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Abstract: Cybersecurity in modern vehicles has received increased attention from the research
community in recent years. Intrusion Detection Systems (IDSs) are one of the techniques used to detect
and mitigate cybersecurity risks. This paper proposes a novel implementation of an IDS for in-vehicle
security networks based on the concept of multi-scale histograms, which capture the frequencies
of message identifiers in CAN-bus in-vehicle networks. In comparison to existing approaches in
the literature based on a single histogram, the proposed approach widens the informative context
used by the IDS for traffic analysis by taking into consideration sequences of two and three CAN-bus
messages to create multi-scale dictionaries. The histograms are created from windows of in-vehicle
network traffic. A preliminary multi-scale histogram model is created using only legitimate traffic.
Against this model, the IDS performs traffic analysis to create a feature space based on the correlation
of the histograms. Then, the created feature space is given in input to a Convolutional Neural
Network (CNN) for the identification of the windows of traffic where the attack is present. The
proposed approach has been evaluated on two different public data sets achieving a very competitive
performance in comparison to the literature.

Keywords: cybersecurity; automotive; deep learning; intrusion detection systems

1. Introduction

Cybersecurity in modern vehicles has become an active field of research as the evolu-
tion of the automotive sector has improved the computing and connectivity capabilities
of modern vehicles, which support a large variety of automotive applications for traffic
management, maintenance and so on. On the other side, the evolution of vehicles to the
“computer on wheels“ concept has also exposed vehicles to the risk of cybersecurity threats
as described in various surveys in this topic [1–3]. These surveys identify the key threats in
the automotive sector and the correspondent mitigation techniques, which can be based
on cryptographic solutions or analysis of the in-vehicle networks traffic with Intrusion
Detection System (IDS). This study focuses on the design of a novel IDS approach for
in-vehicular networks based on the CAN-bus standard.

In the ICT domain, the application of IDSs! (IDSs!) to mitigate cybersecurity attacks
is well known and they have been used for more than 30 years. IDSs are usually based
on the analysis of the network traffic to highlight anomalies or specific traffic patterns,
which may point to an attack [4]. The main metrics of evaluation of IDSs are the detection
accuracy and the time to detect an attack in the shortest time possible so that an appropriate
countermeasure can be implemented. In ICT infrastructure, computers and network
components (e.g., routers) are usually the main assets to protect from attacks. In modern
vehicles, the assets to be protected are sensors (e.g., engine or tyre sensors), actuators
(e.g., bracking systems) and the Electronic Control Unit (ECU)s, which are the computing
platforms used to control and monitor the engine and transmissions. The various electronic
components in the vehicles are connected through various in-vehicle networks like CAN-
bus, FlexRay and LIN [2,5]. This paper focuses specifically on attacks on the CAN-bus as it
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is the most widely deployed in-vehicle network standard in the world. A description of the
CAN-bus protocol is provided later in this paper.

Contribution of this paper: The implementation of an IDS in in-vehicular networks has
been proposed in the literature using different techniques as described in Section 2. One
category of IDS is based on the creation of dictionaries or a model of legitimate/normal
CAN-bus traffic (without attacks), against which the traffic with attacks is evaluated. In
particular, the frequency of appearance or the entropy of CANIDs (one of the fields of
the CAN-bus protocol, which identifies the message) is calculated in sliding windows of
CAN-bus traffic. The problem with these approaches is the detection accuracy may not
be optimal even if they are computing efficient [6]. Other approaches are based on the
analysis of the sequences of CAN-bus messages, but the selection of the optimal sequences
can also be challenging because it depends on the attack implementation [7]. Recently,
various authors have applied Deep Learning (DL) with excellent detection performance at
the cost of a significant computing complexity especially with large data set with millions
of CAN-bus messages [7,8].

As described in the subsequent sections, this paper proposes a combination of these
methods by (1) adopting a multi-scale histogram method to build the dictionary of se-
quences of CANIDs instead of relying only on the frequency of single CANIDs, and (2)
using the created dictionaries to generate a feature space on which DL is applied. The ad-
vantage and novelty of the proposed approach is based on the combination of the methods
to overcome the limitations of the frequency-based single CANIDs approach, meaning it
exploits the strength of the CANIDs sequence methods (through the multi-scale histograms)
and the power of DL by mitigating the disadvantage of the DL (which requires significant
computing effort), because the DL is applied to the reduced feature space rather than all
the CAN-bus traffic. To the knowledge of the author, a multi-scale histogram approach for
IDSs has not been applied in the literature and combined with DL.

Scope of this paper: The author would like to highlight that the scope of this paper is
to propose a new approach for an IDS based on multi-scale histograms and DL, which
is targeted to Denial of Service (DOS) and spoofing attacks as described in the data sets
used to evaluate the approach. This paper does not aim to address attacks related to the
users like chatbots or deep fakes or other attacks outside the ones defined in the used data
sets. The two data sets have been chosen for the following reasons. The first data set is the
Car Hacking data set created by the Hacking and Countermeasures Research Lab [9,10].
This data set has been extensively used by the research community working on IDSs for
in-vehicular networks and it is also used in this paper for benchmark reasons. The data
set addresses DOS, Fuzzy and spoofing attacks. The Car Hacking data set was one of
the first data sets created for IDSs for in-vehicular networks, but it has some limitations,
which have been analyzed in literature [11]. For this reason, the proposed approach has
also been validated on the ROAD dataset [11,12], which contains ambient data recorded
during a diverse set of activities, and attacks of increasing stealth with multiple variants
and instances of real fuzzing, fabrication and unique advanced attacks, as well as simulated
masquerade attacks. Both data sets have been created using real automotive vehicles with
CAN-bus protocol implementations. More details are in Sections 3.3 and 3.4.

Structure of this paper: The structure of this paper is as follows: Section 2 provides an
overview on the related work, which is relevant for this study. Section 3 describes the overall
methodology of the proposed IDS approach. A brief description of the CAN-bus protocol is
provided in Section 3.1. The main workflow of the methodology is described in Section 3.2.
One key element of the proposed approach is the architecture of the Convolutional Neural
Network (CNN) described in Section 3.5. Section 3 also describes the materials used to
evaluate the approach in sub-sections: the Car Hacking data set in Section 3.3 and the ROAD
data set in Section 3.4. This paper uses two recent public data sets of in-vehicle network
traffic with both legitimate traffic and attacks. Each public data set has a different set of
attacks. Finally, Section 3.6 identifies the metrics of evaluation and concludes Section 3.
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Section 4 presents the results of the application of the proposed approach on the two
different data sets. This section also provides a comparison with the results obtained by
other studies presented in the research literature on the same data sets. Finally, Section 5
concludes this paper and points towards future developments.

2. Related Work

IDS in vehicular networks is based on similar concepts to the IDS of generic commu-
nication networks, where an intrusion/attack must be detected with great accuracy and
in a short time so that appropriate actions can be taken (e.g., by a network administrator)
to block the attack. Research activities in IDSs of vehicular networks are quite recent and
they are due to the growing interest in vehicle cybersecurity originating from the reports of
various and remote attacks to vehicles as described in [1–3,13].

A classification of IDSs for in-vehicle networks [6–8] shows that IDSs can be imple-
mented using signature identifications, machine learning, anomaly detection and other
means. The approach proposed in this paper is part of the category of anomaly detection
with a sliding window, where the IDS algorithm extracts features from a sliding window
on the in-vehicle traffic (i.e., a set of CAN-bus messages). Features can be the distribution
of CANID values or features extracted from the payload. A model is created from the
legitimate traffic (i.e., network traffic without attacks) and it is used in a subsequent step to
detect anomalies, which may correspond to a potential attack. A similar pre-processing step
is used in the automotive domain for similar problems as in [14] to improve the reliability
of the data flow. A sliding window approach can be more time-efficient than approaches
where each single CAN-bus message is analyzed but a potential weakness is found in the
lower discriminating power as discussed in [15–17], where entropy measures are used as
features. In particular, in [15], the Shannon entropy is calculated on a sliding window of
in-vehicle network traffic and the timing of the messages. The authors in [16] have shown
that an approach based on the counting of the messages is more effective than an approach
based on the timing of the messages. For this reason, this paper uses a similar approach
to [16] based on the number of received CAN-bus messages but with different features
(i.e., histograms of the CANIDs instead of entropy measures). In [15,16], the authors have
used the CANID field to calculate the entropy measure and this approach also uses the
CANID field only. The performance of different entropy measures including dispersion
entropy and Renyi entropy are instead evaluated in [17] on the Car Hacking data set. A
similar approach based on natural-language-processing concepts (i.e., bag of words) and
the comparison of dictionaries was also proposed in [18].

The number of publications proposing IDSs in in-vehicular networks has grown
considerably in recent years with different methods and sources of data. The rest of this
survey identifies selected works, which focus on the frequency-based or histogram-based
approaches and with CANID as source of information as in this paper. In other words, the
focus is mostly on CANID-based IDSs.

The authors of [19] have investigated the use of a sequence of CANIDs as a discriminat-
ing feature but with a different goal than the implementation of IDSs because the target is
the prediction of the next CANID. A transfer learning-based technique is used to retrain the
IDS using streaming CAN data on a resource-constrained Raspberry Pi device to improve
the IDS. The approach in [19] is based on a specific window sequence of only five CANIDs,
while this paper investigates different window sizes. The approach is applied to the same
ROAD dataset [11,12] also used in this paper. Similar concepts to the approach proposed in
this paper are presented in [20], where the frequency of n-grams of the CANID sequences
have been investigated. The use of n-grams is similar to the multi-scale histograms used in
this paper. The authors of [20] use n-grams with n = 1, 2, 3, 4. The authors acknowledge that
a higher value of n would hugely increase the computing complexity of the analysis. On
the other side, the authors of [20] do not exploit the n-gram frequencies to implement the
IDS using the feature space concept as proposed in this paper and they do not use classifiers
for attack detection. In addition, they only analyze the Car Hacking data set [9,10]. An
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histogram-based IDS for in-vehicular networks was proposed in [21] for the Car Hacking
data set, but with the significant difference that it was applied to the payload data rather
than the CANID data. The approach proposed in this paper cannot be applied to the
payload data because the dictionary would have a huge size even for the single-scale case
(it would be all the possible permutations of the 64-bit data) and it would be unmanageable
for the scales of larger orders. In addition, [21] uses KNN instead of DL because the authors
reach already excellent results with shallow machine learning. Another paper based on
the data mining of sequences of the CANIDs, which are used to implement IDS is [22]. In
the training phase, discriminant sequences of CANIDs for attack detection are identified,
which are then used in the testing phase. In other words, the training phase is used to
build a dictionary to model the normal behaviour of the vehicle, which is a similar concept
applied to this paper. The proposed approach in [22] compares well with frequency- and
dictionary-based approaches and the authors discuss the potential limitations including the
increasing computational complexity with longer sequences, which is the same finding of
this paper. The approach is applied to a data set generated by the authors themselves and
not a public data set. Then, it is difficult to compare results. The creation of a multi-scale
dictionary for IDS as in this paper was also proposed by the same author in [23] but to a
completely different protocol (MIL-STD-1553) and a significant different coding scheme. In
addition, DL was not used for the IDS implementation. Another recent paper proposing
an IDS for in-vehicular networks using the statistical characteristics of the attacks is [24],
where a fixed-window approach is used, as in this paper. A model of the legitimate traffic
is created and then statistical analysis is used to detect attacks on the basis of a moving
threshold. The approach optimizes in an adaptive way the optimal values of the threshold.
The approach is applied to the Car Hacking data set as in this paper.

Regarding the application of DL to this context, the authors in [25] used DL as in
this paper to analyze the sequences of CANIDs. In particular, they used Long Short-Term
Memory (LSTM) as it is ideally suited to analyze the temporal correlation of sequences.
On the other side, the goal of [25] is different from this paper because it is related to the
prediction of the next CANID, and then the algorithm compared the predicted ID with
the actual ID. In addition, the results achieved a worse accuracy than other studies in the
literature. Another DL approach based on the combination of CNN and LSTM is used
in [26], where the DL algorithm learns the spatio-temporal behavior of legitimate CAN-bus
traffic and then detects attacks based on the deviation of message sequences from this
behavior. Then, the approach is based on similar concepts even if the sequence selection is
based on LSTM. The approach is applied only to the Car Hacking data set rather than two
data sets as in this paper. This makes it difficult to understand if it can be generalized.

An approach based on the autoencoders for the Car Hacking data set is proposed
in [27]. As in other papers and this paper as well, a pre-processing step was used to
transform the initial data into numerical form via pre-processing. The autoencoders were
combined with shallow machine learning algorithms like decision tree and K Nearest
Neighbor (KNN).

Another approach used in literature is to convert CANID to an image representation
and then transform the IDS implementation with DL to an image-classification problem.
This approach is different from the approach proposed in this paper because the frequency
of the CANIDs in windows is not used directly to create a feature matrix. The disadvan-
tage of applying DL to the CANIDs as an image representation method is the very high
computing effort required, because the DL is applied to CANIDs values directly instead
of grouping them in windows. On the other side, these methods usually achieve a very
high attack-identification accuracy. For example, this approach was used in [10], where
the CANIDs are transformed directly to binary images using the Car Hacking data set
and CNN for supervised learning as in this paper. In another paper, the authors have
used auto-encoders for CANIDs transformed to images for semisupervised learning, while
this paper focused on supervised learning. Finally, another paper [28] have combined the
concept of recurring plots with CANIDs sequences as input to CNN to implement the IDS.
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The authors of [28] have applied the method to the Car Hacking data set. The advantage of
this approach is to use a window-based approach (the chosen window size was 128, which
is in the same order of magnitude of the window size of 120 messages used in this paper),
which decreases the computing complexity for the CNN. On the other side of the coin, the
accuracy obtained in [28] on the Car Hacking data set is slightly worse than [10], which is
more computing intensive.

To summarize the literature review, the approach proposed in this paper combines
the two main approaches proposed in the literature using only the CANIDs information:
the frequency of appearance of the CANIDs values or sequences (e.g., n-grams) is used
to create a histogram feature space (which is basically a dictionary) on which the CNN is
used. The proposed approach combines the computing effectiveness of using windows to
group CANIDs values with the power of the DL, which is applied to a transformed feature
space. A potential disadvantage of this approach is that two main hyper-parameters have
to be tuned for the specific data set: the window size and size of the dictionary created by
the histograms. On the other side, the methods proposed in this literature review are also
dependent on hyper-parameters like the window size.

3. Materials and Methods
3.1. CAN Protocol

The CAN-bus protocol is one of the most popular in-vehicle network standards in
the world [5]. It was invented by Robert Bosch GmbH and officially released in 1991.
CAN-bus is structured as a broadcast message-based protocol and it was designed for
robust communication among ECU, sensors and actuators in the vehicle. The term robust
is meant for robustness against electrical disturbances, magnetic effects, which are common
in automotive vehicles. It was also designed to be cost-effective to mitigate the impact on
the overall cost of the vehicle. Cybersecurity aspects were not taken into consideration in
the initial design because they were not considered a high-priority risk at that time due
to the physical boundaries of the in-vehicle network (i.e., there was no connectivity to
the in-vehicle networks of the car), but recent trends in connectivity have shown that the
CAN-bus (and the connected ECUs) can be subject to digital attacks as demonstrated by [1].

A description of the standard CAN-bus (in the version CAN 2.0) frame structure
with the identification of the specific fields is provided in Figure 1 with CANID (i.e.,
the arbitration field), which represents the CAN message identifier and the CAN-bus
payload data, which is composed of 64 bits (8 bytes). The CANID field for each transmitted
CAN frame indicates the packets’ priority. In the CAN-bus standard, the priority of the
transmitted packet is inversely proportional to the value of the CANID field.
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Figure 1. Frame structure of the CAN-bus protocol.
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3.2. Workflow

The overall workflow of the proposed approach is shown in Figure 2, while the specific
aspect of the histograms creation is shown in Figure 3.
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Figure 2. Main workflow of the proposed approach. The explanations of each methodology step are
provided in Table 1.
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Figure 3. Detailed aspect of the feature matrix creation. The bottom right corner shows how the
features for each scale are concatenated in the final FSPACEAll .

The description of all the data flows used in the workflow is provided in Table 1. The
identifier in the first column of the table corresponds to the identifier appearing in Figure 2.
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Table 1. Data flows of the workflow.

Data Flow Identifier Description

1

Values of the CANIDs of the data set portion of the legitimate
traffic only. For the scale of order 1 only the CANID values are
used, for the scales of order 2 and 3, the concatenated values
of the temporal sequences of 2 and 3 CANID values are used,
respectively.

2
Dictionaries CATLEGSX of CANID values or sequences of or-
ders 2 and 3 depending on the scale order. The dictionary is
limited in size by the parameter PD.

3
Comparison of histograms generated by the traffic with window
WS with the dictionaries CATLEGSX of legitimate traffic created
in step 2 for the scale orders 1, 2, 3.

4

Histogram generated by the traffic with window WS for the scale
orders 1, 2, 3. For the scale of order 1, only the CANID values
are used. For the scales of order 2 and 3, the concatenated values
of the temporal sequences of 2 and 3 CANID values are used,
respectively.

5
Feature spaces for each window created by the bins of the his-
tograms compared against the dictionary of legitimate traffic
CATLEGSX . X is the scale order (X = 1, 2, 3).

6 Set of feature spaces FSPACESX for all the traffic windows con-
sidered in the data set.

7
Complete feature space FSPACEAll for all the traffic win-
dows created by the concatenation of FSPACESX along the
feature dimension.

8 Predicted results from the application of the CNN.

The workflow is based on the following concepts and steps, and it is the same workflow
both for the Car Hacking data set and the ROAD data set. Please note that a summary of
the notations used in this paper is provided later in Section 3.7.

As mentioned previously, this approach is uniquely based on the CANID field of the
CAN-bus protocol. The reasons to choose this particular field are because: (1) The number
of potential CANID fields is limited by the CAN-bus protocol and in the usual CAN-bus
traffic in modern vehicles. Then, it is preferred for this specific approach to the payload
data, which may have a much larger and unmanageable number of permutations (i.e.,
64 bits of payload data) especially for the multi-scale sequences as in this paper. (2) CANID
is used heavily for IDS in in-vehicular networks especially for frequency-based IDS designs
such as the one proposed in this paper, and (3) the results from the literature show that the
distributions of the CANID values are altered when an attack is implemented.

1. A portion of the data set, which contains only normal or legitimate traffic, is put aside
from the portion of the data set containing the attack traffic. For both data sets, one
million messages were used for the legitimate traffic.

2. The CANID values are extracted from the CAN-bus traffic and converted to a numeric
value. The CANID data is converted to two bytes (11 original bits plus a buffering of
5 bits set to 0 to reach a total of 16 bits). From the original hexadecimal value they are
converted to a decimal value. For the multiscale 2 and 3, the CANIDs hexadecimal
values were converted as well.

3. The frequency of CANID values in the legitimate traffic was estimated for the three
scales: sequences of size 1, 2 and 3 to create dictionaries of CANID values for the
legitimate traffic. Obviously the potential size of the dictionaries grows considerably
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for larger scales because it is based on all the potential permutations of the used
CANID values NlegCANID: for multiscale of order 3, this would be NlegCANID

3 because
the order of the CANID values is also relevant and there are no repetitions in the
permutations. This is also the reason for why the multiscale approach was stopped at
the scale of order 3. In reality, in the data set, this number is lower because not all the
permutations are used in the CAN-bus traffic and not all the possible permutations
of the 11 bits are defined as correct values in the CAN-bus protocol. The dictionary
created at each scale in the legitimate traffic is called CATLEGSX of order X = 1, 2, 3.
Not all the CANID frequency values are actually relevant in the execution of the IDS.
The issue is to estimate how many frequency values (e.g., the tail of the histogram)
should be considered. The proposed approach does not consider a fixed value but it
defines a hyper-parameter PD, which is the percentage of the sum of the CANID bin
values in the histogram on the overall number of collected CANID values in the traffic.
If the value of PD is too small, not all the CANID frequency values are used in the
analysis, if the value of PD is too high, the feature space created from the histograms
in the following steps will be too large, with consequently large computing time and
memory requirements for the execution of the classification step in the IDS. The values
of PD considered in this approach are (70, 80, 90, 98) expressed in percentiles.

4. On the attack-related traffic, the legitimate traffic was split into windows. A sliding
window (non-overlapping) of size WS (this is one of the hyper-parameters in the
approach) is defined to collect the CAN-bus traffic in a contiguous set of WS CAN-
bus messages. Note that the size of the window is purely related to the number of
CAN-bus messages WS rather then the time of the messages. This is done to ensure
an uniform number of CAN-bus messages to be fed to the next step. The proposed
approach has used values of WS in the range (120, 150, 180, 210, 240, 270, 300). This
range was chosen for the following reasons, which are conflicting trade-offs also
reported in the literature: (1) the number of messages has to be large enough to create
a histogram that is statistically relevant, (2) the number of messages has to be small
enough to locate the attack in the CAN-bus traffic, (3) the smaller the number of
messages, the longer the processing time of the approach, as the number of windows
on which the CNN has to operate is inversely proportional to the window size WS
for the data set. On the other side, it is not known a priori which is the window size
with the best detection performance. In-fact, WS is one of the two hyper-parameters
in the approach. The other one is PD described before. On each of the windows, the
frequencies of appearance of the CANID values and their permutations for scales 2
and 3 were calculated to create three dictionaries of the sequences of CANID values.
A pictorial description of this step is shown in Figure 3.

5. On each collected window of the testing data set, the histogram of the CANID values
is calculated against the CATLEGSX set to identify how similar are the frequencies
of the CANID values to the legitimate traffic. This will create a feature FSpaceSX,
where X can be 1, 2, 3 for the multiscale order. The sum of the values not appearing
in CATLEGSX is reported as an additional feature. Then, the overall set of features
created by the histogram for each scale X is size(CATLEGSX) + 1.

6. The window is labeled as malicious if there is at least one labeled malicious message
in the window. Then, a labeled vector is created for each window size WS.

7. Because of the multiscale approach, the feature spaces in this study are actually three
for the different scale sizes 1, 2 and 3: FSpaceS1, FSpaceS2, FSpaceS3 (which correspond
respectively to CATLEGS1, CATLEGS2, CATLEGS3), which are concatenated along
the feature dimension to create a combined feature space FSPACEAll . This aspect is
graphically shown in Figure 3 in the right bottom corner.

8. The attack-related traffic data set is split into training and testing portions of size
3/4 and 1/4, respectively, of the entire data set (i.e., 4-fold approach). The validation
portion is 1/10 of the size of the training set. The training and testing portions are
randomly selected from the attack traffic data set. The process of randomization is
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repeated 10 times for each four-fold (then 40 times) and the resulting values of the
metrics are averaged.

9. Finally, a 1D CNN deep learning algorithm is applied to the FSPACEAll to perform
the classification and identification of the attacks from the legitimate traffic. The
CNN is applied to the feature space as a 1D time series. The description of the CNN
architecture is provided in Section 3.5.

3.3. Data Sets: Car Hacking Data Set

The Car Hacking data set was created by the Hacking and Countermeasures Research
Lab described in [9,10]. The data has been extracted from a Hyundai YF Sonata through
a Y-cable plugged into the OBD-II port through a Raspberry Pi3 as described in [9,10].
The recorded CAN-bus traffic matches the specification of CAN 2.0 with a CAN-bus
message interpretation based on the Hyundai YF Sonata model.

The datasets each contain 300 intrusions of message injection. Each intrusion is
performed in a time frame from 3 to 5 s, and each dataset has a total of around 30 min of
CAN-bus traffic.

There are four sub data sets for each of the attacks described below.

• In the Denial of Service (DoS) attack, messages of ‘0000’ CAN-bus ID were inserted in
the in-vehicle network every 0.3 milliseconds.

• In the Fuzzy attack, totally random CAN-bus ID and payload data values of the
CAN-bus message were injected every 0.5 milliseconds.

• In the Spoofing attack of the RPM type, messages related to the RPM information were
injected every 1 millisecond. The injected messages transmitted information about the
RPM gauge changing the original status on the instrument panel [9,10].

• In the Spoofing attack of the Gear type, messages related to the Gear information were
injected every 1 millisecond. The injected messages transmitted information about the
driver gear changing the original status on the instrument panel [9,10].

The data set is made public with different files for each type of attack. In a similar
way to other studies [29], the author combined all the attacks in a single file to evaluate the
challenge to identify each attack.

The distribution of the messages in the Car Hacking dataset is provided in Table 2,
together with the term in parenthesis used to indicate the attack in the rest of this paper.

Table 2. Data distribution in the Car Hacking in-vehicle network datasets.

Traffic Type Number of Messages

Normal 15,226,830

Spoofing the drive gear (Gear) 597,252

Fuzzy attack (Fuzzy) 491,847

Denial of Service (DOS) attack 587,521

Spoofing the rounds per minute gauze (RPM) 654,897

3.4. Data Sets: ROAD

The second data is the benchmark Oak Ridge National Laboratory’s (ORNL) Road data
set proposed in [11,12]. This benchmark dataset consists of fully compromised electronic
control units connected with the CAN bus through an onboard diagnostic port. This
dataset contains real network traffic consisting of regular and fabricated attack traffic. The
fabricated attack traffic has verified the impact on the behavior of the vehicles. This data set
contains network traffic in 12 normal and 33 attack traffic log files. The total traffic captured
consists of normal and attack traffic data for 3 h and 30 min.

The authors of [11,12] collected CAN data using the SocketCAN software on a Linux
computer with a Kvaser Leaf Light V2 connecting to the OBD-II port. All of the data are
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from a single vehicle. The make/model is not disclosed and it was manufactured in the
mid 2010s. The data was collected both on a dynamometer and on roads, while performing
a variety of normal and also sometimes unusual driving activities (e.g., unbuckled seatbelt
or opened door while driving).

The ROAD dataset used in this paper mainly includes two types of attacks: fuzzing
attacks (called Fuzzing in the rest of this paper) and targeted ID attacks, which includes
correlated signal attacks (CorrSig), max engine coolant temp attacks (MaxEng True Class),
max speedometer attacks (MaxSpeed), reverse light-off attacks (RevLightOff) and reverse
light-on attacks (RevLightOn). This was the same set of attacks used in [30]. The distribution
of the messages in the ROAD dataset is provided in the following Table 3 together with the
term in parenthesis used to indicate the attack in the rest of this paper.

Table 3. Data distribution in the ROAD in-vehicle network datasets.

Traffic Type Number of Messages

Normal 13,702,852

Correlated and signal attack 192,748

Fuzzing attack 94,931

Max engine coolant temp attack 61,923

Max speedometer attack 572,842

Reverse light off attack 308,385

Reverse light on attack 465,234

3.5. Convolutional Neural Network Architecture

The architecture of the 1D CNN used in this study is shown in Figure 4. It is a relatively
simple 1D CNN architecture with three convolutional layers. A max pooling element was
used instead of the average pooling because it provided a superior performance.
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Figure 4. The architecture of the convolutional neural network used for the classification.
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The number of filters for the first convolutional layer was 8, then 16 for the second
layer and 32 in the last layer. The Adam solver was used. The window size of the first
convolutional layer was set to 40, then, 16 and 8 for the second and third layer, respectively,
when all the feature space is used. The maximum number of epochs was set to 160 but it
was noticed that the CNN algorithm converges much before this value.

The list of all the CNN hyper-parameters values used to produce the results shown in
Section 4 is provided in the following Table 4.

Table 4. List of CNN parameters used in the study.

CNN Parameter Value

CNN solver algorithms Adam

Number of Convolutional Layers 3

Width and filter size of the 1st convolutional layer 40,8

With and filter size of the 2nd convolutional layer 16,16

Width and filter size of the 3rd convolutional layer 8,32

1st pooling layer Max pooling (8,1)

2nd pooling layer Max pooling (4,1)

Activation function ReLU

Maximum number of epochs 80

3.6. Metrics of Evaluation

The metrics used to evaluate the performance of the proposed approach are the error
rate (ER), miss rate (MR) and the false discovery rate (FDR), which are defined in the
following equations.

ER = 1 − accuracy = 1 − TP + TN
(TP + FP + FN + TN)

(1)

FDR = 1 − precision = 1 − TP
(TP + FP)

(2)

MR = 1 − recall = 1 − TP
(TP + FN)

(3)

ER identifies the overall number of classification errors when the proposed approach
fails to identify the legitimate or attack-related traffic. MR is the proportion of positives
that yield negative test outcomes with the test. In this context, MR is used to report on
the number of samples on which the proposed approach confuses legitimate traffic with
attack-related traffic. While this may not be a critical error (because no attack was present),
a large MR value may trigger not-necessary actions by the network manager. The FDR
is used to report on the number of samples on which the proposed approach confused
attack-related traffic with legitimate traffic. A large value of FDR may be more critical than
MR because the proposed approach failed to detect an attack. These metrics of evaluation
were used because they were adopted in the literature [10,17,24,26,28,30,31].

Where TP is the number of True Positives, TN is the number of True Negatives, FP is
the number of False Positives and FN is the number of False Negatives. Because it is a multi-
class classification problem with quite unbalanced data sets (the legitimate traffic message
are much larger than the attack-related traffic messages), the ER, FDR and MR metrics are
calculated using micro-averaging, where the contributions of all classes are aggregated to
compute the average metric.To complete the accuracy metric, confusion matrices are also
provided to assess the predicted values against the true values. In the confusion matrices
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presented in this paper, each column of the matrix represents the instances in a true class
while each row represents the instances in an predicted class.

3.7. Summary of the Notations

Table 5 summarizes the notations used in this paper.

Table 5. Notations used in this paper.

Notation Description

CATLEGS1

Size of the dictionary of the CANID values created from the legiti-
mate traffic using histograms of the CANIDs only. The size of the
dictionary is based on the data set and the parameter PD

CATLEGS2

Size of the dictionary of the CANID values created from the legiti-
mate traffic with the histograms of the sequence of CANIDs of length
2. The size of the dictionary is based on the data set and the parame-
ter PD

CATLEGS3

Size of the dictionary of the CANID values created from the legiti-
mate traffic with the histograms of the sequence of CANIDs of length
3. The size of the dictionary is based on the data set and the parame-
ter PD

FSpaceS1
Feature space created for each window with the histograms of the
CANIDs only.

FSpaceS2
Feature space created for each window with the histograms of the
sequence of CANIDs of length 2.

FSpaceS3
Feature space created for each window with the histograms of the
sequence of CANIDs of length 3.

FSpaceAll
Feature space created by concatenating FSpaceS1, FSpaceS2 and
FSpaceS3.

legitimate traffic
Set of CAN-bus messages, which are known to be not impacted by
attacks in the labelled data set. The term normal traffic is also used
in this paper with the same meaning.

NlegCANID
Number of distinct CANID values appearing in the legitimate traffic
for each data set

PD

Percentage of the sum of the CANID values used in the analysis on
the total of CANID values appearing in the legitimate traffic (i.e.,
NlegCANID). PD is a hyper-parameter in the analysis.

WS
Window size used to split the CAN-bus messages in windows of
fixed sizes.

4. Results and Discussion

This section provides the results obtained with the proposed approach for the two data
sets: Car Hacking dataset and ROAD data set. In Section 4.1, the evaluation of the impact of
the hyper-parameters is presented. As mentioned before, two main hyper-parameters can
have an impact on the classification performance of the proposed approach: the window
size WS and the percentage of histogram frequency values PD, which corresponds in
percentiles to the sum of the high histogram CANID frequency bins in the normal (i.e.,
legitimate) traffic data set, which was used to create the CATLEGSX dictionaries. These
results also show the relative predictor weight of the different features in both data sets for
the values of the hyper-parameters, which achieved the optimal classification performance.
In Section 4.2, the performance of the proposed approach using all the features is compared
against using only the single-scale dictionary, as is done in literature. In Section 4.3, the
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author compares the performance in terms of accuracy, precision and recall to the results
in the literature on the same data set. Finally, Section 4.4 discusses the advantages and
disadvantages of the approaches.

4.1. Evaluation of the Hyper-Parameters

The analysis of the impact of the hyper-parameters on the detection performance
is shown using the three main evaluation metrics, Error Rate (ER), Miss Rate (MR) and
False Discovery Rate (FDR), on both data sets. Figure 5a shows the ER values obtained
for different values of PD and WS for the Car Hacking data set. The presented values are
obtained by averaging the results of the 40 repetitions of the CNN execution (10 repetitions
of the four-fold approach). It can be seen from Figure 5a that the impact of the hyper-
parameters is significant and the optimal ER (the smallest value) is obtained with PD = 80
and WS = 120. A different result is obtained on the ROAD dataset (presented in Figure 5b),
where the optimal values of both a WS = 240 and WS = 300 are obtained for different values
of PD. Considering that a smaller PD is preferable because the size of the feature space (and
the computing effort by the CNN) is directly proportional to the value of PD, the optimal
value at PD = 70 and WS = 300 was chosen for the ROAD dataset.
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(a) Error rate performance for the Car Hacking data set
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(b) Error rate performance for the ROAD data set

Figure 5. Error rate obtained with different values of the hyper-parameters PD and WS.

The performance using MR and FDR was also estimated and presented in Figures 6a
and 7a, respectively, for the Car Hacking data set and in Figures 6b and 7b, respectively,
for the ROAD data set. We can see that the results are consistent with the ER presented
previously, with MR higher in absolute quantitative values than FDR. This is related to the
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consideration that the proposed approach produces most of the errors by identifying as an
attack what is actually legitimate traffic. In the IDS, this classification error (type I error rate)
may be less critical than the error of not detecting the attack, as it is interpreted as legitimate
traffic (type II error rate). It can also be noted that the values of the hyper-parameters can
be selected if there is a preference to minimize the MR or the FDR. For example, in the
ROAD data set, the lowest FDR is obtained at PD = 98 and WS = 240, while the lowest
MR is obtained at PD = 90 and WS = 300. Similar considerations can be applied to the Car
Hacking data, where the lowest values of FDR is obtained at WS = 150 and PD = 90, while
the lowest value of MR is obtained at WS = 240 and PD = 80.
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(a) Miss rate performance for the Car Hacking data set
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(b) Miss rate performance for the ROAD data set

Figure 6. Miss rate (1-Recall) obtained with different values of the hyper-parameters PD and WS.

To evaluate more in detail the distribution of the False Positive (FP) and False Negative
(FN) generated by the classification algorithm, the following Figures 8a and 8b present,
respectively, the confusion matrix obtained for the Car Hacking and the ROAD datasets
achieved using the optimal values of the hyper-parameters.

For the Car Hacking data set, Figure 8a shows that the normal, Gear and RPM traffic
are very easy to identify with almost perfect accuracy, while for the Fuzzy and DOS
attack, the algorithm returns a number of false negatives, as it interprets the attack-related
messages as legitimate traffic. For the ROAD data set, the error rates for the different classes
are relatively balanced even if the number of FNs is generally higher than the number of
FPs. A potential reason for this behaviour is also related to the consideration that both
Car Hacking and the ROAD data set are heavily unbalanced data sets with legitimate
messages many more than the attack related messages. While, there can be techniques to
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re-balance such distribution like Synthetic Minority Oversampling Technique SMOTE [32],
the author preferred to keep the integrity of the data sets even with the understanding that
the classification problem can be more challenging.
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(a) False discovery rate performance for the Car Hacking data set
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(b) False discovery rate performance for the ROAD data set

Figure 7. False discovery rate (1-Precision) obtained with different values of the hyper-parameters
PD and WS.

The relevance of the features generated by each scale order (i.e., order = 1, 2, 3) was
analyzed, which is mapped to the feature spaces FSpaceSX with X = 1, 2, 3, which are
combined in FSpaceAll for the actual classification. This analysis was conducted by using
the ReliefF algorithm [33] where the predictor importance weight was estimated for all the
features in FSpaceAll in both data sets. The ReliefF algorithm is a filter feature selection
algorithm, which finds the weights of predictors for multiclass machine learning problems.
The algorithm penalizes the predictors that give different values to k nearest neighbors of
the same class, and rewards predictors that give different values to neighbors of different
classes. The hyper-parameter k was set to 10 in this analysis. The results are shown in
Figures 9 and 10 for the Car Hacking and the ROAD data set, respectively. The figures were
generated using the optimal values of the hyper-parameters for the ER in both data sets.
The pink area represents the features of FSpaceS1, the green area represents the features
of FSpaceS2 and the orange–yellow area represents the features of FSpaceS3. It can be
noted that the trend of the predictor importance weight is quite different in the two data
sets: while in the Car Hacking data set, all the features of FSpaceS1 have a very high
predictor importance weight, this is not the case in the ROAD data set, where the weight is
distributed across the three feature spaces. These results show that it is difficult to set a
priori which multi scale order is needed for the implementation of the IDS. The peaks (i.e.,
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high predictor weights), which appear at the end (i.e., the right extreme) of each colored
area (i.e., feature space), are the features related to the CANID sequences, which do not
belong to the dictionary of the legitimate traffic. From both Figures 9 and 10, it can be seen
that these specific features have in both data sets a high predictor weight, which justifies
their calculations in the proposed approach.
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(a) Confusion matrix for the Car Hacking data set with PD = 80 and WS = 120. The level
of darkness in each rectangle is proportional to the obtained accuracy
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(b) Confusion matrix for the ROAD data set with with PD = 70 and WS = 300

Figure 8. Confusion matrices obtained with the optimal values of the hyper-parameters PD and WS.
The level of darkness in each rectangle is proportional to the obtained accuracy.

On the basis of the results presented in Figures 9 and 10, the amount of features of
each feature space that are actually relevant for the classification was also estimated.

Table 6 shows the allocation of the top 30% best-ranking features identified by the
ReliefF algorithm for each feature space. While, this information can also be visually
estimated from the previous figures, Table 6 provides a more quantitative analysis and also
the balance among the feature space in terms of predictor relevance.
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Figure 9. Prediction weight of the different features for the Car Hacking data set with PD = 80 and
WS = 120.

Figure 10. Prediction weight of the different features for the ROAD data set with PD = 70 and
WS = 300.

Table 6. Allocation of the 30% best ranking features on the multi-scale dictionaries. With the Car
Hacking dataset PD = 80 and WS = 120. With the ROAD dataset, PD = 70 and WS = 300.

Car Hacking Dataset Number of Features Percentage of Features

Dictionary Size = 1 15 100%

Dictionary Size = 2 31 90%

Dictionary Size = 3 23 14%

ROAD Dataset

Dictionary Size = 1 4 16%

Dictionary Size = 2 71 49%

Dictionary Size = 3 156 26%

It can be seen that for the Car Hacking data set, the first two feature spaces are the
most relevant and the third feature space is less significant in the implementation of the
IDS. On the contrary, for the ROAD data set the second feature space is quite relevant. Both
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results justify the proposed approach where the traditional method used in the literature,
where only the sequences of the single CANID values are analyzed, is extended to consider
also dictionaries of sequence of CANID values of orders 2 and 3.

On the basis of the previous results, the performance when using only the single-scale
dictionary was also compared against the multi-scale approach. This is presented in the
following sub-section.

4.2. Comparison of Multi-Scale with Single-Scale

The relevance of the different feature space for the attack-detection performance was
also evaluated using the CNN. The performance of the proposed approach when only
the first feature space is used (i.e., single-scale) was also estimated, and it is compared
against the performance obtained with all the feature spaces (i.e., multi-scale), which was
shown above. Figures 11a, 12a and 13a show the ER, MR and FDR for the Car Hacking
data set, respectively, while Figures 11b, 12b and 13b show the ER, MR and FDR for the
ROAD data set, respectively, using the optimal values of the hyper-parameters. As in
the previous figures, the ER, MR and FDR values are consistent among them even when
using only the single scale feature space FSpaceS1. It can be seen across all the metrics
that the errors are smaller when using the whole feature space rather than using only
FSpaceS1. The performance improvement for the Car Hacking data set is significant: the
ER ratio between multi-scale and single-scale is 0.5972 for the optimal values of the hyper-
parameters. The performance improvement for the ROAD set is dramatic as the ER ratio
between multi-scale and single scale is 0.0269 as shown in Figure 11b. These results confirms
the distribution of the most relevant features shown in Table 6 and ultimately confirms the
validity of the proposed approach on two public data sets, which are significantly used by
the research community.
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(a) Car Hacking data set
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(b) ROAD data set
Figure 11. ER comparison of feature spaces with multi-scale and single-scale only. (a) Comparison of
the ER obtained using the whole feature space or only FSpaceS1 with the Car Hacking data set and
PD = 80 and WS = 120. (b) Comparison of the ER obtained using the whole feature space or only
FSpaceS1 with the ROAD data and PD = 70 and WS = 300.

Multiscale CNN Single Scale CNN

Approach

0

0.01

0.02

0.03

0.04

0.05

M
is

s
 R

a
te

P
D

=70

P
D

=80

P
D

=90

P
D

=98

(a) Car Hacking data set
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Figure 12. MR comparison of feature spaces with multi-scale and single-scale only. (a) Comparison
of the MR obtained using the whole feature space or only FSpaceS1 with the Car Hacking data set
and PD = 80 and WS = 120. (b) Comparison of the MR obtained using the whole feature space or
only FSpaceS1 with the ROAD data set and PD = 70 and WS = 300.
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(a) Car Hacking data set
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Figure 13. FDR comparison of feature spaces with multi-scale and single-scale only. (a) Comparison
of the FDR obtained using the whole feature space or only FSpaceS1 with the Car Hacking data set
and PD = 80 and WS = 120. (b) Comparison of the FDR obtained using the whole feature space or
only FSpaceS1 with the ROAD data set and PD = 70 and WS = 300.

4.3. Comparison with Results from Literature on the Car Hacking and ROAD Datasets

In this last sub-section, the author compares the performance obtained with the
proposed approach with the other studies mentioned in the related work section as they
are focused on using only the CANIDs. It should be noted that the comparison of the
results is only provided as an indication because the results may not be fully comparable
due to the different handling of the data set: the window size may be different from the
one used in this paper, each attack was addressed separately instead of combining all the
attacks together as in this paper, only a portion of the data set may be used or data set
balancing methods like SMOTE could be used, which alter the distribution of the attack
and legitimate messages. Finally, many of the papers identified in the related work uses
only additional information beyond the CANIDs like the CAN-bus message payload or
timing while this paper uses only the CANIDs.

The results presented in Table 7 show that the proposed approach is competitive, with
some approaches providing a better performance and others a worse performance than
this approach. Section 4.4 provides a detailed discussion of the results in Table 7.

Table 7. Comparison of the results with both data set for Error Rate, Miss Rate and False-
Detection Rate.

Approach ER MR FDR

Car Hacking data set

This approach PD = 80, WS = 120 0.00738 0.0138 0.01801

CNN with Recurrence Plots [28] 0.084 - -

Entropy measures [17] (mean of all attacks)
WS = 120

0.015 0.035 0.03

CNN with CANID (mean of all attacks) [10] 0.00007 0.000015 0.000013

Deep Learning [31] 0.0089 0.0158 0.0087

CNN+LSTM [26] - 0.0009 0.0005

Statistical characteristics (window size = 500) [24] 0.0094 0.0145 -

ROAD data set

This approach PD = 70, WS = 300 0.0022 0.01642 0.0542

Outlier Detection and metric learning [30] 0.001 0.002 0.002
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4.4. Discussion

This sub-section discusses the advantages and disadvantages of the approaches identi-
fied in Table 7 with the approach proposed in this paper. As discussed before, it is noted
that some results may not be fully comparable because the structure and distribution of the
initial data sets could be altered in the referenced studies. For the Car Hacking data set,
approaches based on deep learning and which operate on the single CAN-bus messages
records like [10] (where CNN operates on the CANIDs transformed to binary images)
or [26] (where all the information of the CAN-bus messages is used together with the
temporal information with a CNN-LSTM architecture) obtain the best detection perfor-
mance (and better than the approach proposed in this paper) at the cost of significant
computing complexity, because all the CAN-bus message records are given in input to the
DL algorithm.

The reduction of the input space and the consequent decrease in computing complexity
through the sliding window is one element of the proposed approach. The disadvantage of
the sliding window approach is the risk to lose discriminating features in the pre-processing
step. Then it is important to extract the most significant information from the traffic
windows before the application of the classification algorithm (e.g., CNN). The comparison
with the sliding windows approaches in the literature [17,24,28] is positive for this approach
as it generally obtains a competitive or better performance than the results in the literature.
At one extreme of the sliding window approaches is the extraction of entropy features [17],
which can be quite time-efficient but provides a relatively low detection performance.
A more comprehensive statistical analysis of the relevance of the windows size and the
thresholds used to discriminate legitimate traffic from attack-related traffic can produce a
better performance as shown in [24], but at the cost of tuning various hyper-parameters.
The results from [24] are slightly worse than the ones obtained in this paper, even if it
should be considered that [24] calculates the metrics only with the DOS and Fuzzy attack,
while this study considers all the attacks of the Car Hacking data set and the scores may not
be directly comparable. Transformations of the CAN-bus traffic to other representations,
which may preserve discriminating information together with DL may also be attempted
as it combines the power of DL with the dimensionality reduction of the window-based
approach. This is the case of [28], where CNN was combined with recurrence plots even
if the classification performance is worse than the approach proposed in this paper. The
reduction of the input space can also be performed in combination with DL by using
dimensionality-reduction algorithms like Principal Component Analysis (PCA), which is
applied to all the CAN-bus message features in [31] together with LSTM. The final detection
performance obtained by [31] is relatively high but it still lower than the one obtained in
this paper.

For the ROAD dataset, there is scarcity of results in the literature to compare the
performance of the different approaches. The results from [30] are slightly better than
our proposed approach but it should be considered that the authors in [30] have used a
combination of oversampling (to re-balance the distribution of the attack related messages
to the legitimate traffic) and outlier detection (to remove not relevant CAN-bus messages),
which has significantly altered the original data set.

To conclude this sub-section, the author summarizes the main advantages and disad-
vantages of the proposed approach. One of the main advantages is the use of the sliding
window, which significantly reduces the input space to the DL classifier. Another advan-
tage is the use of a dictionary based only on legitimate traffic, which does not require the
creation of dictionaries with attack-based traffic (which may be biased towards the presence
of specific attacks). The advantage of the temporal sequences of CAN-bus messages is
incorporated in the approach using the novel multi-scale histograms method. Thanks to
the transformation of the original attack-detection problem to a feature problem, the power
of the CNN is exploited (as the temporal information is already included in the multi-scale
dictionary representation, the LSTM was not needed).
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The disadvantages of the proposed approach are the following. The size of the multi-
scale dictionary can be quite large especially for the higher values of the scale (order = 3).
Then, it is important to optimize the size of the dictionary while preserving the most
discriminating features. In this approach, this aspect is controlled through the parameter PD.
The other hyper-parameter is the window size WS. Then, the other significant disadvantage
of this approach is the need to determine the optimal values of PD and WS. This study
did not identify a common set of values, which can be generalized across different data
sets because the optimization process for the Car Hacking data set and the ROAD data set
provided quite different results.

5. Conclusions and Future Developments

This paper has presented a novel intrusion detection system (IDS) for in-vehicle
networks, which combines the concept of creating a dictionary based on the frequency of
appearance of CANIDs values (the identifiers of the CAN-bus protocol) in sliding windows
with DL. The goal is to combine the computing efficient window-based method with the
classification performance of DL. Contrary to what is presented in the research literature,
the proposed approach adopts a multi-scale workflow where the sequences of CANID
values or scale 1, 2 and 3 are used and combined to create a multi-scale dictionary. The
histogram distributions calculated from the windows of the CAN-bus traffic with attacks
are compared against the histograms created only using legitimate traffic. Such analysis
creates a feature space on which the DL with convolutional neural networks (CNN) is
applied for classification in a supervised learning fashion. The proposed approach is
applied to two different public data sets, where it achieves a competitive performance. In
particular, the attack classification performance is better than dictionary-based approaches
and some of the other approaches proposed in the literature based on CNN and the sliding
window concept. It is worse than DL approaches, which are not based on the sliding
window but which can be more computing-intensive than the approach proposed in this
paper. An analysis of the relevance of the generated features with scales of orders 2 and 3
using the ReliefF algorithm shows that they contribute significantly to the classification
performance. This analysis supports the design of the proposed approach. Regarding
trade-offs and limitations in the proposed approach, the most significant limitation is the
need to calculate the optimal values of the main hyper-parameters (window size and size
of the dictionary) and the need to limit the size of the dictionary for higher orders of the
scale (e.g., 3).

Future developments may go in different directions. One direction would be to
implement an unsupervised approach because the creation of the dictionary would be also
suitable for this purpose. Another direction would be to implement an adaptive window
approach where the size of the window of analysis in the attack CAN-bus traffic varies
according to some statistics. In this latter case, the advantage of the proposed approach is
that the feature space size given in input to the CNN is independent from the window size.
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Abbreviations
BoW Bag of Words
CAN Controller Area Network
CAN-bus Controller Area Network-bus
CNN Convolutional Neural Network
CANID CAN-bus identifier
CRC Cyclic Redundancy Check
DOS Denial of Service
DL Deep Learning
DLC Data Length Code
ECU Electronic Control Unit
ER Error Rate
FDR False Discovery Rate
FP False Positive
FN False Negative
ICT Information and Communication Technologies
IDS Intrusion Detection System
IFS Inter Frame Space
KNN K-Nearest Neighbour
LIN Local Interconnect Network
LSTM Long short-term memory
OBD On-Board Diagnostics
ORNL Oak Ridge National Laboratory
ML Machine Learning
MR Miss Rate
ReLU rectified linear unit (ReLU)
ROAD Real ORNL Automotive Dynamometer
RPM Round Per Minute
SMOTE Synthetic Minority Oversampling Technique
TN True Negative
TP True Positive
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