations. The study aims to address privacy concerns in feder-
ated learning by adding verifiable perturbations to the model updates. In [38], the authors
proposed a method for achieving privacy-preserving and verifiable support vector machine
(SVM) training in the cloud. The study addresses privacy and integrity concerns when
training SVM models in a cloud environment. All of these improved protocols involve only
basic algebra operations and thus are highly efficient.

Among the existing works, RPM is widely adopted in the design of VC protocols
for securely outsourcing matrix-related computations [5–12]. In such protocols, cloud
users can efficiently utilize RPM to encrypt a plaintext matrix and decrypt a ciphertext
matrix. This implies that the input and the output of user privacy are both protected
by RPM. For matrix inversion, matrix–matrix multiplication, and matrix decomposition,
cloud users in [5–7,9,11,12] directly employed RPM to encrypt their matrices and decrypt
the cloud computational results. For a matrix determinant, Lei et al. [8] combined RPM
with the lower–upper (LU) decomposition to design an efficient VC protocol. For linear
regression and large-scale systems of linear equations, data owners in [10] masked their
coefficient matrices and reconstructed their actual solutions with the help of RPM. In these
protocols, the most complicated operation is just 1-sparse matrix–matrix multiplication,

Information 2023, 14, 603 4 of 19

making them highly efficient. In addition, their cheating-resistant strategies can ensure that
the probability that incorrect solutions are accepted by the clients is negligible.

Most notably, all of the above protocols build their privacy-preserving properties on
RPM. RPM was once thought to be a decent technique to guarantee user privacy in VC
protocols. Until the recent works [14,15], Zhao et al. proposed an attack against the privacy
of RPM with respect to the density of encrypted matrices. The disadvantage of this attack
is that the number of the zero-valued elements of users’ possible inputs must be different,
which is hard to guarantee in practice.

1.2. Contribution

In this paper, we focus on the privacy-preserving vulnerability in RPM and propose
a novel attack against the RPM-based VC protocols. Our contributions are summarized
as follows:

• We design an attack against the privacy-preserving vulnerability of RPM, which is
based on the GCD and the LCM of each row and column in the encrypted matrices.
It is the first time to allow an adversary to reconstruct the values of the inputs from
the RPM-based ciphertexts. In addition, we take three representative RPM-based VC
protocols as examples to illustrate how the proposed attack works. At last, we conduct
the experiments to further validate the effectiveness of our attack.

• To formalize the privacy-preserving vulnerability of RPM under our attack, we present
two novel definitions of the privacy-preserving property with respect to the GCD
and the LCM of each row and column in the encrypted matrices, which are designed
by using two indistinguishability experiments under chosen-plaintext attack (CPA)
and ciphertext-only attack (COA). Then, we provide strict proof to show that an
RMP-based VC protocol is not private-preserving.

• We present a detailed comparison between the proposed attack and the state-of-the-
art [15]. The proposed attack allows an adversary to distinguish the encrypted matrices
over two distinct inputs by decrypting the received ciphertext, instead of counting
the number of zero-valued elements like the state of the art [15]. We also provide
massive experimental results to further validate the advantages and disadvantages of
the proposed attack and the attack in [15].

1.3. Organization

The rest of this paper is organized as follows: we introduce the preliminaries in
Section 2. In Section 3, we present a framework of verifiable computation protocols and two
novel definitions of the privacy-preserving property based on the CPA and the COA.
In Section 4, we propose an attack against the privacy-preserving vulnerability of RPM,
which is designed based on the GCD and the LCM of each row and column in the encrypted
matrices. We also provide a comparison between the proposed attack and the attack in [15].
Section 5 conducts the experiments to evaluate the performance of the proposed attack and
the attack in [15]. In Section 6, we present the conclusion of this paper.

2. Preliminaries

In this section, we first introduce the basic concepts for verifiable computation and
then provide the details of random permutation masking, which is widely adopted in the
design of VC protocols for secure outsourcing matrix-related computations.

2.1. Verifiable Computation

In this subsection, we focus on the framework of verifiable computation, which is
depicted in Figure 1.

Information 2023, 14, 603 5 of 19

CloudData owners

EncProb

DecResult

Compute

KeyGen

Verify

K

Original Problem

Encrypted Problem

The solution to
Encrypted Problem

K

The solution to
Original Problem

Figure 1. The system framework of a VC protocol for secure outsourcing computation.

Definition 1 (The framework of a VC protocol). There are five probabilistic polynomial-time
(PPT) algorithms in a verifiable computation protocol, which is defined as follows. . .

• KeyGen(1λ, γ)
→ K: Given a security parameter λ and a special parameter γ related to the input problem Φ,
the client produces a system key K.

• EncProb(Φ; K)→ Φ′: Given a large-scale problem Φ, the user employs K to encrypt Φ into
Φ′, which is then sent to the cloud for the solution.

• Compute(Φ′)→ σ′: Once obtaining the encrypted problem Φ′, the cloud computes its solution
σ′, which is associated with the solution to Φ.

• DecResult(σ′; K)→ σ: After receiving the masked solution σ′, the client utilizes K to decrypt
it into σ.

• Verify(σ; K)→⊥: Upon the input of σ, the client verifies whether it is the correct solution to
Φ. If yes, the client outputs ⊥= 1; otherwise, outputs ⊥= 0.

2.2. Privacy-Preserving Property of a VC Protocol

In practice, the outsourced data usually contain user privacy, which might bring
huge economic benefits. Thus, for the sake of interests, the cloud might try its best to
reveal user privacy from the outsourced data. In the previous [5–12], it was claimed that
a passive PPT adversary can hardly distinguish the outputs of EncProb over two distinct
inputs. Based on the indistinguishability under chosen-plaintext attack (IND-CPA) and
the indistinguishability under ciphertext-only attack (IND-COA), two formal definitions of
privacy against passive adversary are formalized as follows:

Definition 2 (Privacy against the CPA [13,15]). For a VC protocol, the following experiment
implemented by a PPT adversary A is taken into account:
Experiment ExpIND−CPA

A [VC, λ, γ]:

K ← KeyGen(1λ, γ)

(Φ0, Φ1)← APubEncProbK(·)(1λ, γ)

b $← {0, 1}
Φ′b ← EncProb(K, Φb)

b′ ← APubEncProbK(·)(Φ0, Φ1, Φ′b)

I f b′ = b, outputs 1; else, outputs 0.

Information 2023, 14, 603 6 of 19

where Φ′b is called as the challenge ciphertext. The oracle PubEncProbK(Φ) asks EncProb (Φ; K) to
generate the encrypted value Φ′. Trivially, the output of PubEncProbK(·) is obviously probabilistic,
which is fed back to the adversaryA. Using this experiment, the advantage ofA is defined as follows:

AdvIND−CPA
A (VC, λ, γ)

=

∣∣∣∣Pr
[
ExpIND−CPA

A [VC, λ, γ] = 1
]
− 1

2

∣∣∣∣
If a VC protocol is IND-CPA private, it will satisfy that

AdvIND−CPA
A (VC, λ, γ) ≤ negl(λ),

where negl(·) is a negligible function.

Definition 3 (Privacy against the COA [13,15]). For a VC protocol, the following experiment
executed by a PPT adversary A is taken into consideration:
Experiment ExpIND−COA

A [VC, λ, γ]:

K ← KeyGen(1λ, γ)

(Φ0, Φ1)← A(1λ, γ)

b $← {0, 1}
Φ′b ← EncProb(K, Φb)

b′ ← A(Φ′b)
I f b′ = b, outputs 1; else, outputs 0.

The advantage of A in the above experiment is defined as follows:

AdvIND−COA
A (VC, λ, γ)

=

∣∣∣∣Pr
[
ExpIND−COA

A [VC, λ, γ] = 1
]
− 1

2

∣∣∣∣.
A VC protocol is IND-COA private only in the case of

AdvIND−COA
A (VC, λ, γ) ≤ negl(λ).

2.3. Random Masking Permutation

In this subsection, we first describe the random permutation technique, and then
introduce how to utilize this technique to mask an arbitrary matrix.

Generally, the random permutation technique can be expressed as

τ =

(
1 2 ... n− 1 n

ω1 ω2 ... ωn−1 ωn

)
,

where 1 ≤ ωi ≤ n, and ωi 6= ωj for any i 6= j. For ease of description, let ωi = τ(i) and
i = τ−1(ωi), where τ and τ−1 represent a random permutation function and its inversion.
Let δx,y denote the Kronecker delta function, i.e.,

δx,y =

{
1, x = y

0, x 6= y

Information 2023, 14, 603 7 of 19

RPM is based on two well-designed invertible matrices, P1 and P2, which are computed by{
P(i1, j1) = αi1 δτ1(i1),j1 , 1 ≤ i1, j1 ≤ m

Q(i2, j2) = βi2 δτ2(i2),j2 , 1 ≤ i2, j2 ≤ n
(1)

Note that αi1 and βi2 are recommended to be random integers for the accuracy of outsourc-
ing computation. In this paper, we suppose that αi1 and βi2 are randomly selected from
{1, 2, . . . , 2λ − 1}, where λ is the security parameter of VC protocols. Then, we introduce
RPM using the following theorem:

Theorem 1. Given two invertible matrices, P and Q, in (1), a large-scale matrix X can be efficiently
encrypted into Y = PXQ−1 by computing Y(i, j) = αi

β j
X(τ1(i), τ2(j)), where Y = PXQ−1 is a

secure encryption scheme with IND-CPA privacy.

Proof. Let EncK(·) denote the encryption scheme Y = PXQ−1, where
Y(i, j) = αi

β j
X(τ1(i), τ2(j)), 1 ≤ i ≤ m, and 1 ≤ j ≤ n. The input, output, and key of

EncK(·) are X, Y, and {{αi}1≤i≤m, {β j}1≤j≤n, τ1, τ2}, respectively. First, we introduce the
following security experiment about the IND-CPA privacy of EncK(·).

Experiment ExpIND−CPA
A [EncK, λ, γ]:

K ← KeyGen(1λ, m, n),

(X0, X1)← APubEncK(·)(1λ, m, n)

b $← {0, 1}
Y′b ← EncK(Xb)

b′ ← APubEncK(·)(X0, X1, Y′b)

I f b′ = b, outputs 1; else, outputs 0.

Based on the above experiment, the advantage of the adversary A can be defined as

AdvIND−CPA
A (EncK, λ, γ)

=

∣∣∣∣Pr
[
ExpIND−CPA

A [EncK, λ, γ] = 1
]
− 1

2

∣∣∣∣
If EncK(·) is IND-CPA private, it will satisfy that

AdvIND−CPA
A (EncK, λ, γ) ≤ negl(λ).

Next, we show that EncK(·) achieves the property of IND-CPA privacy. Recall that
{αi}1≤i≤m and {β j}1≤j≤n are randomly selected with λ bits, and τ1 and τ2 are the ran-
dom permutation of m and n elements. Thus, the expected time of brute-force attack on the
key space to guess {α1, α2, . . . , αm}, {β1, β2, . . . , βn}, τ1, and τ2 is O(2λ), O(2λ), O(m!), and
O(n!), respectively. For a large-scale matrix, its dimensions m and n must be sufficiently
large. In such way, a PPT adversary can hardly crack {αi}1≤i≤m, {β j}1≤j≤n, τ1, and τ2. This
also means that the adversary can hardly distinguish two large-scale plaintext matrices, X0
and X1, from the ciphertext matrix Y′b randomly generated by either of them. As a conse-

quence, we can obtain that Pr
[
ExpIND−COAMUL

A [EncK, λ, m, n] = 1
]
→ 1

2 . After that, we can
dirctly conclude that EncK(·) is IND-CPA private from AdvIND−CPA

A (EncK, λ, γ) ≤ negl(λ).
Another thing to note is that the time complexity of EncK(·) is O(mn), which is sub-

stantially cheaper than performing matrix-related computations, such as matrix inversion,
matrix determinant, and matrix–matrix multiplication. Thereafter, a large-scale matrix X
can be efficiently encrypted into Y via EncK(·).

Information 2023, 14, 603 8 of 19

2.4. Notations

In this subsection, we summarize the main notations adopted in this paper. Let A(i, ∗)
denote the i-th row in the matrix A, A(∗, j) denote the j-th column in A, A(i, j) or ai,j

denote the element in the i-th row and the j-th column of A, A−1 denote the inversion of A,
|A| denote the determinant of A, Am×n denote an m× n matrix, lcm(a, b) denote the least
common multiple of a and b, and gcd(a, b) denote the greatest common divisor of a and b.

3. Our Modified Formal Definitions

In the above section, there are three formal definitions of a VC protocol. The first is
about the compact framework, and the last two are about the privacy-preserving property.
These definitions aim to work as guidelines for designing a privacy-preserving VC protocol.
In this section, we revised these three definitions due to the following reasons:

First, RPM-based VC protocols are mainly used for securely outsourcing matrix-related
computations. According to Theorem 1, an input matrix Xm×n is encrypted by the following
two steps:

• Step 1. The position of each element in X is rearranged under two random permutation
functions τ1 and τ2, i.e., T(i, j) = X(τ1(i), τ2(j)), where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

• Step 2. Each element in T is encrypted by multiplying a random number, i.e.,
Y(i, j) = αi

β j
T(i, j).

In such way, the algorithms KeyGen and EncProb in the RPM-based VC can be further
clarified. Thus, we introduce a novel framework to especially describe the RPM-based
VC protocols.

Second, some inherent natures of RPM might result in the information leakage of
the input matrices, which affects the privacy-preserving property in the RPM-based solu-
tions. However, most of the existing protocols lack such privacy-preserving explorations.
For example, to the best of our knowledge, there has been no study on how the greatest
common divisor (GCD) and the least common multiple (LCM) of each row and column in
the encrypted matrices affect the privacy-preserving property of RPM-based VC protocols.
Thus, we redefine the privacy-preserving property with respect to the GCD and the LCM
for RPM-based protocols.

3.1. RPM-Based Verifiable Computation

Definition 4 (The framework of an RPM-based VC protocol). Let Φ be a concrete matrix-
related computation to be outsourced, whose inputs are supposed to be Xm1×n1

1 , Xm2×n2
2 , . . . , and

XmL×nL
L . For ease of description, the sizes of the input matrices are denoted by γ = {m1 × n1,

m2 × n2, . . . , mL × nL}. The framework of an RMP-based VC protocol is presented as follows:

• KeyGen(1λ, γ)→ K: With the input of a security parameter λ and a special parameter γ,
the client generates a key K = {(P1, Q1), (P2, Q2), . . . , (PL, QL)}. For 1 ≤ l ≤ L, Pl and
Ql are determined by (1).

• EncProb(Φ; K)→ Φ′: Given a large-scale problem Φ (Xm1×n1
1 , Xm2×n2

2 , . . . , XmL×nL
L) and

the system key K, the client computes Yl = PlXlQ
−1
l , where 1 ≤ l ≤ L. The client outputs

the encrypted problem Φ′(Ym1×n1
1 , Ym2×n2

2 , . . . , YmL×nL
L).

• Compute(Φ′) → σ′: Upon the input of the encrypted problem Φ′, the cloud calculates its
solution σ′.

• DecResult(σ′; K)→ σ: Given the encoded solution σ′, the client decrpyts it into σ.
• Verify(σ; K) → ⊥: Given the decoded solution σ, the client checks its correctness. If yes,

the client outputs ⊥= 1; otherwise, outputs ⊥= 0.

3.2. The Privacy-Preserving Property with Respect to the GCD and the LCM

An RPM-based VC protocol for securely outsourcing a matrix-related computation
consists of the above five-tuple (KeyGen, EncProb, Compute, DecResult, Verify). All of the
input matrices in the outsourced problem are encrypted based on RPM. Thus, we can

Information 2023, 14, 603 9 of 19

randomly pick one of the input matrices as an example to describe the privacy-preserving
property. With this in mind, we formally define the privacy-preserving property with
respect to the GCD and the LCM for RPM-based VC protocols. In our indistinguishability
experiments, the adversary is denoted as A, and an arbitrary input matrix of the original
problem Φ is denoted as X with the size of m× n. The details are given below.

According to Theorem 1, the encrypted matrix in the RPM-based VC protocol is com-
puted by Y(i, j) = αi

β j
T(i, j) = αi

β j
X (τ1(i), τ2(j)), where T can be regarded as an intermediate

transformation matrix. Thus, we can have the following two observations:

• Each row and column in X are first masked by rearranging their positions, i.e.,

T(i, j) = X(τ1(i), τ2(j)). (2)

• Each row and column in X are further masked by multiplying a random number, i.e.,

Y(i, j) =
αi
β j

T(i, j). (3)

Combing the above observations, we can obtain
Y(i, ∗) = αiT(1)(i, ∗), 1 ≤ i ≤ m

Y(∗, j) =
1
β j

T(2)(∗, j), 1 ≤ j ≤ n
(4)

where T(1)(i, j) = 1
β j

T(i, j) and T(2)(i, j) = αiT(i, j). It is straightforward that

• If T(1)(i, ∗) is composed of two or more integers, these integral elements in Y(i, ∗) will
have the common divisor αi, making it possible to decode the secret αi.

• If T(2)(∗, j) consists of two or more decimals, these nonintegral elements in Y(∗, j)
will have the common multiple β j that makes them become integers at the same time,
which provides a chance to decipher the secret β j.

We can then observe that

• If β j is prime to at least one entry in T(2)(∗, j), one can have β j = lcm(β′1,j, β′2,j, . . . , β′m,j),
where β′i,j is determined by (6).

• If αi is prime to at least one entry in T(i, ∗), one can have αi = gcd(α′i,1, α′i,2, . . . , α′i,n),
where α′i,j = T(1)(i, j) and 1 ≤ j ≤ n.

Please refer to the next Section 4.1 for the detailed proof.
After cracking all the values of {α1, α2, . . . , αm} and {β1, β2, . . . , βn}, an adversary is

able to decode the intermediate matrix T according to (3). This implies that the values of
the original matrix X will be exposed to the adversary. In such a way, the adversary can
easily distinguish the encrypted matrix over two distinct inputs.

Definition 5 (Privacy with respect to the GCD and the LCM against the CPA). For an RPM-
based VC protocol, an experiment associated with a PPT adversary A is taken into consideration:

Information 2023, 14, 603 10 of 19

Experiment ExpIND−CPAMUL

A [VC, λ, m, n]:

K ← KeyGen(1λ, m, n)

(X0, X1)← APubEncProbK(·)(1λ, m, n)

b $← {0, 1}
Yb ← EncProb(K, Xb)

β̄ j ← A
lcm(β′1,j ,β

′
2,j ,...,β

′
m,j), where 1 ≤ j ≤ n

ᾱi ← Agcd(α′i,1,α′i,2,...,α′i,n), where 1 ≤ i ≤ m

X′b ← A
scale(Yb ;ᾱ1,j ,ᾱ2,j ,...,ᾱm,j ,β̄1,j ,β̄2,j ,...,β̄m,j ;)

b′ ← APubEncProbK(·)(X0, X1, X′b)

I f b′ = b, outputs 1; else, outputs 0.

From Definition 5, we can easily obtain the definition of privacy with respect to the
GCD and the LCM against the COA, which is as follows:

Definition 6 (Privacy with respect to the GCD and the LCM against the COA). For an
RPM-based VC protocol, an experiment associated with a PPT adversary A is taken into account:
Experiment ExpIND−COAMUL

A [VC, λ, m, n]:

K ← KeyGen(1λ, m, n)

(X0, X1)← APubEncProbK(·)(1λ, m, n)

b $← {0, 1}
Yb ← EncProb(K, Xb)

β̄ j ← A
lcm(β′1,j ,β

′
2,j ,...,β

′
m,j), where 1 ≤ j ≤ n

ᾱi ← Agcd(α′i,1,α′i,2,...,α′i,n), where 1 ≤ i ≤ m

X′b ← A
scale(Yb ;ᾱ1,j ,ᾱ2,j ,...,ᾱm,j ,β̄1,j ,β̄2,j ,...,β̄m,j ;)

b′ ← A(X′b)
I f b′ = b, outputs 1; else, outputs 0.

With the help of the above experiment, we define the advantage of A as

AdvIND−COAMUL

A (VC, λ, m, n)

=

∣∣∣∣Pr
[
ExpIND−COAMUL

A [VC, λ, m, n] = 1
]
− 1

2

∣∣∣∣. (5)

If an RPM-based VC protocol is IND-COA private with respect to the GCD and the LCM, it will
achieve

AdvIND−COAMUL

A (VC, λ, m, n) ≤ negl(λ),

where negl(·) is a negligible function.

Note that (1) from Definitions 5 and 6, one can observe that in order to distinguish the
input matrices, the adversary in Definition 5 is allowed to access an oracle PubEncProbK(·),
while the adversary in Definition 6 has no oracle to access. This implies that the adversary
in the IND-CPA has a more powerful capability compared with the adversary in the IND-
COA. Consequently, an RPM-based VC protocol that holds IND-CPA privacy with respect
to the GCD and the LCM must also hold IND-COA privacy with respect to the GCD and

Information 2023, 14, 603 11 of 19

the LCM. In other words, if it does not hold IND-COA privacy with respect to the GCD
and the LCM, it will also not hold IND-CPA privacy with respect to the GCD and the
LCM. (2) If the input matrices of the original problem are all revealed by the adversary, its
solution will also be disclosed.

4. Privacy-Preserving Vulnerability of Random Permutation Masking

In this section, we first reveal the privacy-preserving vulnerability of RPM-based VC
protocols according to Definition 6, and then provide a comparison between the proposed
attack and the attack in [15]. At last, we take three representative RPM-based VC protocols
as examples to show how our attack works.

4.1. Privacy-Preserving Vulnerability

According to Definition 6, the key to breaking the privacy-preserving property is to
crack {α1, α2, . . . , αm} and {β1, β2, . . . , βn} by using the GCD and the LCM. For solving
{α1, α2, . . . , αm}, each row in Y should contain multiple integers. However, the division
performed on each column of T in (3) enables that the entries in each row of Y might be all
decimals. In addition, in order to solve {β1, β2, . . . , βn}, it is required that each column in
Y has multiple decimals, which is contrary to the requirement of solving {α1, α2, . . . , αm}.
Thus, we should first determine {β1, β2, . . . , βn} so that all entries in Y can be transformed
into integers, and then {α1, α2, . . . , αm} are also able to be solved. As a result, the key in our
attack is to prove that each column in Y contains one or more decimals. Before our proof,
we first introduce a helpful lemma.

Lemma 1. If an integer η is sufficiently large, the number of its factors is much smaller than η
2 .

Proof. For any integer η, we can observe that its factors from largest to smallest are η, η
2

if mod(η, 2) = 0, η
3 if mod(η, 3) = 0, . . . , and 1 in turn. If η is sufficiently large, (η

2 −
η
3) is

much greater than 1. Thus, the number of the factors of η is much smaller than η
2 .

Theorem 2. In an RPM-based VC protocol, the probability that each column in Y has at least one
decimal is close to 1.

Proof. From (4), the i-th entry in Y(∗, j) is an integer only if β j is the factor of T(2)(i, j).
According to Lemma 1, the probability that β j is the factor of T(2)(i, j) is much smaller
than 1

2 . To enable that Y(∗, j) is only composed of integers, β j is required to be the factor
of all entries in T(2)(i, j). Thus, the probability that each column in Y has at least one
decimal is much greater than 1− (1

2)
m. In a VC protocol, the original matrix X usually has

a large-scale size, and then 1− (1
2)

m is close to 1. Thus, we can conclude Theorem 2.

In addition, if two input matrices have different numbers of zero-valued elements,
the adversary can easily distinguish them when either of their RPM-based ciphertexts is
given. Specifically, the adversary observes these two input matrices whose number of
zero-valued elements is the same as that of the given RPM-based encrypted matrix and
determines who is the right input matrix. This is always in effect due to the fact that RPM
does not change the number of zero-valued elements of the input matrices. Based on the
above discussion, we summarize our attack in Algorithm 1. One thing to note is that X′b in
step 12 of Algorithm 1 is equal to T with a high probability, which is formalized in Theorem
3. To prove Theorem 3, we first introduce two useful lemmas.

Lemma 2. In Algorithm 1, the probability of β j = β̄ j can be represented as 1− (1− P)m, where
1 ≤ j ≤ n and P is the probability that any two integers are relatively prime.

Information 2023, 14, 603 12 of 19

Proof. From the second equation in (4), it can be observed that β′i,j in step 4 of Algorithm 1
satisfies

β′i,j =
β j

Kβi,j

, (6)

where Kβi,j is determined by the following two steps:

• Step 1. Initializing Kβi,j = 1 and Tβi,j = T(2)(i, j).

• Step 2. Repeatedly updating Kβi,j = Kβi,j × gcd(β j, Tβi,j) and Tβi,j =
Tβi,j

gcd(β j ,Tβi,j
)

until

gcd(β j, Tβi,j) is equal to 1.

Note that β′i,j is equal to β j in the case of gcd(β j, T(2)(i, j)) = 1. Thereafter, if β j is

prime to at least one entry in T(2)(∗, j), one can have

β̄ j = lcm(β′1,j, β′2,j, . . . , β′m,j) = β j.

Next, we discuss the probability that at least one entry in T(2)(∗, j) is prime to β j. Since
there are m entries in T(2)(∗, j), the probability that β j and at least one entry in T(2)(∗, j) are
coprime can be computed as 1− (1− P)m, where P is the probability that any two integers
are relatively prime. With the increase in m, one can find that 1− (1− P)m is convergent to
1. Thus, Lemma 2 can be concluded.

Algorithm 1 The attack based on the LCM and the GCD

Require: Two distinct input matrices X0 and X1, the encrypted matrix Y, where Y(i, j) =
αi
β j

Xb(τ1(i), τ2(j)), b $← {0, 1}, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Ensure: b′.
1: if X0 and X1 have the same number of zero-valued elements, then
2: for j = 1 : n do
3: for i = 1 : m do
4: The adversary calculates β′i,j, which is the least multiple that makes Y(i, j) integer.
5: end for
6: The adversary obtains β̄ j = lcm(β′1,j, β′2,j, . . . , β′m,j), which is the least common

multiple that makes all of the entries in Y(∗, j) integers.
7: end for
8: The adversary computes T(1) = Y× diag(β̄1,β̄2, . . . , β̄n).
9: for i = 1 : m do

10: The adversary calculates the greatest common divisor ᾱi of all the entries in Y(i, ∗).
11: end for
12: The adversary computes X′b = diag(1

ᾱ1
, 1

ᾱ2
, . . . , 1

ᾱm
)× T(1).

13: if X′b and X0 have the same set of matrix elements,
14: The adversary outputs b′ = 0;
15: else if X′b and X1 have the same set of matrix elements,
16: The adversary outputs b′ = 1;
17: else
18: The adversary outputs b′ $← {0, 1}.
19: end if
20: else
21: if Xb and X0 have the same number of zero-valued elements,
22: The adversary outputs b′ = 0;
23: else if Xb and X1 have the same number of zero-valued elements,
24: The adversary outputs b′ = 1;
25: else
26: The adversary outputs b′ $← {0, 1}.
27: end if

Information 2023, 14, 603 13 of 19

Lemma 3. In Algorithm 1, the probability of αi = ᾱi can be represented as 1− (1− P)n, where
1 ≤ i ≤ m and P is the probability that any two integers are relatively prime.

Proof. According to the first equation in (4), if αi is prime to at least one entry in T(i, ∗),
one can have

ᾱi = gcd(T(1)(i, 1), T(2)(i, 2), . . . , T(2)(i, n)) = αi. (7)

The probability that αi is prime to at least one entry in T(1)(i, ∗) can be represented as 1−
(1− P)n, which is convergent to 1 with the growth of n. Thus, we can obtain Lemma 3.

Theorem 3. In Algorithm 1, if the numbers of columns and rows in X are both sufficiently large,
the probability that X′b is equal to T is close to 1.

Proof. According to Algorithm 1, X′b is equal to T only if ᾱi = αi and β̄ j = β j, where
1 ≤ i ≤ m and 1 ≤ j ≤ n. From Lemma 2 and Lemma 3, for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
the probability that ᾱi = αi and β̄ j = β j can be computed as (1− (1− P)m)n(1− (1− P)n)m.
According to the binomial theorem [39], if |x| < 1, then

(1 + x)n = 1 +
∞

∑
k=1

Ck
nxk,

where Ck
n = n(n−1)···(n−k+1)

k! and C0
n = 1. Thus, one can obtain

(1− (1− P)m)n = 1 +
∞

∑
k=1

Ck
n(1− P)mk.

Due to 0 < P < 1, one can compute lim
m,n→∞

nk(1− P)mk = 0 in the case that m and n are

both approaching infinity simultaneously and there is no order in which one approaches
infinity before the other. Then, one can have

lim
m,n→∞

(1− (1− P)m)n = 1. (8)

In a similar way, one can also have

lim
m,n→∞

(1− (1− P)n)m = 1. (9)

Combining (8) and (9), we can conclude that

lim
m,n→∞

(1− (1− P)m)n(1− (1− P)n)m = 1.

Thereafter, if m and n are large enough, the probability of ᾱi = αi and β̄ j = β j is convergent
to 1, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus, we can conclude Theorem 3.

Theorem 4. An RPM-based VC protocol is not IND-COA private with respect to the GCD and
the LCM of each row and column in the encrypted matrices.

Proof. In a VC protocol, the outsourced matrix X must be so large-scale that the resource-
limited client cannot perform any complex computation on X locally. Otherwise, there is no
need for the client to resort to a powerful cloud. In such way, according to Theorem 3, we
can obtain that X′b(i, j) = T(i, j) = X(π1(i), π2(j)) with a high probability. This implies that
an adversary can reconstruct the values of all entries in the original matrix. Although the
order of the elements in each row and column of the original matrix is still unknown,
the adversary can distinguish two distinct input matrices by comparing the values of
matrix elements. For example, the adversary can determine the original matrix by judging
which input matrix is equal to the decoded matrix after simply sorting the matrix entries

Information 2023, 14, 603 14 of 19

from smallest to largest. This makes us conclude that b = b′ with a high probability and
Pr
[
ExpIND−COAMUL

A [VC, λ, m, n] = 1
]
→ 1. According to (5), we can then have

AdvIND−COAMUL

A (VC, λ, m, n)→ 1
2
� negl(λ).

Thereafter, RMP-based VC protocols are not IND-COA with respect to the GCD and the
LCM of each row and column in the encrypted matrices.

Furthermore, the proposed attack can also work in the case that the inputs of the
RPM are nonintegral. The reason is as follows: For an arbitrary decimal x̂i,j ∈ X, it can
be transformed into x̂i,j =

xi,j

10
ej , where ej is the maximal number of decimal digits among

the elements in the j-th column, making xi,j an integer. Under this circumstance, the RPM-
based encrypted matrix can be transformed into Y(i, j) = αi

10
ej β j

T(i, j). This also means that

the proposed attack can be utilized to crack the values of αi and 10ej β j, where 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

4.2. Compared with the State of the Art [15]

In the previous works [15], Zhao et al. also presented an attack against the RPM-
based VC protocols, which are based on the matrix density. Specifically, in their privacy-
preserving experiments with respect to the matrix density, two plaintext matrices, X0
and X1, are required to have different numbers of zero-valued elements. The adversary
distinguishes these two input matrices by counting the number of zero-valued elements in
the encrypted matrix Y. However, there are two limitations: (1) The attack in [15] is disabled
when X0 and X1 have the same number of zero-valued elements. The reason is that RPM
does not change the number of zero-valued elements in X0 and X1. (2) The attack in [15]
cannot be used to reconstruct the values of the input matrix from the encrypted matrix.

The proposed attack is built on the LCM and the GCD of each row and column in the
encrypted matrices and thus can avoid the limitations in the previous [15].

4.3. Further Discussion

We further analyze the privacy-preserving vulnerability in the RPM-based VC pro-
tocols for securely outsourcing matrix inversion [11], matrix determinant [8], and matrix-
matrix multiplication [7], which are of different types.

• To solve the inversion of the large-scale matrix X, the client first utilizes Theorem 1 to
encrypt X into Y = P1XP−1

2 in [11]. Once receiving Y, the cloud invokes Algorithm 1 to
estimate T, and then computes T−1. Due to T(i, j) = X(π1(i), π2(j)) and T−1(i, j) =
X−1(π2(i), π1(j)), the cloud can recover the values of all entries in X and X−1.

• To compute the determinant of a large-scale matrix X, the client first employs Theorem
1 to obtain Y = P1XP−1

2 in [8]. After receiving Y, the cloud executes Algorithm 1
to estimate T, and then computes |T|. Since T(i, j) = X(π1(i), π2(j)), the cloud can
obtain the values of all entries in X and the exact value of |X|.

• To determine the large-scale matrix–matrix multiplication Zx = X1X2, the client first
uses Theorem 1 to calculate Y1 = P1X1P−1

3 and Y2 = P3X2P−1
2 in [7]. While obtaining

Y1 and Y2, the cloud runs Algorithm 1 to estimate T1 and T2, and then calculates
Zt = T1T2. Because of T1(i, j) = X1(π1(i), π2(j)), T2(i, j) = X2(π1(i), π2(j)), and
Zt = Zx(π1(i), π2(j)), the cloud can reconstruct the values of all entries in X1, X2, and
X1X2.

5. Performance Evaluation

In this section, we conduct massive experiments to evaluate the performance of the
proposed attack, which is implemented by using Matlab 2018a. The workstation is built
on Intel(R) Core(TM) i5-7200U CPU and 8 GB RAM. We also provide a comparison of the

Information 2023, 14, 603 15 of 19

proposed attack and the previous attack in [15]. Each experimental result is an average of
1000 trials.

5.1. The Proposed Attack

To check the effectiveness of the proposed attack, we introduce an indicator successful
probability, which represents the probability that an adversary successfully decodes the
values of all entries in the original matrices. In the experiment, every element in the original
matrices is in the range of 0 to 255, which is common in image processing. The successful
probabilities of the proposed attack against RPM are presented in Figure 2.

1 2 3 4 5 6
Matrix Dimension (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 5k, n = 5k
m = 5k, n = 5
m = 5, n = 5k

Figure 2. The successful probabilities of the proposed attack against RPM.

From Figure 2, we can have the following observations: (1) the successful probability
increases with the dimension of the original matrix; (2) the successful probability is near to 1
in the case of 30× 30 input matrices, which would be much closer to 1 with the input of
larger matrices according to Theorem 3; and (3) given a certain row number, the successful
probability decreases with the column number in the large region, and vice versa. The reason
is as follows: according to Theorem 3, the successful probability of the proposed attack is
determined by (1− (1− P)n)m(1− (1− P)m)n, which converges to 0 as m or n approaches
to infinity; (4) the successful probability of the fixed row number m is always lower than that
of the fixed column number n with the same value. The reason is that the proposed attack
first decodes {β1, β2, . . . , βn}, and then eliminates their effect on cracking {α1, α2, . . . , αm}.
Thus, the decryption of {β1, β2, . . . , βn} is more error-prone than that of {α1, α2, . . . , αm}.
According to Lemma 2, the probability of successfully decoding {β1, β2, . . . , βn} can be
represented as (1− (1− P)m)n, which is proportional to m and is inversely proportional to
n. Thereafter, the successful probability of a given column number n degrades faster than
that of a given row number m with the same value.

Information 2023, 14, 603 16 of 19

5.2. The Comparison of the Different Attacks against RPM

We compare the proposed attack with the attacks in [13,15] by computing

Pr
[
ExpIND−COA

A [VC, λ, γ] = 1
]
, (10)

i.e., the advantage that the adversary A provides a correct answer, which is summarized
in Table 1. In the experiments, an adversary randomly chooses one plaintext matrix from
{X0, X1} as the input of RPM. For ease of description, we define two types of matrix sets:
SM ⊂ Zm×n and DM ⊂ Zm×n, where X ∈ SM is an (m

2 , n
2)-sparse matrix element and

X ∈ DM is a dense matrix. Note that in the (m
2 , n

2)-sparse matrix, the numbers of zero-
valued elements in each row and column are m

2 and n
2 , respectively.

Table 1. The comparsion of the advantages Pr
[
ExpIND−COA

A [VC, λ, γ] = 1
]

on two different attacks.

Case Description
Matrix Dimension (m × n)

6 × 10 12 × 20 18 × 30 24 × 40 30 × 50 36 × 60

1 X0 ∈ SM, X1 ∈ DM

The attack in [13] 1 1 1 1 1 1

The attack in [15] 1 1 1 1 1 1

The proposed attack 1 1 1 1 1 1

2 X0 ∈ SM, X1 ∈ SM

The attack in [13] 0.50 0.51 0.51 0.49 0.50 0.51

The attack in [15] 0.49 0.51 0.50 0.49 0.51 0.51

The proposed attack 0.65 0.90 0.96 0.99 0.99 1

3 X0 ∈ DM, X1 ∈ DM

The attack in [13] 0.51 0.50 0.49 0.51 0.51 0.51

The attack in [15] 0.51 0.49 0.50 0.51 0.51 0.50

The proposed attack 0.86 0.95 0.99 1 1 1

From Table 1, we can have the following observations: (1) As shown in Case 1, these
three attacks can always distinguish the two input matrices with the different number of
zero-valued elements. This is because that the RPM-based encryption does not change the
number of zero-valued elements in the input matrices. (2) The attack in [13] in Cases 2 and
3 is always disabled, because the elements in the encrypted matrices based on RPM do
not have the equal ratio relationship. (3) The attack in [15] is always disabled if the input
matrices have the same number of zero-valued elements, which is provided in Cases 2 and
3. (4) According to Cases 1, 2, and 3, the proposed attack can differentiate two distinct input
matrices, no matter whether they have the same zero-valued elements or not. The main
reason is that the proposed attack depends mainly on the GCD and the LCM of each row
and column in the encrypted matrices in addition to the number of zero-valued elements
in the encrypted matrices. (5) The proposed attack has a smaller advantage in Case 2 than
in Case 3. This is because a sparse matrix provides fewer integers for determining the
masking values {α1, α2, . . . , αm} and {β1, β2, . . . , βn}. To sum up, the proposed attack has
superiority over the state of the art [15].

To sum up, the attack proposed in this study offers a wider range of application
scenarios compared with the current state-of-the-art approach [15]. This can be attributed
to the following reasons: First, the protocol proposed in this research enables the decryption
of the values of elements within the plaintext matrices. Unlike existing methods, which are
limited to specific cases, this protocol allows for a more comprehensive cracking process.
Second, the proposed protocol is not constrained by the number of zero elements present in
the plaintext matrices. This flexibility distinguishes it from previous approaches and makes
it suitable for a broader set of scenarios. By leveraging these advantages, the proposed attack
demonstrates its potential for enhancing the applicability and effectiveness of decryption
techniques in various contexts.

Information 2023, 14, 603 17 of 19

The aforementioned advantages make the proposed attack a highly viable option for
researchers and practitioners alike. Its ability to crack the values of the elements in plaintext
matrices, coupled with its unrestricted nature towards the number of zero elements, imbues
the attack with remarkable adaptability and practicality. As a result, it is well suited for
implementation in diverse scenarios, thereby contributing to the advancement of the field.
Further investigation into the proposed attack’s performance in real-world scenarios and
its potential vulnerabilities is warranted to fully assess its strengths and weaknesses.

6. Conclusions

In this paper, we delved deeper into the privacy vulnerabilities associated with RPM.
To begin, we introduce a privacy-preserving definition of RPM-based protocols by em-
ploying two indistinguishability experiments based on the chosen plaintext attack (CPA)
and the chosen plaintext and ciphertext attack (COA). Subsequently, our research focuses
on unveiling a novel attack against RPM that capitalizes on the indispensability of the
greatest common divisor (GCD) and the least common multiple (LCM) values of encrypted
matrices’ rows and columns.

To illustrate the lack of privacy preservation within the RPM framework, we furnish
comprehensive evidence along with detailed formal proofs. Our elucidation demonstrates
that RPM is incapable of upholding the desired privacy preservation in the face of the
proposed attack. Notably, in contrast with the state-of-the-art research [15], the proposed
attack boasts several advantageous characteristics that warrant examination: First, our
attack empowers adversaries to distinguish between encrypted matrices associated with
two distinct inputs, without any requirement for the inputs to possess the dissimilar
number of zero-valued elements. This capability exceeds the existing approaches in terms
of discriminating power. Second, our attack enables adversaries to decode the plaintext
matrix values from their RPM-based ciphertext counterparts. This breakthrough finding
affirms the vulnerability of RPM to plaintext recovery attacks, which can compromise the
confidentiality of sensitive information.

To validate the efficacy and implications of our proposed attack, we conducted an
extensive series of experiments. The experimental results serve to corroborate the advan-
tages identified earlier, shedding light on the potential risks inherent in using RPM-based
protocols for privacy-preserving computations. By shedding light on the privacy vul-
nerabilities of RPM and showcasing the practicality of our attack method, this paper
highlights the importance of strengthening existing privacy mechanisms and developing
robust countermeasures. Future research efforts should focus on addressing the identified
vulnerabilities to safeguard the privacy and confidentiality of sensitive information pro-
cessed using RPM-based protocols. In future work, we will try to crack the RPM-encrypted
matrix in a deterministic way; i.e., both the positions and values of matrix elements can be
deterministically reconstructed.

Author Contributions: Conceptualization, Y.Y. and G.S.; methodology, Y.Y. and G.S.; software, Y.Y.;
validation, Y.Y. and G.S.; formal analysis, Y.Y.; investigation, Y.Y.; resources, G.S.; data curation,
G.S.; writing—original draft preparation, Y.Y. and G.S.; writing—review and editing, Y.Y. and G.S.;
visualization, Y.Y.; supervision, Y.Y.; project administration, Y.Y.; funding acquisition, Y.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Humanities and Social Sciences Research Project of the
Chinese Ministry of Education under Grant No. 22YJCZH217 and the Graduate Education Reform
Project of the Zhongnan University of Economics and Law under Grant No. YJ20230043.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors thank the anonymous referees and editors for their valuable sug-
gestions and comments to improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2023, 14, 603 18 of 19

References
1. Wang, Y.H.; Tan, T.; Zhu, Y. Face identification based on singular value decomposition and data fusion. Chin. J. Comput.-Chin. Ed.

2000, 23, 649–653.
2. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
3. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Elasticity in Cloud Computing: State of the Art and Research Challenges.

IEEE Trans. Serv. Comput. 2018, 11, 430–447. [CrossRef]
4. Gennaro, R.; Gentry, C.; Parno, B. Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In

Proceedings of the Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19
August 2010; Proceedings 30; Springer: Berlin/Heidelberg, Germany, 2010; pp. 465–482.

5. Atallah, M.J.; Pantazopoulos, K.N.; Rice, J.R.; Spafford, E.E. Secure outsourcing of scientific computations. In Advances in
Computers; Elsevier: Amsterdam, The Netherlands, 2002; Volume 54, pp. 215–272.

6. Lei, X.; Liao, X.; Huang, T.; Li, H.; Hu, C. Outsourcing Large Matrix Inversion Computation to A Public Cloud. IEEE Trans. Cloud
Comput. 2013, 1, 1. [CrossRef]

7. Lei, X.; Liao, X.; Huang, T.; Heriniaina, F. Achieving security, robust cheating resistance, and high-efficiency for outsourcing large
matrix multiplication computation to a malicious cloud. Inf. Sci. 2014, 280, 205–217. [CrossRef]

8. Lei, X.; Liao, X.; Huang, T.; Li, H. Cloud Computing Service: The Caseof Large Matrix Determinant Computation. IEEE Trans.
Serv. Comput. 2015, 8, 688–700. [CrossRef]

9. Zhou, L.; Li, C. Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a Public Cloud. IEEE
Access 2016, 4, 869–879. [CrossRef]

10. Yu, Y.; Luo, Y.; Wang, D.; Fu, S.; Xu, M. Efficient, secure and non-iterative outsourcing of large-scale systems of linear equations.
In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6. [CrossRef]

11. Hu, C.; Alhothaily, A.; Alrawais, A.; Cheng, X.; Sturtivant, C.; Liu, H. A secure and verifiable outsourcing scheme for matrix
inverse computation. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta,
GA, USA, 1–4 May 2017; pp. 1–9. [CrossRef]

12. Zhang, Y.; Xiang, Y.; Zhang, L.Y.; Yang, L.X.; Zhou, J. Efficiently and securely outsourcing compressed sensing reconstruction to a
cloud. Inf. Sci. 2019, 496, 150–160. [CrossRef]

13. Zhao, L.; Chen, L. A Linear Distinguisher and its Application for Analyzing Privacy-Preserving Transformation Used in Verifiable
(Outsourced) Computation. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon,
Republic of Korea, 4–8 June 2018; pp. 253–260.

14. Zhao, L.; Chen, L. On the Privacy of Matrix Masking-Based Verifiable (Outsourced) Computation. IEEE Trans. Cloud Comput.
2020, 8, 1296–1298. [CrossRef]

15. Zhao, L.; Chen, L. Sparse Matrix Masking-Based Non-Interactive Verifiable (Outsourced) Computation, Revisited. IEEE Trans.
Dependable Secur. Comput. 2020, 17, 1188–1206. [CrossRef]

16. Chung, K.M.; Kalai, Y.; Vadhan, S. Improved delegation of computation using fully homomorphic encryption. In Proceedings of
the Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010;
Proceedings 30; Springer: Berlin/Heidelberg, Germany, 2010; pp. 483–501.

17. Barbosa, M.; Farshim, P. Delegatable homomorphic encryption with applications to secure outsourcing of computation. In
Proceedings of the Topics in Cryptology–CT-RSA 2012: The Cryptographers’ Track at the RSA Conference 2012, San Francisco,
CA, USA, 27 February– 2 March 2012; Proceedings; Springer: Berlin/Heidelberg, Germany, 2012; pp. 296–312.

18. Kalai, Y.T.; Raz, R.; Rothblum, R.D. How to delegate computations: The power of no-signaling proofs. In Proceedings of the
Forty-Sixth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014; pp. 485–494.

19. Parno, B.; Howell, J.; Gentry, C.; Raykova, M. Pinocchio: Nearly Practical Verifiable Computation. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; pp. 238–252. [CrossRef]

20. Ananth, P.; Chandran, N.; Goyal, V.; Kanukurthi, B.; Ostrovsky, R. Achieving privacy in verifiable computation with multiple
servers–without FHE and without pre-processing. In Proceedings of the International Workshop on Public Key Cryptography,
Buenos Aires, Argentina, 26–28 March 2014; pp. 149–166.

21. Atallah, M.J.; Li, J. Secure outsourcing of sequence comparisons. Int. J. Inf. Secur. 2005, 4, 277–287. [CrossRef]
22. Benjamin, D.; Atallah, M.J. Private and Cheating-Free Outsourcing of Algebraic Computations. In Proceedings of the 2008 Sixth

Annual Conference on Privacy, Security and Trust, Fredericton, NB, USA, 1–3 October 2008; pp. 240–245. [CrossRef]
23. Atallah, M.J.; Frikken, K.B. Securely outsourcing linear algebra computations. In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, Beijing, China, 13–16 April 2010; pp. 48–59.
24. Wang, C.; Ren, K.; Wang, J. Secure and practical outsourcing of linear programming in cloud computing. In Proceedings of the

2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 820–828. [CrossRef]
25. Chen, F.; Xiang, T.; Yang, Y. Privacy-preserving and verifiable protocols for scientific computation outsourcing to the cloud. J.

Parallel Distrib. Comput. 2014, 74, 2141–2151. [CrossRef]
26. Zhang, X.; Jiang, T.; Li, K.C.; Castiglione, A.; Chen, X. New publicly verifiable computation for batch matrix multiplication. Inf.

Sci. 2019, 479, 664–678. [CrossRef]

http://doi.org/10.1109/TSC.2017.2711009
http://dx.doi.org/10.1109/TCC.2013.7
http://dx.doi.org/10.1016/j.ins.2014.05.014
http://dx.doi.org/10.1109/TSC.2014.2331694
http://dx.doi.org/10.1109/ACCESS.2016.2535103
http://dx.doi.org/10.1109/ICC.2016.7510991
http://dx.doi.org/10.1109/INFOCOM.2017.8057199
http://dx.doi.org/10.1016/j.ins.2019.05.024
http://dx.doi.org/10.1109/TCC.2019.2922344
http://dx.doi.org/10.1109/TDSC.2018.2861699
http://dx.doi.org/10.1109/SP.2013.47
http://dx.doi.org/10.1007/s10207-005-0070-3
http://dx.doi.org/10.1109/PST.2008.12
http://dx.doi.org/10.1109/INFCOM.2011.5935305
http://dx.doi.org/10.1016/j.jpdc.2013.11.007
http://dx.doi.org/10.1016/j.ins.2017.11.063

Information 2023, 14, 603 19 of 19

27. Chen, F.; Xiang, T.; Lei, X.; Chen, J. Highly Efficient Linear Regression Outsourcing to a Cloud. IEEE Trans. Cloud Comput. 2014,
2, 499–508. [CrossRef]

28. Yang, Y.; Xiong, P.; Huang, Q.; Chen, F. Secure and efficient outsourcing computation on large-scale linear regressions. Inf. Sci.
2020, 522, 134–147. [CrossRef]

29. Wang, C.; Ren, K.; Wang, J.; Wang, Q. Harnessing the Cloud for Securely Outsourcing Large-Scale Systems of Linear Equations.
IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1172–1181. [CrossRef]

30. Chen, X.; Huang, X.; Li, J.; Ma, J.; Lou, W.; Wong, D.S. New Algorithms for Secure Outsourcing of Large-Scale Systems of Linear
Equations. IEEE Trans. Inf. Forensics Secur. 2015, 10, 69–78. [CrossRef]

31. Salinas, S.; Luo, C.; Chen, X.; Li, P. Efficient secure outsourcing of large-scale linear systems of equations. In Proceedings of the
2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 1035–1043.
[CrossRef]

32. Li, D.; Dong, X.; Cao, Z.; Wang, H. Privacy-preserving large-scale systems of linear equations in outsourcing storage and
computation. Sci. China Inf. Sci. 2018, 61, 1–9. [CrossRef] [PubMed]

33. Salinas, S.; Luo, C.; Chen, X.; Liao, W.; Li, P. Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations.
IEEE Trans. Big Data 2018, 4, 26–39. [CrossRef]

34. Zhou, L.; Zhu, Y.; Choo, K.K.R. Efficiently and securely harnessing cloud to solve linear regression and other matrix operations.
Future Gener. Comput. Syst. 2018, 81, 404–413. [CrossRef]

35. Ding, Q.; Weng, G.; Zhao, G.; Hu, C. Efficient and Secure Outsourcing of Large-Scale Linear System of Equations. IEEE Trans.
Cloud Comput. 2021, 9, 587–597. [CrossRef]

36. Duan, J.; Zhou, J.; Li, Y. Secure and Verifiable Outsourcing of Large-Scale Nonnegative Matrix Factorization (NMF). IEEE Trans.
Serv. Comput. 2021, 14, 1940–1953. [CrossRef]

37. Tang, X.; Shen, M.; Li, Q.; Zhu, L.; Xue, T.; Qu, Q. PILE: Robust Privacy-Preserving Federated Learning via Verifiable Perturbations.
IEEE Trans. Dependable Secur. Comput. 2023, 1–18. [CrossRef]

38. Hu, C.; Zhang, C.; Lei, D.; Wu, T.; Liu, X.; Zhu, L. Achieving Privacy-Preserving and Verifiable Support Vector Machine Training
in the Cloud. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3476–3491. [CrossRef]

39. Taylor, J. Work out pure mathematics A-level, by Betty Haines and Roger Haines. Pp 246.£ 7· 50. 1991. ISBN 0-333-54385-8
(Macmillan). Math. Gaz. 1991, 75, 469. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCC.2014.2378757
http://dx.doi.org/10.1016/j.ins.2020.03.003
http://dx.doi.org/10.1109/TPDS.2012.206
http://dx.doi.org/10.1109/TIFS.2014.2363765
http://dx.doi.org/10.1109/INFOCOM.2015.7218476
http://dx.doi.org/10.1007/s11427-017-9265-8
http://www.ncbi.nlm.nih.gov/pubmed/29349729
http://dx.doi.org/10.1109/TBDATA.2017.2679760
http://dx.doi.org/10.1016/j.future.2017.09.031
http://dx.doi.org/10.1109/TCC.2018.2880181
http://dx.doi.org/10.1109/TSC.2019.2911282
http://dx.doi.org/10.1109/TDSC.2023.3239007
http://dx.doi.org/10.1109/TIFS.2023.3283104
http://dx.doi.org/10.2307/3618647

	Introduction
	 Related Work
	Contribution
	Organization

	Preliminaries
	Verifiable Computation
	Privacy-Preserving Property of a VC Protocol
	Random Masking Permutation
	Notations

	Our Modified Formal Definitions
	RPM-Based Verifiable Computation
	The Privacy-Preserving Property with Respect to the GCD and the LCM

	Privacy-Preserving Vulnerability of Random Permutation Masking
	Privacy-Preserving Vulnerability
	Compared with the State of the Art RN15
	Further Discussion

	Performance Evaluation
	The Proposed Attack
	The Comparison of the Different Attacks against RPM

	Conclusions
	References

