
Citation: Oguntola, O.; Simske, S.

Context-Aware Personalization: A

Systems Engineering Framework.

Information 2023, 14, 608. https://

doi.org/10.3390/info14110608

Academic Editor: Wei Zhang

Received: 1 October 2023

Revised: 27 October 2023

Accepted: 8 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Context-Aware Personalization: A Systems
Engineering Framework
Olurotimi Oguntola * and Steven Simske

Systems Engineering Department, Colorado State University, Fort Collins, CO 80523, USA;
steve.simske@colostate.edu
* Correspondence: timi.oguntola@colostate.edu

Abstract: This study proposes a framework for a systems engineering-based approach to context-
aware personalization, which is applied to e-commerce through the understanding and modeling of
user behavior from their interactions with sales channels and media. The framework is practical and
built on systems engineering principles. It combines three conceptual components to produce signals
that provide content relevant to the users based on their behavior, thus enhancing their experience.
These components are the ‘recognition and knowledge’ of the users and their behavior (persona);
the awareness of users’ current contexts; and the comprehension of their situation and projection
of their future status (intent prediction). The persona generator is implemented by leveraging an
unsupervised machine learning algorithm to assign users into cohorts and learn cohort behavior
while preserving their privacy in an ethical framework. The component of the users’ current context
is fulfilled as a microservice that adopts novel e-commerce data interpretations. The best result of
97.3% accuracy for the intent prediction component was obtained by tokenizing categorical features
with a pre-trained BERT (bidirectional encoder representations from transformers) model and passing
these, as the contextual embedding input, to an LSTM (long short-term memory) neural network.
Paired cohort-directed prescriptive action is generated from learned behavior as a recommended
alternative to users’ shopping steps. The practical implementation of this e-commerce personalization
framework is demonstrated in this study through the empirical evaluation of experimental results.

Keywords: context awareness; intent prediction; persona; e-commerce personalization; systems
engineering

1. Introduction

The industrial experiences of both practitioners and researchers demonstrate the
growing importance of technology-enabled omnichannel customer experiences in retail.
Successful retail companies are paying attention to changing shopping habits and the
increasing inclination to shop digital first, as they record continually more store purchases
that started with online product searches. The personalization of an e-commerce website
gives it a competitive advantage by simplifying users’ decision processes using relevant
information. There have been research efforts to model adaptive systems, implement per-
sonalization, and utilize context in recommender systems. They have been applied to many
areas, such as e-commerce, tourism, entertainment, and social media [1–6]. These papers
delve into different machine learning methods to apply context to generate personalized
recommendations for various applications. However, there is a shortage of exhaustive
theoretical and practical coverage of the actual implementation of these systems in practice.
Industry practitioners often find a disconnection between research outcomes and their
applicability in practice.

Interestingly, the personalization process, if generalized, may not have the desired
impact: effective personalization is perceived to be environment- and domain-specific [7,8].

Information 2023, 14, 608. https://doi.org/10.3390/info14110608 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14110608
https://doi.org/10.3390/info14110608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-2755-827X
https://orcid.org/0000-0002-6937-1956
https://doi.org/10.3390/info14110608
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14110608?type=check_update&version=1

Information 2023, 14, 608 2 of 20

A systems engineering framework is apt for the complexities of the data foundation re-
quirements, decision-making, and integration between the multiple knowledge-generating
subsystems required to provide intuitively personalized shopping experiences to the in-
creasing traffic on shopping channels [9].

This study highlights the development and implementation of a systems engineering-
supported framework that is employed to enable the realization of a system that provides
positive and productive shopping experiences that mimic what a user will get from the
attention of a knowledgeable shop assistant. The “systems engineering framework” uses a
hierarchical approach from traditional systems engineering, with top-down decomposition
and the definition of development requirements for its subsystems, along with bottom-up
integration and qualification to validate against specified requirements. The latter include
tests, measurements, and reliability and sensitivity recommendations.

The framework, which is inspired by the systems engineering approach of “faster,
cheaper, better”, which emphasizes the use of Commercial-Off-The-Shelf (COTS) systems
and components [10], is intentionally designed to be simple, scalable, and replicable
with the open-source technology that is easily accessible. The proposed system, which
fits to loosely coupled microservice-based e-commerce platforms, produces signals that
activate products and non-product responses that are personalized to individual users in
their current shopping session. This is implemented through the following specialized
subsystems:

• Persona—‘recognition and knowledge’ of the users and their behavior;
• Awareness of users’ current context;
• Intent prediction—comprehension of their situation and projection of future status;
• Cohort-directed prescriptions for the next best content.

Logically, a system with this framework enabled qualifies as a microservice [11] since
it can be deployed, scaled, tested independently, and be responsible for producing signals
for hyper-personalized in-session shopping experiences. Similarly, the persona generation,
context-aware computing, and in-session intent detection subsystems qualify as microser-
vices. These subsystems are the building blocks that meet requirements and applicable
system design criteria. The persona generation subsystem satisfies the ‘knowledge and
recognition’ system requirement by grouping users into cohorts and aggregating online
behavior for user cohorts to build behavioral features. The context-aware computing sub-
system’s analytic computations provide the users’ current contexts. Finally, the in-session
intent detection subsystem uses the outputs of the other subsystems to accurately predict
the intention at every stage of the shopping journey to generate relevant signals and con-
tents, thus providing a personalized user experience. The intent detection is extended by a
novel method that implements cohort-directed alternative action prescriptions. To the best
of the authors’ knowledge, no other study before this has proposed a systems engineering
framework for an end-to-end practical and scalable implementation of personalization
that leverages privacy-compliant customer profiling methods, adopts current context, and
influences users’ in-session actions with cohort-directed prescriptions for the next best
content for delivery.

The rest of the paper is organized as follows. Section 2 describes the system design
considerations. It explains the subsystems and their inputs and outputs, including the
requirements at the system level, the system synthesis, its analysis, and the implementation
of a personalization task. We present the results in Section 3. In Section 4, we evaluate and
discuss the results. Section 5 concludes the paper and outlines its limitations and important
future work.

2. Materials and Methods
2.1. Data Capture

The first key input into the personalization system is the users’ first-party behavioral
data. The data used for proof of concept are publicly available e-commerce behavior
data [12], and the data tracking used to produce embeddings is smaller than for standard

Information 2023, 14, 608 3 of 20

e-commerce use cases such as re-targeting [13]. This implementation requires effective
and accurate capturing, storage, and the easy accessibility of first-party data on users’
interactions on shopping channels, including clicks, swipes, searches, product views, page
views, cart additions, orders, returns, reviews, etc. Website visitor information is mined
from log files and page tagging through web cookies, and many tag management solutions
have been developed to do this effectively. However, cookies have heightened internet
privacy concerns, despite their usefulness for web data collection, because third parties can
exploit them to track user behaviors. To address these privacy concerns, privacy-preserving
data mining and data publishing methods are used to incorporate the preferences and
requirements of the stakeholders [14,15].

With awareness of the cookie-less future, this personalization system leverages first-
party data, including data from user registration, user submissions, and behavioral data
collected through privacy-compliant device fingerprinting mechanisms [16]. The user-
agent header, the browser used, the approximate location based on IP address, and screen
resolution are a few individually non-identified attributes that, when combined, hold
valuable identification properties used for privacy-compliant behavioral tracking online.
Figure 1 is a high-level schematic diagram of the architecture of the personalization sys-
tem. Platform tag management is depicted in the Data Capture Layer in Figure 1 but is
external to the personalization system. Its implementation is beyond the scope of this
experimental design.

Information 2023, 14, x 4 of 21

Figure 1. Personalization System Architecture.

2.2. Persona Generation
The persona generator is the first subsystem in the proposed personalization systems

engineering framework. It groups users with similar behavioral metrics into cohorts. The
feature engineering process that selects and transforms the most relevant variables from
the raw data input leverages retail domain knowledge. It requires an understanding of
the underlying features in the raw data that best describe the events, and knowledge of
how to transform them into the format of input needed. As well as being optimal, the
choices of processes and algorithms within this framework are made intentionally for rep-
licability.

The persona generator initiates the conversion of vast amounts of data on user be-
havior into meaningful insights. This subsystem’s user groups or cohorts are created with-
out knowledge of the desired outcome; therefore, the input data are not labeled. In other
words, the data samples are not tagged with one or more labels that provide context for
the machine learning model to learn from, as is done in traditional supervised learning.
As it is in many practical applications, collecting labeled data is expensive and laborious,
and as a result workaround solutions developed to handle unlabeled and sparsely labeled
data [19,20] were explored and adopted for this implementation. Unlike a classifier, the
persona generator has no requirements for matches to specific outcomes. Clustering, an
unsupervised machine learning technique, identifies and groups similar data points into
structures and is optimal for this subsystem. Many clustering techniques use the degree
of similarity between records for their grouping [21]. The clustering process produces a
set of distinct groups but with the objects within each group being broadly similar accord-
ing to the relevant metrics. The clustering techniques considered for this component in-
clude hierarchical clustering, DBSCAN (density-based spatial clustering of applications
with noise), K-Means, and Gaussian mixture models. Different popular clustering algo-
rithms include BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies),
Agglomerative Clustering, Affinity Propagation, Mini-Batch K-Means, Mean Shift, Spec-
tral Clustering, and OPTICS (Ordering Points To Identify Cluster Structure). Hierarchical

Figure 1. Personalization System Architecture.

This framework is considered data-centric since data are its primary asset and the
dominant system component [17], and feature engineering [18], of the raw data collected
plays a significant role in its implementation. With the maturation of machine learning
approaches and because data quality is so essential [19,20], the requirements for good
quality input data are emphasized in implementing this system through feature engineering
and data-centric iterations to obtain improved performance from the models. Details of the
data preprocessing and transformations employed in the implementation of this research
are covered in the subsystems.

Information 2023, 14, 608 4 of 20

2.2. Persona Generation

The persona generator is the first subsystem in the proposed personalization systems
engineering framework. It groups users with similar behavioral metrics into cohorts. The
feature engineering process that selects and transforms the most relevant variables from
the raw data input leverages retail domain knowledge. It requires an understanding of the
underlying features in the raw data that best describe the events, and knowledge of how to
transform them into the format of input needed. As well as being optimal, the choices of
processes and algorithms within this framework are made intentionally for replicability.

The persona generator initiates the conversion of vast amounts of data on user behav-
ior into meaningful insights. This subsystem’s user groups or cohorts are created without
knowledge of the desired outcome; therefore, the input data are not labeled. In other
words, the data samples are not tagged with one or more labels that provide context for
the machine learning model to learn from, as is done in traditional supervised learning.
As it is in many practical applications, collecting labeled data is expensive and labori-
ous, and as a result workaround solutions developed to handle unlabeled and sparsely
labeled data [19,20] were explored and adopted for this implementation. Unlike a classifier,
the persona generator has no requirements for matches to specific outcomes. Clustering,
an unsupervised machine learning technique, identifies and groups similar data points into
structures and is optimal for this subsystem. Many clustering techniques use the degree of
similarity between records for their grouping [21]. The clustering process produces a set of
distinct groups but with the objects within each group being broadly similar according to
the relevant metrics. The clustering techniques considered for this component include hier-
archical clustering, DBSCAN (density-based spatial clustering of applications with noise),
K-Means, and Gaussian mixture models. Different popular clustering algorithms include
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), Agglomerative
Clustering, Affinity Propagation, Mini-Batch K-Means, Mean Shift, Spectral Clustering,
and OPTICS (Ordering Points To Identify Cluster Structure). Hierarchical clustering is
suitable for finding a hierarchy of clusters called a dendrogram, which, as the name implies,
is structured like a tree [22,23]. DBSCAN is a technique apt for discovering clusters of
different shapes and sizes in noisy data and is particularly useful for spatial data mining.

The K-Means clustering algorithm is well-known for its simplicity and ease of deploy-
ment in practice. The technique randomly initiates K points as the initial centroid of the K
number of clusters in its basic form. Then, it iteratively assigns data points to one of the K
clusters based on its Euclidean distance to the cluster centroid in the feature space. The
cluster centroid is determined in each iteration by computing the mean of all the data points
belonging to that cluster, and the whole process is repeated until convergence. If we denote
the set of features as X = (x1, x2,, xN), then the K-Means process [24], as described, can
be expressed in mathematical notation as:

i. Random initialization of cluster centroids {z1, z2, . . ., zk} ∈ RN

ii. Iterate until convergence:

{
For each i, set

e(i) = arg min j

∣∣∣ ∣∣∣ x(i) − zj

∣∣∣ ∣∣∣2
For each j, set

zj =
∑m

i=1{ e(i)=j } x(i)

∑m
i=1{ e(i)=j }

}

(1)

It is typical to test values within a reasonable range to determine an optimal value for K.
One method is to select the value that gives the highest ratio of between-centroid variability
to within-cluster variability and leverage regularization methods in an optimization process
to determine K [25]. Different solutions have been developed to address the K-Means
algorithm’s susceptibility to initial cluster centers and its vulnerability to outliers and noisy

Information 2023, 14, 608 5 of 20

data [26,27], as well as its adaptability to different data types, including time-series and
multi-view data [28,29].

Instead of simply associating each data point with one and only one cluster, Gaussian
mixture models introduce a probability that indicates how much a data point is associated
with a specific cluster. Fundamentally, a Gaussian mixture is a function of several Gaussians.
When applying the Gaussian mixture model [30] to create K number of clusters from a set
of observed features X = [x1, x2,, xN]T, each Gaussian has a mean µ ∈ RN, a covariance
∑ ∈ SN, and a mixing probability π, and its probability density function is given by

p(x; µ,∑) = ((2π)N/2|∑|1/2)−1 exp(−1/2(x − µ)T Σ−1(x − µ)) (2)

The convergence of the Gaussian mixture model is based on the expectation-maximi-
zation algorithm [31], and the process can be summarized as follows:

i. First, initialize mean µ, covariance ∑, and mixing probability π;
ii. Evaluate the initial value of the log-likelihood L;
iii. Evaluate the responsibility function using current parameters;
iv. Using newly obtained responsibilities, obtain the new µ, ∑, and π;
v. Compute the log-likelihood L again. Iterate (iii) and (iv) until convergence.

The first subsystem, the persona generator, builds user cohorts from the users’ shop-
ping activities on the shopping channel. Typical clickstream data has records of users’
click behavior, details of products interacted with, and events, one of which is usually
the desired outcome of conversion (cart checkout). These form the user’s click behavior
sequence with variables {xUID, xSID, xP1, xP2, . . ., xPN, xEV}, which are user identity xUID,
user session identifier xSID, N variables related to the products a user interacts with (both
categorical and numerical) xPI, and the event type xEV. Leveraging domain knowledge,
we transformed these signals into features of behavior metrics aggregated at the user level.

The features described in Table 1 were extracted from an e-commerce dataset collected
by the Open CDP project from a multi-category store containing the online behavior
data of 285 million consumers over several months [12]. The dataset includes sessions of
timestamped events of users’ product views, adding to cart, and purchases. The dataset
also provides product ID, product category, category ID, brand, and price. The subset of
the data used for synthesizing the persona generator subsystem is the first month’s users’
shopping activities; that is, 22.5 million timestamped events.

The system design optimization techniques applied in data preprocessing include
standardization and principal component analysis (PCA). Because features have significant
differences between their ranges, they are standardized by subtracting the mean and
scaling to unit variance. To extract strong patterns from the large dataset, which has
multiple features, we passed it through PCA and reduced the dimension to four principal
components. The selection of four components was determined from the number of
dimensions for which the cumulative explained variance [32] exceeded a threshold of 80%.
Reducing to three and five principal components gave similar results. This preprocessing
prepares the dataset for the clustering algorithms that group the users into cohorts based
on their persona or patterns of interaction with the sales channel. After exploratory data
analysis and considering multiple clustering approaches against the design requirements,
we reduced the list of design alternatives to K-Means and Gaussian mixture models (GMMs)
and further evaluated these unsupervised clustering methods. This approach follows
the systems engineering practice of trade-off analysis, and the argument in [25] on the
importance of building ground-truthing into system design at the onset by comparing and
contrasting two or more frameworks at the system level.

Information 2023, 14, 608 6 of 20

Table 1. Persona generator features.

Feature Description

{δtEV = ti+1 − ti}user_id The time lapse between user events

{|Xi|}user_session Count of events per user session

{∑|Si|}user_id Cumulative count of sessions per user

{(∑Pi/Ni)}user_id/purchase Average order value per user

{|Bi|}user_id/purchase Count of unique brands purchased per user

{∑|Xi|}user_id/purchase Number of purchase events per user

{|Ci|}user_id/purchase Count of unique product categories purchased per user

{(∑Pi/Ni)} user_id/add_to_cart Average price of cart per user

{|Bi|}user_id/add_to_cart Count of unique brands added to cart per user

{∑|Xi|}user_id/add_to_cart Number of addition-to-cart events per user

{|Ci|}user_id/ add_to_cart Count of unique product categories added to cart per user

{(∑Pi/Ni)}user_id/views Average price of products viewed per user

{|Bi|}user_id/views Count of unique brands viewed per user

{∑|Xi|}user_id/views Number of product view events per user

{|Ci|}user_id/ views Count of unique categories of products viewed per user

To determine the optimal number of clusters for the input dataset, we iteratively tested
with K ranging from 1 to 10 and adopted the Kneedle algorithm [33] to identify the ‘knee’
or ‘elbow’ point where the relative cost to increase the number of clusters is no longer
worth the corresponding performance benefit. Figure 2 shows the line plot between SSE
(Sum of Squared Errors) and the number of clusters; however, it does not depict the elbow
point, which represents the tipping point where the SSE or inertia starts to decrease linearly.
A low inertia and low number of clusters better meet requirements.

Information 2023, 14, x 7 of 21

Figure 2. Sum of Squared Errors plot for K-Means clustering.

Figure 3 uses Yellowbrick’s KElbowVisualizer [34] to more clearly visually identify
the optimal number of clusters to be 5. The scoring parameter plotted computes the sum
of squared distances from each point to its assigned center. The amount of time it takes to
train the clustering model per K value is plotted in the intersecting dashed green line.

Figure 4 shows the optimal number of clusters for the GMMs. The first prominent
elbow of the AIC (Akaike information criterion) plot is at 5 clusters, which agrees with the
optimal number of clusters identified in the K-Means model and is practical for this use
case. After ascertaining the optimal number of clusters, we compare K-Means clustering
with the GMMs for the exact optimal number of clusters. The first comparison method
scores the clusters using the variance ratio criterion—the ratio between the within-cluster
and between-cluster dispersion using the Calinski-Harabasz (CH) index [35].

Figure 3. Distortion Score Elbow for K-Means clustering—optimal at K = 5.

Figure 2. Sum of Squared Errors plot for K-Means clustering.

Figure 3 uses Yellowbrick’s KElbowVisualizer [34] to more clearly visually identify
the optimal number of clusters to be 5. The scoring parameter plotted computes the sum of
squared distances from each point to its assigned center. The amount of time it takes to
train the clustering model per K value is plotted in the intersecting dashed green line.

Information 2023, 14, 608 7 of 20

Information 2023, 14, x 7 of 21

Figure 2. Sum of Squared Errors plot for K-Means clustering.

Figure 3 uses Yellowbrick’s KElbowVisualizer [34] to more clearly visually identify
the optimal number of clusters to be 5. The scoring parameter plotted computes the sum
of squared distances from each point to its assigned center. The amount of time it takes to
train the clustering model per K value is plotted in the intersecting dashed green line.

Figure 4 shows the optimal number of clusters for the GMMs. The first prominent
elbow of the AIC (Akaike information criterion) plot is at 5 clusters, which agrees with the
optimal number of clusters identified in the K-Means model and is practical for this use
case. After ascertaining the optimal number of clusters, we compare K-Means clustering
with the GMMs for the exact optimal number of clusters. The first comparison method
scores the clusters using the variance ratio criterion—the ratio between the within-cluster
and between-cluster dispersion using the Calinski-Harabasz (CH) index [35].

Figure 3. Distortion Score Elbow for K-Means clustering—optimal at K = 5. Figure 3. Distortion Score Elbow for K-Means clustering—optimal at K = 5.

Figure 4 shows the optimal number of clusters for the GMMs. The first prominent
elbow of the AIC (Akaike information criterion) plot is at 5 clusters, which agrees with the
optimal number of clusters identified in the K-Means model and is practical for this use
case. After ascertaining the optimal number of clusters, we compare K-Means clustering
with the GMMs for the exact optimal number of clusters. The first comparison method
scores the clusters using the variance ratio criterion—the ratio between the within-cluster
and between-cluster dispersion using the Calinski-Harabasz (CH) index [35].

Information 2023, 14, x 8 of 21

Figure 4. Optimal number of clusters for the Gaussian Mixture Models.

The K-means cluster had a higher CH index, indicating the clusters are dense and
better separated. The second comparison method used is the Davies-Bouldin score [36],
which measures the average similarity of each cluster with its most similar cluster. The K-
means clusters had a lower Davies-Bouldin score than the GMM, indicating better clus-
tering. K-Means was, therefore, adopted for clustering users into cohorts, which forms an
input into other subsystems within this personalization framework. Extraction of the
mean of a few metrics of users in the different persona cohorts formed indicates the sep-
aration between clusters (see metrics highlighted in Table 2). Cohort 0 has the most signif-
icant number of users but a relatively low number of product views per user, and even
lower purchases per user compared to Cohort 3, which has fewer users but much higher
product views and purchases per user. The average time the users in these two cohorts
take between user sessions is also very different.

Table 2. Metrics of the persona cohorts.

Cohort Size
Cohort Metrics

Time between
Sessions (s)

Events in
Session

Sessions by
Each User

Product
Views

Add to Cart
($) Purchases

0 659,044 65,904 1.77 4.23 2757 2.43 0.06
1 119,238 27,981 7.67 31.52 16,159 15.34 0.33
2 105,160 45,791 3.86 17.94 10,036 802.4 1.49
3 6620 21,365 5.63 65.88 40,121 5928.21 13.75
4 14,866 9362 14.25 128.72 63,422 378.76 1.57

2.3. Context-Aware Computing
The second subsystem in the personalization systems engineering framework devel-

ops the context-awareness platform for acquiring contextual information and producing
different results adapted to the context of use, further enabling the prediction of user ac-
tion according to the user’s current situation. Context-aware development within this
framework complies with the variety of requirements that need to be satisfied to handle
context. These include context interpretation, transparent and distributed communica-
tions, availability of context acquisition, separation of concerns, and context storage and
history [37].

The functional architecture consists of subscriptions to suites of independently de-
ployable services and an API gateway that accepts application programming interface

Figure 4. Optimal number of clusters for the Gaussian Mixture Models.

The K-means cluster had a higher CH index, indicating the clusters are dense and better
separated. The second comparison method used is the Davies-Bouldin score [36], which
measures the average similarity of each cluster with its most similar cluster. The K-means
clusters had a lower Davies-Bouldin score than the GMM, indicating better clustering.
K-Means was, therefore, adopted for clustering users into cohorts, which forms an input
into other subsystems within this personalization framework. Extraction of the mean of
a few metrics of users in the different persona cohorts formed indicates the separation
between clusters (see metrics highlighted in Table 2). Cohort 0 has the most significant
number of users but a relatively low number of product views per user, and even lower

Information 2023, 14, 608 8 of 20

purchases per user compared to Cohort 3, which has fewer users but much higher product
views and purchases per user. The average time the users in these two cohorts take between
user sessions is also very different.

Table 2. Metrics of the persona cohorts.

Cohort Size

Cohort Metrics

Time
between

Sessions (s)

Events in
Session

Sessions by
Each User

Product
Views Add to Cart ($) Purchases

0 659,044 65,904 1.77 4.23 2757 2.43 0.06

1 119,238 27,981 7.67 31.52 16,159 15.34 0.33

2 105,160 45,791 3.86 17.94 10,036 802.4 1.49

3 6620 21,365 5.63 65.88 40,121 5928.21 13.75

4 14,866 9362 14.25 128.72 63,422 378.76 1.57

2.3. Context-Aware Computing

The second subsystem in the personalization systems engineering framework devel-
ops the context-awareness platform for acquiring contextual information and producing
different results adapted to the context of use, further enabling the prediction of user
action according to the user’s current situation. Context-aware development within this
framework complies with the variety of requirements that need to be satisfied to handle
context. These include context interpretation, transparent and distributed communica-
tions, availability of context acquisition, separation of concerns, and context storage and
history [37].

The functional architecture consists of subscriptions to suites of independently deploy-
able services and an API gateway that accepts application programming interface (API)
calls. The API gateway sends the calls through the API management system, collecting the
various services for fulfilling the call and returning the appropriate result to the calling sub-
system. The API gateway provides security, authentication, authorization, fault tolerance,
load balancing, and routing [38]. Besides the many popular open-source API gateways that
can be self-managed, major cloud service providers offer end-to-end API management in
the cloud, on-premises, or as a hybrid.

The context development architecture grants us the flexibility to add or remove services
that call for contextual information, depending on the scenario. For example, the architec-
ture diagram below (Figure 5) depicts components for implementing context awareness in
big-box retail. Microservices for such an implementation provide contextual information
that includes the following:

A. inventory available in the user’s location or preferred store;
B. user’s product category and brand affinities;
C. order delivery location-based options;
D. proximity to stores and a selected store;
E. user’s search queries;
F. directed response to inclement weather;
G. promotions available to a user;
H. availability of expert installation for certain products;
I. order history;
J. order tracking information;
K. the semantics of extracts from product reviews;
L. user’s sensitivity to pricing;
M. customer lifetime value.

Information 2023, 14, 608 9 of 20

Information 2023, 14, x 9 of 21

(API) calls. The API gateway sends the calls through the API management system, collect-
ing the various services for fulfilling the call and returning the appropriate result to the
calling subsystem. The API gateway provides security, authentication, authorization, fault
tolerance, load balancing, and routing [38]. Besides the many popular open-source API
gateways that can be self-managed, major cloud service providers offer end-to-end API
management in the cloud, on-premises, or as a hybrid.

The context development architecture grants us the flexibility to add or remove ser-
vices that call for contextual information, depending on the scenario. For example, the
architecture diagram below (Figure 5) depicts components for implementing context
awareness in big-box retail. Microservices for such an implementation provide contextual
information that includes the following:
A. inventory available in the user’s location or preferred store;
B. user’s product category and brand affinities;
C. order delivery location-based options;
D. proximity to stores and a selected store;
E. user’s search queries;
F. directed response to inclement weather;
G. promotions available to a user;
H. availability of expert installation for certain products;
I. order history;
J. order tracking information;
K. the semantics of extracts from product reviews;
L. user’s sensitivity to pricing;
M. customer lifetime value.

Figure 5. Context-awareness subsystem architecture.

Specific API calls to this subsystem will give a response based on the shopper’s cur-
rent context. For instance, a merchandising API call for promotions available to a user will
provide promotion campaign codes for applicable price discounts to encourage purchase.

These microservices are built around business capabilities and exist as independently
deployable enterprise applications. The architectural diagram depicts how multiple mi-
croservices provide the data combined for contextual information delivered to a browser,
mobile device, or stored in a database. Microservices and API management technologies
are research subjects of interest and have been adopted in the industry. API requests are

Figure 5. Context-awareness subsystem architecture.

Specific API calls to this subsystem will give a response based on the shopper’s current
context. For instance, a merchandising API call for promotions available to a user will
provide promotion campaign codes for applicable price discounts to encourage purchase.

These microservices are built around business capabilities and exist as independently
deployable enterprise applications. The architectural diagram depicts how multiple mi-
croservices provide the data combined for contextual information delivered to a browser,
mobile device, or stored in a database. Microservices and API management technologies
are research subjects of interest and have been adopted in the industry. API requests are
integrated with business process models to provide documentation or the testing of REST
API calls directly in a modeling environment [39]. Similar solutions are available as open-
source technologies and can be deployed as a service. For the application in this paper,
we pulled contextual information captured within the clickstream of interactions on the
e-commerce website to validate the personalization of a systems engineering framework.

By design, the users’ context variables are retrieved via API calls to microservices
that provide different user context data in real-time or batched historical data stored in
a low-latency data service application. Context variables will differ depending on the
industry and requirements. Some variables that apply to this application include location-
based, product taxonomy, supply chain, cart and checkout, merchandising, and customer
relationship management microservices, as highlighted in the context-awareness subsystem
architecture diagram in Figure 5. However, for this synthesis, the context variables (CV)
listed below are computed from the input data:

1. CV1—Propensity to purchase;
2. CV2—Timelapse in the current session;
3. CV3—Count of activities in the current session;
4. CV4—Average price of products clicked through in the current session;
5. CV5—Frequency of purchase;
6. CV6—Measure of customer value (CV5 × Average Order Value).

The propensity-to-purchase score is the probability of conversion given the indepen-
dent variables and is computed by fitting the data pipeline to a logistic regression classifier
predicting purchase. The rest of the context variables are as defined and are calculated for
each user using their activities on the shopping channel over some time. Derived features
that are powers and multiples of these were also experimented with (see Section 3).

Information 2023, 14, 608 10 of 20

2.4. User Intent Detection

The third subsystem in the framework is required to predict the user’s intent in-session
by deriving an understanding of the user’s current situation and projecting the future status
of the shopping session. The user’s longer-term behavioral metrics, aggregated cohort
metrics from the persona generator, and in-session contextual information, are all inputs
into this module. The module predicts the intent of the user in-session, and for each step in
the user’s journey, if the prediction is contrary to the desired objective, computes signals
leading to alternative action that better converges with the desired outcome.

Modeling users’ interactions with customer engagement channels as sequences of
actions is an intuitive method for the system to meet this requirement and has proven to be
adequate in practical use cases [40,41]. For example, sequence models have been used for
sentiment classification, machine translation, and music generation. In addition, they are
effective for supervised learning in scenarios where either the model input or model output
can be prepared as a sequence. Clickstream intent prediction is a challenging feature-
based classification of sequences similar to language prediction [42]. The wide range of
machine learning methods researchers explore to achieve clickstream intent prediction
suggest applying deep learning or Markov models on data transformations from users’
interactions with channel artifacts, including products and non-product content [43–45].
We extend these methods with cohort behavior, current context, and prescriptive action
recommendations. The implementation of this framework is intentionally generalizable,
scalable, and operationalizable. These requirements influence the choice of methods
we explore.

We summarize our approach to experimenting with trade-offs for user intent predic-
tion and the subsequent corrective prescription as follows:

• Learn the embeddings from the data using long short-term memory (LSTM) [46],
an artificial recurrent neural network-related architecture for learning user intent [41].
The embeddings are created by mapping the discrete categorical variables in the listed
inputs to vectors of continuous numbers (sequences):

� aggregated cohort behavior features from the persona generator;
� user context (context-sensitive variables);
� user interaction.

• Combine embedding-methods based on linear transformations and concatenation
have produced accurate meta-embeddings [47].

• Explore fine-tuning pre-trained BERT (Bidirectional Encoder Representations from
Transformers) models with the dataset used for the experiments [48].

• Develop paired cohort-directed prescriptive actions for intent prediction instances that
are different from a desired positive outcome.

• Propose testing, validation, and end-to-end architecture for development, deployment,
and monitoring.

The user intent detection subsystem models behaviors based on the assumption that
the user’s interest lasts for some time while browsing the sales channel. Interactions with
products indicate the user’s interest, and in a single step, the user’s click behavior is driven
by the user’s current interest. The data is modeled as a sequence of click behavior time steps
well handled by a LSTM-based neural network. LSTM is adopted for sequence modeling
because it has a loop-back mechanism in a forward pass of samples. Through this, it utilizes
context from previous predictions for predictions in a new sample. The cell state provides
some memory to the LSTM network so it can ‘remember’ the past. The network has sigmoid
activation functions called the input gate, forget gate, and output gate. Figure 6 [49] shows
a representation of the LSTM network. The gates, weights, biases, cell states, and final
output are formulated as follows:

Information 2023, 14, 608 11 of 20

input gate → it = σ(wi[ht−1, xt] + bi)

forget gate → ft = σ
(

w f [ht−1, xt] + b f

)
output gate → ot = σ(wo[ht−1, xt] + bo)

cell state at timestamp(t) → ∼
ct = tanh(wc[ht−1, xt] + bc)

candidate for cell state at timestamp(t) → ct = ft ∗ ct−1 + it ∗
∼
ct

final output → ht = ot ∗ tanh(ct)

where σ represents the sigmoid function, wx is the weight of respective gate(x) neurons,
ht−1 is the output of the previous timestamp, xt is the input at the current timestamp, and
bx represents the biases for the respective gates(x).

Information 2023, 14, x 12 of 21

Figure 6. Original LSTM architecture.

Data-centric experiments on the implementation of LSTM are extended herein using
aggregated cohort metrics and context feature vectors to obtain an improved and gener-
alized performance from the models. Trade-offs and anticipated user experience outcomes
are expanded upon in subsequent sections.

2.5. Cohort-Directed Prescription
This part of the system generates prescriptive signals for in-session alternative user

actions. The vector representation of the prescribed alternative actions is pre-determined
before the session and saved in a low-latency database for fast retrieval in the session.
These prescribed alternative actions are presented as a sequence of vectors representing
the paths typical of members of the same cohort as the user, whose actions on the sales
channel led to desired outcomes such as conversion or increased engagement. Figure 7
depicts the implementation of paired cohort-directed prescriptive actions. The vector
space is the vector mapping of a set of (m) actions on (n) objects with a dimension (m×n).
Typical actions in e-commerce channels include search, view, click, add-to-cart, purchase,
addition to wish list, etc. Objects are a combination of products and non-product contents
such as webpage types, product category listings, installation guides, and banners.

Figure 6. Original LSTM architecture.

Data-centric experiments on the implementation of LSTM are extended herein using
aggregated cohort metrics and context feature vectors to obtain an improved and general-
ized performance from the models. Trade-offs and anticipated user experience outcomes
are expanded upon in subsequent sections.

2.5. Cohort-Directed Prescription

This part of the system generates prescriptive signals for in-session alternative user
actions. The vector representation of the prescribed alternative actions is pre-determined
before the session and saved in a low-latency database for fast retrieval in the session.
These prescribed alternative actions are presented as a sequence of vectors representing
the paths typical of members of the same cohort as the user, whose actions on the sales
channel led to desired outcomes such as conversion or increased engagement. Figure 7
depicts the implementation of paired cohort-directed prescriptive actions. The vector space
is the vector mapping of a set of (m) actions on (n) objects with a dimension (m×n). Typical
actions in e-commerce channels include search, view, click, add-to-cart, purchase, addition
to wish list, etc. Objects are a combination of products and non-product contents such as
webpage types, product category listings, installation guides, and banners.

Information 2023, 14, 608 12 of 20

Information 2023, 14, x 13 of 21

Figure 7. Cohort-directed prescriptive actions.

In the illustration, 0.012 is a product view and the symbolic start of the shopping
journey of a user that belongs to a cohort whose members that made the most purchases
of that product typically follow the path {0.012, 0.112, 0.212, 0.312}. The user’s predicted
path is the sequence {0.012, 0.022, 0.131, …}. Every step on the customer journey is mapped
to the vector space. A sequence pattern match will select the cohort sequence {0.012, 0.112,
0.212, 0.312} as a close prescribed match having the same start, and recommend 0.112
(click on the product) as the next best action for the user.

2.6. Experiments
The experiment’s environment is set up using Python, TensorFlow, and Keras Func-

tional API on the Apple M1 chip of an 8-core CPU with four performance cores and four
efficiency cores, an 8-core GPU, and a 16-core Neural Engine. The subset of the data used
initially for the deep learning experiment is the first month’s users’ shopping activities
within the first three months: a total of 22.5 million timestamped events. This leaves data
from 5 subsequent months of user activities for further experiments and model validation.
The dataset is split into 50% training data, 25% test data, and 25% validation data after
reshaping to 3D tensors, of which each user sample is a sequence of feature vectors with
a length of the number of time steps. The clickstream dataset is unbalanced, with fewer
purchases/conversions classes than other event types. By ground-truthing before apply-
ing deep learning, we take a naïve, non-machine learning approach to predict that events
will be the same as the event of the previous time step. We evaluate this approach using
the mean absolute error (MAE) and obtained validation and a test MAE of 0.77 that will
serve as a baseline for the deep learning approach.

Combining neural network architecture and training algorithm parameters, espe-
cially loss functions, is critical to avoiding subpar model performance and drawing incor-
rect conclusions from experiments. The neural network error landscape is the subject of
ongoing debates and research theories [50]. The loss function computes a score of how far
the output is from that expected. The squared-error loss function and cross-entropy loss
function are two common examples of loss functions that we considered for suitability.

Figure 7. Cohort-directed prescriptive actions.

In the illustration, 0.012 is a product view and the symbolic start of the shopping
journey of a user that belongs to a cohort whose members that made the most purchases of
that product typically follow the path {0.012, 0.112, 0.212, 0.312}. The user’s predicted path
is the sequence {0.012, 0.022, 0.131, . . .}. Every step on the customer journey is mapped to
the vector space. A sequence pattern match will select the cohort sequence {0.012, 0.112,
0.212, 0.312} as a close prescribed match having the same start, and recommend 0.112 (click
on the product) as the next best action for the user.

2.6. Experiments

The experiment’s environment is set up using Python, TensorFlow, and Keras Func-
tional API on the Apple M1 chip of an 8-core CPU with four performance cores and four
efficiency cores, an 8-core GPU, and a 16-core Neural Engine. The subset of the data used
initially for the deep learning experiment is the first month’s users’ shopping activities
within the first three months: a total of 22.5 million timestamped events. This leaves data
from 5 subsequent months of user activities for further experiments and model validation.
The dataset is split into 50% training data, 25% test data, and 25% validation data after
reshaping to 3D tensors, of which each user sample is a sequence of feature vectors with
a length of the number of time steps. The clickstream dataset is unbalanced, with fewer
purchases/conversions classes than other event types. By ground-truthing before applying
deep learning, we take a naïve, non-machine learning approach to predict that events will
be the same as the event of the previous time step. We evaluate this approach using the
mean absolute error (MAE) and obtained validation and a test MAE of 0.77 that will serve
as a baseline for the deep learning approach.

Combining neural network architecture and training algorithm parameters, especially
loss functions, is critical to avoiding subpar model performance and drawing incorrect
conclusions from experiments. The neural network error landscape is the subject of ongoing
debates and research theories [50]. The loss function computes a score of how far the output
is from that expected. The squared-error loss function and cross-entropy loss function are
two common examples of loss functions that we considered for suitability. Cross-entropy is
often the default loss function for multi-class classification problems. Ideally, for our use
case, the complexity of the user intent to be predicted is the cross-multiplication of several

Information 2023, 14, 608 13 of 20

activities on the number of products and services on the shopping channel(s). Modeling
this as a multi-class classification problem will be computationally expensive and may be
impractical for industry applications. The model is instead structured as a sequence of click
behavior time steps. The mean squared error (MSE) is the preferred loss function under
the inference framework of maximum likelihood when the target variable has a Gaussian
distribution. The experimental results in Section 3 highlight its performance during our
implementation of the LSTM network.

Apart from the loss function and the number, size, and types of layers in the network,
the optimization procedure and activation function are other parameters under consid-
eration for the application of this experiment. The optimizer lowers the loss score by
implementing a backpropagation algorithm to adjust the value of network weights in a
direction that decreases the loss. Optimizers are often assigned to two families: gradient
descent optimizers, such as stochastic gradient descent and batch gradient descent, and the
adaptive variants of SGD, such as Adagrad, Adadelta, RMSprop, and Adam [51,52]. It is
difficult to tune the learning rate of gradient descent optimizers, and they have a high
risk of getting stuck in suboptimal local minima. For these reasons, our preference was
for adaptive optimizers. We present experimental results using the RMSprop and Adam
optimizers in Section 3.

Word2Vec embeddings (vector space word representations) were used to obtain a
vectorized representation of the categorical features. Word2Vec groups together the vectors
of similar words and can make robust estimates of the meaning of the words based on their
occurrences in a large enough corpus of text [53]. The dataset was sampled in batches of
pre-defined sequence lengths while running the deep learning experiments. This process
enables flexibility and a trade-off between the number of sequence batches and computation
time for each epoch. The different parameters in the experiments and the resulting trade-
offs in performance and computation time are discussed further in Section 3 of this paper.
We performed experiments with an early stopping callback to interrupt training when
validation loss had stopped improving and to save the best model in each iteration. This
process helps prevent overfitting during training. The callback object is passed to the model
in the call to fit() and has access to the model’s state and its performance throughout
the iteration.

Data-centric iterations were carried out on the model, extending the features with
cohort metrics and context variables from the persona generator and user context subsys-
tems to validate that these extensions improve the user intent prediction. We also used
pre-trained BERT model APIs to run end-to-end tokenization of the categorical features to
compare with the model’s performance using Word2Vec embeddings. The performance
metrics from the data-centric iterations in the user intent prediction subsystem are high-
lighted in the next section.

3. Results

The dataset was fed into the LSTM model during the first iteration using a sampling
rate of 10, with a batch size of 1280 and a sequence length of 360. The baseline LSTM had
one hidden layer with 16 neurons, one dense output layer, RMSprop optimizer, and mean
squared error as the loss function. The performance was measured using mean absolute
error. The categorical features were handled via a categorical encoder assigning different
numeric values for each category. With these parameters, the baseline LSTM was run in
10 epochs, with the 8777 steps in each epoch taking about 390 ms/step. Model overfitting
was indicated by the training loss, which stayed at 0.0202 from the third epoch onward.
This baseline model delivered the best mean absolute error (MAE) of 0.0495 on the training
dataset and 0.05 on the test dataset. Increasing the neurons in the hidden layer to 32
on the second iteration did not significantly impact performance. Instead, it increased
computation time for the same level of performance. The parameters and computation
times of these two iterations of the baseline model are highlighted in Table 3.

Information 2023, 14, 608 14 of 20

Table 3. Increasing the number of neurons in the hidden layer of the baseline LSTM model.

Iteration Steps/Epoch Average
Time/Step

No. of
Neurons Optimizer Loss

Function Loss MAE Test MAE

1 8777 390 ms 16 RMSprop MSE 0.0194 0.0495 0.050

2 8777 10,262 s 32 RMSprop MSE 0.0202 0.0479 0.055

We adopted the classic technique of fighting overfitting with dropout in both iterations.
The same dropout mask was applied at every time step, allowing the network to propagate
its learning error over time. As seen in the plots of training MAE and validation MAE in
Figure 8, the model starts to become overfitted with the beginning of the third epoch in
both iterations, indicating that the subsystem would benefit from a mechanism to stop
model training once it overfits.

Information 2023, 14, x 15 of 21

computation time for the same level of performance. The parameters and computation
times of these two iterations of the baseline model are highlighted in Table 3.

Table 3. Increasing the number of neurons in the hidden layer of the baseline LSTM model.

Iteration Steps/Epoch
Average

Time/Step No. of Neurons Optimizer Loss Function Loss MAE Test MAE

1 8777 390 ms 16 RMSprop MSE 0.0194 0.0495 0.050
2 8777 10,262 s 32 RMSprop MSE 0.0202 0.0479 0.055

We adopted the classic technique of fighting overfitting with dropout in both itera-
tions. The same dropout mask was applied at every time step, allowing the network to
propagate its learning error over time. As seen in the plots of training MAE and validation
MAE in Figure 8, the model starts to become overfitted with the beginning of the third
epoch in both iterations, indicating that the subsystem would benefit from a mechanism
to stop model training once it overfits.

Iteration 1 Iteration 2

Figure 8. Plots of training and validation mean absolute error.

For the third iteration, Word2Vec embeddings were used to create a vectorized rep-
resentation of the categorical features; the optimizer was changed to Adam for computa-
tional efficiency, the accuracy was included in the measured metrics, the sampling rate
was increased to 12 and the sequence length to 720, but the batch size was reduced to 256.
The neurons in the hidden layer were reduced to 4 for the fourth iteration, cohort metrics
and early stopping were included, and the batch size was set back to 1280. Details of the
configurations of these subsequent iterations are highlighted in Table 4. As seen in the
metadata, adding only cohort metrics slightly reduces the model’s generalizability with a
marginally higher validation MAE.

Table 4. Including cohort metrics in the features.

Iteration Steps/
Epoch

Average
Time/Step

No. of Neu-
rons

Optimizer Loss Func-
tion

Loss MAE Accuracy Test
MAE

3 43,864 265 ms 16 Adam MSE 0.0194 0.0419 0.9688 0.04
4 (+Cohort

Metrics) 8773 377 ms 4 Adam MSE 0.0194 0.0465 0.9688 0.05

The subsequent iterations (5, 6, and 7) include context variables, derived context var-
iables, and then a combination of both cohort metrics and context variables. Figure 9
shows the structure of iteration 7 with combined cohort metrics and context variables.

0

0.01
0.02
0.03
0.04
0.05

0.06
0.07

0 2 4 6 8 10 12

Training and Validation MAE

Training MAE Validation MAE

0
0.01
0.02
0.03
0.04

0.05
0.06
0.07

0 5 10 15 20 25 30 35

Training and Validation MAE

Training MAE Validation MAE

Figure 8. Plots of training and validation mean absolute error.

For the third iteration, Word2Vec embeddings were used to create a vectorized repre-
sentation of the categorical features; the optimizer was changed to Adam for computational
efficiency, the accuracy was included in the measured metrics, the sampling rate was
increased to 12 and the sequence length to 720, but the batch size was reduced to 256.
The neurons in the hidden layer were reduced to 4 for the fourth iteration, cohort metrics
and early stopping were included, and the batch size was set back to 1280. Details of the
configurations of these subsequent iterations are highlighted in Table 4. As seen in the
metadata, adding only cohort metrics slightly reduces the model’s generalizability with a
marginally higher validation MAE.

Table 4. Including cohort metrics in the features.

Iteration Steps/
Epoch

Average
Time/Step

No. of
Neurons Optimizer Loss

Function Loss MAE Accuracy Test MAE

3 43,864 265 ms 16 Adam MSE 0.0194 0.0419 0.9688 0.04

4 (+Cohort
Metrics) 8773 377 ms 4 Adam MSE 0.0194 0.0465 0.9688 0.05

The subsequent iterations (5, 6, and 7) include context variables, derived context
variables, and then a combination of both cohort metrics and context variables. Figure 9
shows the structure of iteration 7 with combined cohort metrics and context variables.

Information 2023, 14, 608 15 of 20Information 2023, 14, x 16 of 21

Figure 9. Structure of iteration 7—combined cohort metrics and context variables.

In iteration 8, a pre-trained BERT model was used to tokenize the categorical features,
and then these contextual embeddings were used as inputs for the LSTM model. Table 5
compares the results from iterations 3 to 8.

Table 5. Comparing multiple data-centric iterations.

Iteration Steps/
Epoch

Average
Time/Step

No. of
Neurons

Optimizer Loss
Function

Loss MAE Accuracy Test MAE

3 43,864 265 ms 16 Adam MSE 0.019 0.042 0.9688 0.04
4 8773 377 ms 4 Adam MSE 0.019 0.047 0.9688 0.05
5 8773 394 ms 4 Adam MSE 0.019 0.048 0.9688 0.05
6 8773 413 ms 4 Adam MSE 0.019 0.049 0.9688 0.05
7 8773 436 ms 4 Adam MSE 0.019 0.049 0.9688 0.05
8 1952 431 ms 4 Adam MSE 0.015 0.043 0.9731 0.04
4 Cohort Metrics only 7 Combined Cohort Metrics and Context Variables
5 Context Variables only 8 BERT Pre-trained Model
6 With Derived Context Variables

Adding context variables and derived context variables appear not to impact the
model’s performance significantly. Combining cohort metrics and context variables did
not have a significant impact either. The validation MAE increases slightly for iterations 4
to 7. Iteration 8 of the experiment, which leverages a pre-trained BERT model, gave the
best performance overall with a 0.44% increase in accuracy and 0.01 or 20% decrease in
the test dataset MAE compared to other iterations (apart from iteration 3, which had

Figure 9. Structure of iteration 7—combined cohort metrics and context variables.

In iteration 8, a pre-trained BERT model was used to tokenize the categorical features,
and then these contextual embeddings were used as inputs for the LSTM model. Table 5
compares the results from iterations 3 to 8.

Table 5. Comparing multiple data-centric iterations.

Iteration Steps/
Epoch

Average
Time/Step

No. of
Neurons Optimizer Loss

Function Loss MAE Accuracy Test MAE

3 43,864 265 ms 16 Adam MSE 0.019 0.042 0.9688 0.04

4 8773 377 ms 4 Adam MSE 0.019 0.047 0.9688 0.05

5 8773 394 ms 4 Adam MSE 0.019 0.048 0.9688 0.05

6 8773 413 ms 4 Adam MSE 0.019 0.049 0.9688 0.05

7 8773 436 ms 4 Adam MSE 0.019 0.049 0.9688 0.05

8 1952 431 ms 4 Adam MSE 0.015 0.043 0.9731 0.04

4 Cohort Metrics only 7 Combined Cohort Metrics and Context Variables
5 Context Variables only 8 BERT Pre-trained Model
6 With Derived Context Variables

Information 2023, 14, 608 16 of 20

Adding context variables and derived context variables appear not to impact the
model’s performance significantly. Combining cohort metrics and context variables did
not have a significant impact either. The validation MAE increases slightly for iterations
4 to 7. Iteration 8 of the experiment, which leverages a pre-trained BERT model, gave
the best performance overall with a 0.44% increase in accuracy and 0.01 or 20% decrease
in the test dataset MAE compared to other iterations (apart from iteration 3, which had
matching metrics for the test dataset MAE). The metrics indicate a lower MAE on the
validation dataset than for iterations 4 to 7. Interestingly, the lowest MAE was recorded
on the validation and test datasets for iteration 3, which did not include cohort metrics or
context variables.

4. Discussion

All of the experimental iterations had reasonable predictive accuracy and indicated
the framework’s usability for implementing personalization. Arguably, cohort metrics
and context variables did not impact the model performance as implemented with this
dataset because the cohort metrics and context variables were also computed from fea-
tures already in the model. In practice, and as indicated in Section 2.3, which covered
the context-awareness computing module, user searches are a rich source of the user’s
current context. Including the contextual embeddings of user searches positively impacts
user intent prediction, as validated in actual practice, while adopting components of this
framework to implement personalization to benefit retail customers. However, due to
certain data privacy and policy restrictions on using the retail company’s customer data for
research, we were limited to implementing this framework with publicly available data so
that the results could be shared publicly and, if desired, replicated.

The end-to-end implementation of personalization, as demonstrated with the pro-
posed systems engineering framework, fulfills the hitherto unfulfilled promise of many
solution vendors providing e-commerce. Vendors often offer consulting services that span
several months spent on implementing some semblance of personalization. However,
apart from the cost and time, the solutions leverage proprietary technologies and often
only satisfy parts of the end-to-end delivery. Similarly, several studies have proposed
solutions to context-aware personalized recommendations. However, their focus has been
on aspects of the theory and they are limited primarily to recommender systems. For
instance, the paper in [3] measures how much contextual information matters in building
models for personalization applications. In contrast, the focus in papers [2,4,5] is limited to
recommender systems with applications for in-car music [5] and tourism [2].

This systems engineering framework covers the end-to-end practical implementation
of personalization that leverages privacy-compliant customer profiling methods, adopts
current context, preempts purchase intent, and influences customer in-session action with
cohort-directed prescriptions for the next best action. Moreover, the framework is loosely
coupled, so its different subsystems can be implemented independently in a microser-
vice style to serve other purposes. For instance, the persona generator develops different
groupings of customers that are alike, and it can be leveraged for targeted marketing of
customer cohorts with relevant ads, thereby enabling personalized marketing. Similarly,
the module’s logic that generates context-aware signals is adaptable to different applica-
tions, including those beyond retail. The framework’s components are open-source so
that industry practitioners can adopt it. In practice, parts of the framework have been
implemented to scale for more than 2 million retail products and 8 million plus daily users
on an open-source distributed computing database.

The research findings from the data-centric iterations on the implementation of intent
detection highlight the value of modeling users’ online actions as sequences. Its best result
of 97.3% accuracy indicates that the method developed is effective. This is an improvement
over initial results obtained during preliminary explorations that obtained accuracy scores
of up to 79% using decision tree-based ensembles to classify shopper intent. It also compares

Information 2023, 14, 608 17 of 20

favorably with the range of scores in the experiments in [54] that apply different classifier
models to early purchase prediction.

The implementation of the cohort-directed prescription for alternative user actions
while in a shopping session scales very well across products and users and is functional for
creating users’ next best actions at every point in their shopping journey. It adjusts at each
step of the shopping journey, with awareness of the last step to iteratively compute the next
step to be prompted, leading to improved user experience, engagement, and conversion.

The systems engineering framework has a level of abstraction that enables portability
and scalability, improving many systems that leverage artificial intelligence and are specific
to defined problems. The framework’s components are loosely coupled subsystems that
can be swapped with improved implementations as technology evolves. This has more
significant ramifications for adopting this framework in implementing personalization in
the industry, as component microservices can be swapped out with more effective and
efficient components in the future.

As indicated previously, data privacy and policy restrictions prevented the use of a
retail company’s customer data to demonstrate this framework. Another limitation of this
study is that it did not experiment with implementing intent prediction with high-order
Markov chain models, which are also apt for modeling sequences.

The modular design of the framework, using open-source technologies, makes it
flexible enough to swap the tech stacks used for implementation as technologies mature
and improve. Implementation of the intent detection subsystem using Markov chain
models would be an interesting direction for future research. It will be worthwhile to
examine whether it can be implemented to scale in production and yield better predictive
values. Similarly, to further this research, variational deep embedding (VaDE) [55], which
leverages unsupervised generative clustering within the framework of a variational auto-
encoder (VAE), may be considered for the persona generator subsystem since it allows
more general mixture models than GMM to be plugged in.

5. Conclusions

In this study, we established a framework for the systems engineering of an intelligent
system that leverages user behavior and current session context to predict the user’s intent
and prescribe cohort-directed next-best actions at every point in the user’s journey. We in-
vestigated an ensemble of algorithms structured to serve as microservice-styled subsystems
of the framework, which comprised the persona generator, context awareness, and intent
prediction subsystems. Customer behavior is modeled as sequences well handled by a
data-centric extension of the long short-term memory artificial recurrent neural network,
achieving a predictive accuracy of 97.3%.

While this study provides valuable insights into the subject, it is important to ac-
knowledge its limitations. The dataset used is not fully representative of the industry at
large. A typical industry dataset will have more variations of possible shopper actions and
contexts, thereby creating more complexity for the system to handle. Similarly, in instances
with underwhelming information on customer behavior, products, and preferences, the
system will not have enough input to be ‘intelligent’. It is important to also note that model
complexity and scale will make the proposed solution not feasible for industry practitioners
with limited computation capacity.

The system facilitates positive and productive shopping experiences for the users by
‘knowing’ what the users want and helping them to find what they are looking for faster,
mimicking what is obtainable from the attention of a knowledgeable in-store shop assistant.
The user receives more relevant content, improved search ranking, and personalized prod-
uct recommendations. As a result, the business achieves improved customer engagement,
more sales, and greater customer loyalty. The solution models complex user behavior using
cutting-edge machine learning but follows fundamental systems engineering principles
using scalable, replicable, and accessible open-source technology. This study is valuable for

Information 2023, 14, 608 18 of 20

the experiments’ research findings and the outcome—an end-to-end practical and scalable
implementation of personalization that practitioners can leverage in the retail industry.

Author Contributions: Conceptualization, O.O. and S.S.; methodology, O.O. and S.S.; software, O.O.;
validation, O.O. and S.S.; formal analysis, O.O.; investigation, O.O.; resources, O.O.; data curation,
O.O.; writing—original draft preparation, O.O.; writing—review and editing, S.S.; visualization,
O.O.; supervision, S.S.; project administration, S.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-
multi-category-store (accessed on 20 July 2023).

Acknowledgments: We wish to show our appreciation to Michael Savoy of Lowe’s Home Improve-
ment data science, for his review, especially on the feasibility of the proposed framework.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, A. Context-Aware Collaborative Filtering System: Predicting the User’s Preference in the Ubiquitous Computing Environ-

ment. In Location- and Context-Awareness; Springer: Berlin/Heidelberg, Germany, 2005; pp. 244–253. [CrossRef]
2. Van Setten, M.; Pokraev, S.; Koolwaaij, J. Context-aware recommendations in the mobile tourist application COMPASS. In Adaptive

Hypermedia and Adaptive Web-Based Systems; Proceedings; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3137, pp. 235–244.
[CrossRef]

3. Palmisano, C.; Tuzhilin, A.; Gorgoglione, M. Using Context to Improve Predictive Modeling of Customers in Personalization
Applications. IEEE Trans. Knowl. Data Eng. 2008, 20, 1535–1549. [CrossRef]

4. Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A. Context-Aware Recommender Systems. AI Mag. 2011, 32, 67. [CrossRef]
5. Baltrunas, L.; Kaminskas, M.; Ludwig, B.; Moling, O.; Ricci, F.; Aydin, A.; Lüke, K.-H.; Schwaiger, R. InCarMusic: Context-Aware

Music Recommendations in a Car. In E-Commerce and Web Technologies; Lecture Notes in Business Information Processing;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–100. [CrossRef]

6. Quadrana, M.; Karatzoglou, A.; Hidasi, B.; Cremonesi, P. Personalizing Session-Based Recommendations with Hierarchical
Recurrent Neural Networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems, New York, NY, USA,
27–31 August 2017. [CrossRef]

7. Ling, M. Web Content Personalization and Task Complexity in E-Commerce Decision Making; ProQuest Dissertations Publishing: Ann
Arbor, MI, USA, 2006.

8. Alpert, S.R.; Karat, J.; Karat, C.-M.; Brodie, C.; Vergo, J.G. User Attitudes Regarding a User-Adaptive eCommerce Web Site.
User Model. User-Adapt. Interact. 2003, 13, 373–396. [CrossRef]

9. Crowder, J.A.; Carbone, J.N.; Demijohn, R. Introduction: Systems Engineering-Why? In Multidisciplinary Systems Engineering
Architecting the Design Process; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–26.

10. Forsberg, K.; Co-Principals, H.M. 4 System Engineering for Faster, Cheaper, Better. INCOSE Int. Symp. 1999, 9, 924–932. [CrossRef]
11. Thones, J. Microservices. IEEE Softw. 2015, 32, 116. [CrossRef]
12. eCommerce Behavior Data from the Multi-Category Store. (2019–2020). [Dataset]. Available online: https://www.kaggle.com/

datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store (accessed on 20 July 2023).
13. Li, J.; Luo, X.; Lu, X.; Moriguchi, T. The Double-Edged Effects of E-Commerce Cart Retargeting: Does Retargeting Too Early

Backfire? J. Mark. 2020, 85, 002224292095904. [CrossRef]
14. Yue, C.; Xie, M.; Wang, H. An Automatic HTTP Cookie Management System. Comput. Netw. 2010, 54, 2182–2198. [CrossRef]
15. Berendt, B. More than Modelling and Hiding: Towards a Comprehensive View of Web Mining and Privacy. Data Min. Knowl.

Discov. 2012, 24, 697–737. [CrossRef]
16. Kobusińska, A.; Pawluczuk, K.; Brzeziński, J. Big Data Fingerprinting Information Analytics for Sustainability. Future Gener.

Comput. Syst. 2018, 86, 1321–1337. [CrossRef]
17. Faulkner, A.; Nicholson, M. Data-Centric Safety; Elsevier: Amsterdam, The Netherlands, 2020.
18. Dong, G.; Liu, H. Feature Engineering for Machine Learning and Data Analytics; CRC Press: Boca Raton, FL, USA, 2018.
19. Heine, F.; Kleiner, C.; Koschel, A.; Westermayer, J. The data checking engine: Complex rules for data quality monitoring.

Int. J. Adv. Softw. 2014, 7, 171–181.
20. Ehrlinger, L.; Haunschmid, V.; Palazzini, D.; Lettner, C. A DaQL to Monitor Data Quality in Machine Learning Applications. In

Database and Expert Systems Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 227–237.
21. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques (The Morgan Kaufmann Series in Data

Management Systems), 3rd ed.; Morgan Kaufmann: Burlington, MA, USA, 2011.

https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://doi.org/10.1007/11426646_23
https://doi.org/10.1007/978-3-540-27780-4_27
https://doi.org/10.1109/TKDE.2008.110
https://doi.org/10.1609/aimag.v32i3.2364
https://doi.org/10.1007/978-3-642-23014-1_8
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1023/A:1026201108015
https://doi.org/10.1002/j.2334-5837.1999.tb00258.x
https://doi.org/10.1109/MS.2015.11
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://doi.org/10.2139/ssrn.3703691
https://doi.org/10.1016/j.comnet.2010.03.006
https://doi.org/10.1007/s10618-012-0254-1
https://doi.org/10.1016/j.future.2017.12.061

Information 2023, 14, 608 19 of 20

22. Yang, J.; Grunsky, E.; Cheng, Q. A Novel Hierarchical Clustering Analysis Method Based on Kullback–Leibler Divergence and
Application on Dalaimiao Geochemical Exploration Data. Comput. Geosci. 2019, 123, 10–19. [CrossRef]

23. Wigness, M.; Draper, B.; Beveridge, R.; Howe, A.; Peterson, C. Hierarchical Cluster Guided Labeling: Efficient Label Collection for
Visual Classification; Colorado State University, Libraries: Fort Collins, CO, USA, 2015.

24. Selim, S.Z.; Ismail, M.A. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local
Optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 81–87. [CrossRef] [PubMed]

25. Simske, S. Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis, 1st ed.; Morgan Kaufmann, Print: Burlington,
MA, USA, 2019; 16–19; Volume 99, pp. 261–265.

26. Gan, G.; Ng, M.K.-P. K-Means Clustering with Outlier Removal. Pattern Recognit. Lett. 2017, 90, 8–14. [CrossRef]
27. Yu, S.-S.; Chu, S.-W.; Wang, C.-M.; Chan, Y.-K.; Chang, T.-C. Two Improved K-Means Algorithms. Appl. Soft Comput. 2018,

68, 747–755. [CrossRef]
28. Huang, X.; Ye, Y.; Xiong, L.; Lau, R.Y.K.; Jiang, N.; Wang, S. Time Series K -Means: A New K -Means Type Smooth Subspace

Clustering for Time Series Data. Inf. Sci. 2016, 367–368, 1–13. [CrossRef]
29. Xu, J.; Han, J.; Nie, F.; Li, X. Re-Weighted Discriminatively Embedded K -Means for Multi-View Clustering. IEEE Trans. Image

Process. 2017, 26, 3016–3027. [CrossRef] [PubMed]
30. Do, C.B. The Multivariate Gaussian Distribution. Stanford Libraries. 2008. Available online: https://cs229.stanford.edu/section/

gaussians.pdf (accessed on 20 July 2023).
31. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany,

2006.
32. Brown, J. Choosing the right number of components or factors in PCA and EFA. JALT Test. Eval. SIG Newsl. 2009, 13, 19–23.
33. Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a ‘Kneedle’ in a Haystack: Detecting Knee Points in System Behavior. In

Proceedings of the 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA, 20–24
June 2011; pp. 166–171.

34. The scikit-yb Developers. Yellowbrick: A Suite of Visual Analysis and Diagnostic Tools for Machine Learning. PyPI. Available
online: https://pypi.org/project/yellowbrick/ (accessed on 27 October 2023).

35. Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.–Theory Methods 1974, 3, 1–27. [CrossRef]
36. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [CrossRef]
37. Macías, A.; Navarro, E. An Integrated Approach for Context-Aware Development. In Proceedings of the ECSA’18: Proceedings

of the 12th European Conference on Software Architecture: Companion Proceedings, Madrid, Spain, 24–28 September 2018.
[CrossRef]

38. Zhao, J.T.; Jing, S.Y.; Jiang, L.Z. Management of API Gateway Based on Micro-Service Architecture. J. Phys. Conf. Ser. 2018,
1087, 032032. [CrossRef]

39. Chis, , A. A Modeling Method for Model-Driven API Management. Complex Syst. Inform. Model. Q. 2020, 25, 1–18. [CrossRef]
40. Loyola, P.; Liu, C.; Hirate, Y. Modeling User Session and Intent with an Attention-Based Encoder-Decoder Architecture. In

Proceedings of the RecSys’17: Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31
August 2017. [CrossRef]

41. Agrawal, R.; Habeeb, A.; Hsueh, C. Learning User Intent from Action Sequences on Interactive Systems. arXiv 2018,
arXiv:1712.01328.

42. Requena, B.; Cassani, G.; Tagliabue, J.; Greco, C.; Lacasa, L. Shopper Intent Prediction from Clickstream E-Commerce Data with
Minimal Browsing Information. Sci. Rep. 2020, 10, 16983. [CrossRef] [PubMed]

43. Singhal, R.; Shroff, G.M.; Kumar, M.; Choudhury, S.R.; Kadarkar, S.; Virk, R.; Verma, S.; Tewari, V. Fast Online ‘Next Best Offers’
using Deep Learning. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,
Kolkata, India, 3–5 January 2019.

44. Sakar, C.O.; Polat, S.O.; Katircioglu, M.; Kastro, Y. Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Multilayer
Perceptron and LSTM Recurrent Neural Networks. Neural Comput. Appl. 2018, 31, 6893–6908. [CrossRef]

45. Toth, A.; Tan, L.; Di Fabbrizio, G.; Datta, A. Predicting shopping behavior with mixture of RNNs. In Proceedings of the SIGIR
2017 Workshop on eCommerce (ECOM 17), Tokyo, Japan, 11 August 2017.

46. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
47. Coates, J.; Bollegala, D. Frustratingly Easy Meta-Embedding–Computing Meta-Embeddings by Averaging Source Word Embed-

dings. arXiv 2018, arXiv:1804.05262.
48. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
49. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
50. Bosman, A.S.; Engelbrecht, A.; Helbig, M. Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural

Network Loss Functions. Neurocomputing 2020, 400, 113–136. [CrossRef]
51. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
52. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

https://doi.org/10.1016/j.cageo.2018.11.003
https://doi.org/10.1109/TPAMI.1984.4767478
https://www.ncbi.nlm.nih.gov/pubmed/21869168
https://doi.org/10.1016/j.patrec.2017.03.008
https://doi.org/10.1016/j.asoc.2017.08.032
https://doi.org/10.1016/j.ins.2016.05.040
https://doi.org/10.1109/TIP.2017.2665976
https://www.ncbi.nlm.nih.gov/pubmed/28186894
https://cs229.stanford.edu/section/gaussians.pdf
https://cs229.stanford.edu/section/gaussians.pdf
https://pypi.org/project/yellowbrick/
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1145/3241403.3241452
https://doi.org/10.1088/1742-6596/1087/3/032032
https://doi.org/10.7250/csimq.2020-25.01
https://doi.org/10.1145/3109859.3109917
https://doi.org/10.1038/s41598-020-73622-y
https://www.ncbi.nlm.nih.gov/pubmed/33046722
https://doi.org/10.1007/s00521-018-3523-0
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.neucom.2020.02.113

Information 2023, 14, 608 20 of 20

53. Mikolov, T.; Yih, W.T.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Atlanta, GA, USA, 9–14 June 2013; pp. 746–751.

54. Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Towards Early Purchase Intention Prediction in Online Session Based Retailing
Systems. Electron. Mark. 2021, 31, 697–715. [CrossRef]

55. Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; Zhou, H. Variational Deep Embedding: An Unsupervised and Generative Approach to
Clustering. arXiv 2017, arXiv:1611.05148.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12525-020-00448-x

	Introduction
	Materials and Methods
	Data Capture
	Persona Generation
	Context-Aware Computing
	User Intent Detection
	Cohort-Directed Prescription
	Experiments

	Results
	Discussion
	Conclusions
	References

