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Abstract: The vulnerability of machine learning models to membership inference attacks, which
aim to determine whether a specific record belongs to the training dataset, is explored in this
paper. Federated learning allows multiple parties to independently train a model without sharing
or centralizing their data, offering privacy advantages. However, when private datasets are used in
federated learning and model access is granted, the risk of membership inference attacks emerges,
potentially compromising sensitive data. To address this, effective defenses in a federated learning
environment must be developed without compromising the utility of the target model. This study
empirically investigates and compares membership inference attack methodologies in both federated
and centralized learning environments, utilizing diverse optimizers and assessing attacks with and
without defenses on image and tabular datasets. The findings demonstrate that a combination of
knowledge distillation and conventional mitigation techniques (such as Gaussian dropout, Gaussian
noise, and activity regularization) significantly mitigates the risk of information leakage in both
federated and centralized settings.

Keywords: federated learning; membership inference attack; privacy; machine learning

1. Introduction

Machine learning (ML) is gaining popularity thanks to the increasing availability
of extensive datasets and technological advancements [1,2]. Centralized learning (CL)
techniques become impractical in the context of abundant private data as they mandate
transmitting and processing data through a central server. Google’s federated learning (FL)
has emerged as a distributed machine learning paradigm since its inception in 2017 [3].
In FL, a central server supports participants in the training model by exchanging trained
models or gradients of training data without revealing raw or sensitive information either
to the central server or other participants. The application of FL is crucial, particularly in
processing sensitive and personal data, such as in healthcare, where ML is increasingly
prevalent, especially in compliance with GDPR [4] and HIPAA [5] regulations. Despite
its advancements, FL is susceptible to membership inference attacks (MIA), a method
employed to gain insights into training data. Although FL primarily aims for privacy
protection, attackers can infer specific data by intercepting FL updates transmitted between
training parties and the central server [6,7]. For instance, if an attacker is aware that patient
data are part of the model’s training set, they could deduce the patient’s current health
status [8]. Prior research has explored membership inference attacks (MIA) in a centralized
environment where data are owned by a single data owner. It is imperative to extend
this investigation to MIA in federated learning (FL). This article undertakes an analysis
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of various MIA techniques initially proposed in the centralized learning (CL) environ-
ment [9–11]. The examination encompasses their applicability in the FL environment and
evaluates the effectiveness of countermeasures to mitigate these attacks in both FL and CL
environments. An earlier version of this work has already been published [12], focusing
solely on MIA in the FL environment. In that iteration, we scrutinized nine mitigation
techniques [9,10,13–19] against MIA attacks and showed that knowledge distillation [19]
performs better in reducing the attack recall while keeping accuracy as high as possible.
We also conducted some experiments to observe the effects of three various optimizers,
Stochastic Gradient Descent (SGD) [20], Root Mean Squared Propagation (RMSProp) [21],
and Adaptive Gradient (Adagrad) [22], in deep learning on MIA recall and FL model
accuracy. We found no difference between these optimizers on MIA recall. In this paper,
we investigated two more optimizers and three more countermeasures in both CL and FL
environments, and we compared the results. To the best of our knowledge, this study is
the first comprehensive study that investigates the MIA in both CL and FL environments
and applies twelve mitigation techniques against MIA with five various optimizers for the
target model. Our contributions in this paper are summarized below.

• We conducted a comprehensive study of the effectiveness of the membership infer-
ence attack in the FL and CL environments considering different attack techniques,
optimizers, datasets, and countermeasures. Existing related work focuses on the CL
environment and the effectiveness of one single countermeasure. In this paper, we
investigated the FL environment, compared it with the CL environment, and studied
the effectiveness of combining two mitigation techniques together.

• We compared the effectiveness of four well-known membership inference
attacks [9–11] in the CL and FL environments considering different mitigation tech-
niques: dropout [16], Monte Carlo dropout [13], batch normalization [14], Gaussian
noise [23], Gaussian dropout [16], activity regularization [24], masking [17], and
knowledge distillation [19].

• We compared the accuracy of models in the CL and the FL environments using five
optimizers: SGD, RMSProp, Adagrad, incorporation of Nesterov momentum into
Adam (Nadam) [25], and Adaptive Learning Rate method (Adadelta) [26] using
four real datasets, MNIST [27], Fashion-MNIST (FMNIST) [28], CIFAR-10 [29], and
Purchase [30]. We found that using the Adadelta optimizer alone, for image datasets,
can mitigate the MIA significantly while preserving the accuracy of the model.

• We established a trade-off relationship between model accuracy and attack recall.
Our investigation revealed that employing knowledge distillation in conjunction with
either Gaussian noise, Gaussian dropout, or activity regularization yields the most
favorable balance between model accuracy and attack recall across both image and
tabular datasets.

The remainder of this article is organized as follows. In the Section 2, we presented the
related work. In Section 3, we explained the different attacks on a model for membership
inference. Countermeasures are detailed in Section 4. The setup and the results of the
experiments are described and analyzed in Section 5. Finally, we conclude our article in
Section 6.

2. Related Work

This section summarizes the related work focusing on the MIA in CL and FL (Table 1).
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Table 1. Related work summary.

Authors CL or FL Attack Defense

Shokri et al. [9] CL X X
Salem et al. [10] CL X X
Nasr et al. [31] CL, FL X ×
Liu et al. [11] CL X ×
Carlini et al. [2] CL X ×
Conti et al. [32] CL X X
Zheng et al. [33] CL × X
Shejwalkar et al. [34] CL × X
Lee et al. [35] FL × X
Su et al. [36] FL × X
Xie et al. [37] FL × X

2.1. MIA against CL

Shokri et al. [9] performed the first MIA on ML models to identify the presence of a
data sample in the training set of the ML model with black-box access. Shokri et al. [9]
created a target model, shadow models, and attack models, and they made two main
assumptions. First, the attacker must create multiple shadow models, each with the same
structure as the target model. Second, the dataset used to train shadow models comes from
the same distribution as the target model’s training data. Subsequently, Salem et al. [10]
widened the scope of the MIA of Shokri et al. [9]. They showed that the MIA is possible
without having any prior assumption of the target model dataset or having multiple
shadow models. Nasr et al. [31] showed that more reasonable attack scenarios are possible
in both FL and CL environments. They designed a white-box attack on the target model in
FL and CL by assuming different adversary prior knowledge. Lan Liu et al. [11] studied
perturbations in feature space and found that the sensitivity of trained data to a fully
trained machine learning model is lower than that of untrained data. Lan Liu et al. [11]
calculated sensitivity by comparing the sensitivity values of different data samples using a
Jacobian matrix, which measures the relationship between the target’s predictions and the
feature value of the target sample.

Numerous attacks in the existing literature draw inspiration from Shokri’s research [9].
Carlini et al. [2] introduced a novel attack called the Likelihood Ratio Attack (LiRA), which
amalgamates concepts from various research papers. They advocate for a shift in the
evaluation metric for MIA by recommending the use of the true positive rate (recall) while
maintaining a very low false alarm rate. Their findings reveal that, when measured by
recall, many attacks prove to be less effective than previously believed. In our study, we
adopt the use of recall, rather than accuracy, as the measure of MIA attack effectiveness.

2.2. MIA against FL

Nasr et al. [31] showed that MIA seriously compromises the privacy of FL participants
even when the universal model achieves high prediction accuracy. A common defense
against such attacks is the differential privacy (DP) [38] approach, which manipulates
each update with some random noise. However, it suffers from a significant loss of FL
classification accuracy. Bai et al. [39] proposed a homomorphic-cryptography-based pri-
vacy enhancement mechanism impacting MIA. They used homomorphic cryptography to
encrypt the collaborators’ parameters and added a parameter selection method to the FL
system aggregator to select specific participant updates with a given probability. Another
FL MIA defense technique is the digestive neural network (DNN) [35], which modifies
inputs and skews updates, maximizing FL classification accuracy and minimizing inference
attack accuracy. Wang et al. [36] proposed a new privacy mechanism called the Federated
Regularization Learning Model to prevent information leakage in FL. Xie et al. [37] pro-
posed an adversarial noise generation method that was added to the attack features of the
attack model on MIA against FL.
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3. Attack Techniques for Membership Inference

In this section, we summarize the different methods of MIA [9–11] that we applied in
this paper. The summary of the considered membership attacks is shown in Table 2. We
employed four well-known attacks in this paper, and each of them has its own characteristics.

Table 2. Comparison of the considered attacks.

Attack Type Shadow Model Target’s ModelTraining Data Distribution Prediction SensitivityNo. Shadow Models Target Model Structure

Attack 1 [9] 10 X X -
Attack 2 [10] 1 - X -
Attack 3 [10] 1 - - -
Attack 4 [11] - - - X

3.1. Shokri et al.’s MIA

MIA can be formulated [40] as follows:

MAttack(KMTarget(x, y))→ 0, 1 (1)

Given a data sample(x, y) and additional knowledge KMTarget about the target model
MTarget, the attacker typically tries to create an attack model MAttack to eventually return
either 0 or 1, where 0 indicates the sample is not a member of the training set and 1 indicates
the sample is a member of the training set. The additional knowledge can be the distribution
of the target data and the type of the target model. Figure 1 summarizes the general idea of
the first MIA on ML models proposed by Shokri et al. [9].

Figure 1. Overview of MIA on ML models [9].

The target model takes a data sample as input and generates the probability prediction
vector after training. Suppose DTrain

Target is the private training dataset of the target model
MTarget, where (xi, yi) are the labeled data records. In this labeled dataset, (xi) represents the
input to the target model, while (yi) represents the class label of xi in the set 1, 2, ..., CTarget.
The output of the target model MTarget is a vector of probabilities of size CTarget, where the
elements range from 0 to 1 and they sum to 1. Multiple shadow models are created by
the attacker to mimic the behavior of the target model and to generate the data needed to
train the attack model. The attacker creates several (n) shadow models Mi

Shadow(), where
each shadow model i is trained on the dataset Di

Shadow. The attacker first splits its dataset

Di
Shadow into two sets, DiTrain

Shadow and DiTest

Shadow, such that DiTrain

Shadow ∩ DiTrial

Shadow = φ. Then, the
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attacker trains each shadow model Mi
Shadow with the training set DiTrain

Shadow and tests the same
model with DiTest

Shadow test dataset. The attack model is a collection of models, one for each
output class of target data. DTrain

Attack is the attack model’s training dataset, which contains
labeled data records (xi, yi) and the probability vector generated by the shadow model for
each data sample xi. The label for xi in the attack model is either "in" if xi is used to train
the shadow model or "out" if xi is used to test the shadow model. This attack is named
Attack 1 in our experiments.

3.2. Salem et al.’s MIA

Early demonstrations by Shokri et al. [9] on the feasibility of MIA are based on many
assumptions, e.g. the use of multiple shadow models, knowledge of the structure of the
target model, and the availability of a dataset from the same distribution as the training
data of the target model. Salem et al [10] diminished all these key assumptions, showing
that the MIA is generally applicable at low cost and carries greater risk than previously
thought [10]. They provided two MIA attacks: I) with the knowledge of dataset distribution,
model architecture, and only one shadow model, and II) with no knowledge about dataset
distribution and model architecture. The former attack is named Attack 2 and the latter
one is named Attack 3 in Table 2.

3.3. Prediction Sensitivity MIA

The idea behind this attack is that training data from a fully trained ML model gener-
ally have lower prediction sensitivity than untrained data (i.e., test data). The overview of
this attack [11] is shown in Figure 2. The only allowed interaction between the attacker and
the target model M is to query M with a sample x and then obtain the prediction result.
The target model M maps the n-dimensional vector x ∈ Rn to the output m-dimensional
y ∈ Rm. The Jacobian matrix of M is a matrix m× n whose element in the ith row and jth
column is Jij =

∂yi
∂xj

(i ∈ [1, 2, . . . , n] and j ∈ [1, 2, . . . , m]):

J(x; M) =
[

∂M(x)
∂x1

. . . ∂M(x)
∂xn

]
=


∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym
∂xn

 (2)

where y = M(x). The input sample is x = [x1, x2, . . . , xn], and the corresponding prediction
is y = [y1, y2, . . . , ym].

∂yi
∂xi

is the relationship between the change in the input record’s i-th
feature value and the change in the prediction probability that this sample belongs to
j-th class.

Figure 2. Overview of MIA using Jacobian matrix and prediction sensitivity [11].

The Jacobian matrix comprises a series of first-order partial derivatives. The deriva-
tives can be approximated by calculating the numerical differentiation with the
following equation:

∂yj

∂xi
≈ M(x + ε)−M(x− ε)

2ε
, (3)
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where ε is a small value added to the input sample’s i-th feature value. Add ε to the
i-th feature value of the target sample xt, whose membership property to know provides
two modified samples to query the target model and derive the partial derivatives of
the i-th feature for the target model: ∂M(x)

∂xi
=

[
∂y1
∂xi

, ∂y2
∂xi

. . . , ∂ym
∂xi

]
. Then, for each feature

in x, this process is repeated to combine the partial derivatives into the Jacobian matrix.
For simplicity, the approximation of the Jacobian matrix is defined as J(x; M). The L-2
norm of J(x; M) represents the prediction sensitivity for the target sample, as described by
Novak et al. [41]. For a m× n matrix A, the L-2 norm of A can be computed as follows:

||A||2 = (
m

∑
i=1

n

∑
j=1
|aij|2)

1
2 (4)

where i and j are the row and column number of the matrix element aij, respectively. There
is a difference in prediction sensitivity between samples from the training set and samples
from the testing set. Once prediction sensitivity is calculated, an unsupervised clustering
method (like k-means) partitions a set of target records (prediction sensitivity values) into
two subsets. The cluster with the lowest mean sensitivity compared to the members of
the M’s training set is chosen. Then, during the inference stage, the samples are clustered
into three or more groups and ordered by an average norm. Finally, the groups with lower
average norms are predicted from the target model’s training set, whereas others are not.

4. Defense Mechanisms

Attackers take advantage of the fact that ML models behave differently during the
prediction with new data than with training data to differentiate members from nonmem-
bers. This property is associated with the degree of overfitting, which is measured by
the generalization gap. The generalization gap is the difference between the accuracy
of the model between training and testing time. When overfitting is high, the model is
more vulnerable to MIA. Therefore, whatever method is used to reduce overfitting is also
profitable for MIA reduction. We applied the following methods to see how they mitigate
the MIA.

• Dropout (D): It prevents overfitting by randomly deleting units in the neural network
and allows for an approximately efficient combination of many different neural net-
work architectures [16]. This was suggested by Salem et al. [10] and implemented as
an MIA mitigation technique in ML models in a centralized framework.

• Monte Carlo Dropout (MCD): It is proposed by Gal et al. [13]. It captures the uncer-
tainty of the model. Various networks (where several neurons have been randomly
disabled) can be visualized as Monte Carlo samples from the space of all available
models. This provides a mathematical basis for the model to infer its uncertainty, often
improving its performance. This work allows dropout to be applied to the neural
network during model inference [42]. Therefore, instead of making one prediction,
multiple predictions are made, one for each model (already prepared with random dis-
abled neurons), and their distributions are averaged. Then, the average is considered
as the final prediction.

• Batch Normalization (BN): This is a technique that improves accuracy by normalizing
activations in the middle layers of deep neural networks [14]. Normalization is used
as a defense in label-only MIA, and the results show that both regularization and
normalization can slightly decrease the average accuracy of the attack [32].

• Gaussian Noise (GN): This is the most practical perturbation-based model for de-
scribing the nonlinear effects caused by additive Gaussian noise [23]. GN is used to
ignore adversarial attacks [15].

• Gaussian Dropout (GD): It is the integration of Gaussian noise with the random
probability of nodes. Unlike standard dropout, nodes are not entirely deleted. Instead
of ignoring neurons, they are subject to Gaussian noise. From Srivatsava’s experi-
ments [16], it appears that using the Gaussian dropout reduced computation time
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because the weights did not have to be scaled each time to match the skipped nodes,
as in the standard dropout.

• Activity Regularization (AR): It is a technique used to encourage the model to have
specific properties regarding the activations (outputs) of neurons in the network
during training. The purpose of activity regularization is to prevent overfitting and
encourage certain desirable characteristics in the network’s behavior. The L1 regular-
izer and the L2 regularizer are two regularization techniques [24]. L1 regularization
penalizes the sum of the absolute values of the weights, while L2 regularization pe-
nalizes the sum of the squares of the weights. Shokri et al. [9] used a conventional L2
regularizer as a defense technique to overcome MIA in ML neural network models.

• Masking (M): It tells the sequence processing layers that some steps are missing from
the input and should be ignored during data processing [17]. If all input tensor values
in that timestep are equal to the mask value, the timestep is masked (ignored) in all
subsequent layers of that timestep.

• Differential Privacy (DP): Differentially Private Stochastic Gradient Descent (DPSGD)
is a differentially private version of the Stochastic Gradient Descent (SGD) algorithm
that happens during model training [18] and incorporates gradient updates with
some additive Gaussian noise to provide differential privacy. DP [43–45] is a solid
standard to ensure the privacy of distributed datasets.

• Knowledge Distillation (KD): It distills and transfers knowledge from one deep neu-
ral network (DNN) to another DNN [19,46]. According to many MIA mitigation
articles, KD outperforms the cutting edge approaches [33,34] in terms of MIA mitiga-
tion, while other FL articles support that it facilitates effective communication [47–49]
to maintain the heterogeneity of the collaborating parties.

• Combination of KD with AR (AR–KD): In our early experiments [12], we noticed
that, in most test cases, KD lowers the recall while preserving the model accuracy. In
this work, we are combining AR as a mitigation technique with KD. To the best of our
knowledge, this is the first work that combines AR and KD and evaluates its results
both in CL and FL.

• Combination of KD with GN (GN–KD): Like AR, we are also combining GN and KD
to see how they affect the attack recall and model accuracy. This paper is also the first
paper that combines GN and KD and evaluates the performance of this combination
in CL and FL environments.

• Combination of KD with GD (GD–KD): We also combine KD and GD to see their
effects on attack recall and model accuracy using five various optimizers on image
datasets. To our knowledge, there is no work that combines these two methods to
evaluate how they behave against MIA. Therefore, this is the first paper that combines
these methods and analyses them in both CL and FL environments.

5. Performance Analysis

In this section, a summary of the experimental setup and results is provided. We
performed our experiments on a 2.30 GHz 12th Gen Intel(R) Core(TM) i7-12700H processor
with 16.00 GB RAM on the x64-based Windows 11 OS. We used open-source frameworks
and standard libraries, such as Keras and Tensorflow in Python. The code of this work is
available at [50].

5.1. Experimental Setup

In the following, we detail the experimental setup.

5.1.1. Datasets

The datasets of our experiments are CIFAR-10 [29], MNIST [27], FMNIST [28], and
Purchase [30]. These datasets are the benchmark to validate the MIA, and they are the
same as those used in recent related work [51]. CIFAR-10, MNIST, and FMNIST are image
datasets in which, by normalizing, we fit the image pixel data in the range [0,1], which helps
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to train the model more accurately. Purchase is a tabular dataset that has 600 dimensions
and 100 labels. We used one-hot encoding of this dataset to be able to feed it into the
neural network [51]. Each dataset is split into 30,000 for training and 10,000 for testing. For
training in the FL environment, the training dataset is uniformly divided between three FL
participants to train the local models based on the FedAvg [3] algorithm separately and
update the central server to reach a global optimal model.

5.1.2. Model Architecture

The models are based on the Keras sequential function and a linear stack of neural
network layers. In these models, we first defined the flattened input layer, followed by three
dense layers. The MNIST and FMNIST input sizes are 28× 28, while the CIFAR-10 input
sizes are 32× 32. The Purchase dataset input size is considered 600 since it has 600 features.
We added all countermeasure layers in between the dense layers. As knowledge distillation
is an architectural mitigation technique, we ran a separate experiment to see its performance.
We specified an output size of 10 as the labels for each class in the MNIST, FMNIST, and
CIFAR-10 datasets range between 0 and 9. Also, we set the output size of 100 for the
Purchase dataset as the labels for this dataset range between 0 and 99. In addition, we set
the activation function for the output layer to softmax to make the outputs sum to 1.

5.1.3. Training Setup

For training, we used SGD, RMSProp, Adagrad, Nadam, and Adadelta optimizers,
with a learning rate equal to 0.01. The loss function for all the optimizers is the categorical
cross-entropy. We have a batch size of 32 and epochs of 10 for each participant during
training. We reproduced the FL process, including local participant training and FedAvg
aggregation. The scheme of data flow is illustrated in Figure 3.

Figure 3. Overview of the FL system.

5.1.4. Evaluation Metrics

We focus on test accuracy as an evaluation metric for the FL model and recall as an
evaluation metric for successful attacks in the FL setting. The recall (true positive rate)
represents the fraction of the members of the training dataset that are correctly inferred as
members by the attacker.

5.1.5. Comparison Methods

We investigated the performance of four attacks, as mentioned in Table 2. Attack 1
employs multiple shadow models mimicking both the structure and the data distribution
of the target model. Attack 2 applies a single shadow model. The structure of the model is
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different. However, the training data distribution imitates the target model. Unlike Attack 1
and Attack 2, in Attack 3, both the structure of the model and the training data distribution
differ from the target model. Finally, Attack 4 applies the Jacobian matrix paradigm, which
brings us an entirely different membership inference attack using the target model.

5.2. Experimental Results

In this section, we compared FL and CL. We also experimentally analyzed the effect
of the MIA and the effect of the mitigation techniques in both environments, considering
image and tabular datasets.

5.2.1. CL vs. FL

Many studies thoroughly compared the CL and FL approaches [52,53]. FL is concluded
as a network-efficient alternative to CL [54]. In our comparison of the two approaches, as
shown in Figures 4–7, CL outperformed FL regarding accuracy in most cases, which is
expected. In Figure 7, the accuracy in CL is considerably lower than the accuracy in FL for
GN, GD, and AR. This is justified by the nature of the tabular dataset, which seems to be
overfitted using Adadelta and Nadam optimizers in the CL environment, and overfitting is
removed when we apply these optimizers in the FL environment. The accuracy values are
also tabulated in Tables 3 and 4 for CL and FL environments, respectively. In all figures
and tables, the WC is the value for the model accuracy (or attack recall) without having
any countermeasure included in the model. Figures 8–11 illustrate attack recall in our
experiments. An interesting aspect to note is related to the Adadelta optimizer in image
datasets. If we examine Adadelta’s performance in image datasets in Figures 4–6, we can
observe that there is minimal loss in accuracy when using this optimizer. However, our
experiments depicted in Figures 8–10 indicate that, even when we do not implement any
countermeasure (WC) to mitigate membership inference attacks (MIA), Adadelta is capable
of functioning as a countermeasure without significantly compromising utility. It is evident
that utilizing Adadelta alone results in a substantial reduction in the recall of the MIA
attack. However, for tabular datasets, Adadelta is not performing significantly differently
from other optimizers, as shown in Figure 11. In all the tables in this paper, the value
in parentheses shows the difference between that countermeasure and its corresponding
value in the without countermeasure (WC) column. WC shows the values when we do not
use any countermeasure.

Figure 4. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—MNIST dataset.
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Table 3. CL model accuracy.

Datasets Optimizers WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

MNIST

SGD 93.1 81.6(−11.5) 88.3(−4.8) 92.8(−0.3) 89.1(−4) 92.1(−1) 91.4(−1.7) 91.6(−1.5) 92.8(−0.3) 85.5(−7.6) 82.8(−10.3) 85.2(−7.9) 84.8(−8.3)
Adagrad 92.6 86.5(−6.1) 85.7(−6.9) 92.1(−0.5) 89.6(−3) 91.6(−1) 91.1(−1.5) 90.3(−2.3) 92(−0.6) - 83.8(−8.8) 85.6(−7) 84.9(−7.7)
RMSProp 92.8 92.5(−0.3) 90.9(−1.9) 92.7(−0.1) 91.3(−1.5) 90.4(−2.4) 90.7(−2.1) 91.5(−1.3) 91.2(−1.6) - 88.3(−4.5) 86.1(−6.7) 84.8(−8)
Nadam 95.5 94.1(−1.4) 90.3(−5.2) 94.4(−1.1) 89.4(−6.1) 80.7(−14.8) 94.5(−1) 94.7(−0.8) 90.6(−4.9) - 88.3(−7.2) 85.4(−10.1) 85.2(−10.3)

Adadelta 90.2 87.5(−2.7) 81.6(−8.6) 90.1(−0.1) 82.3(−7.9) 88.8(−1.4) 85.4(−4.8) 88.8(−1.4) 90.1(−0.1) - 88(−2.2) 84.3(−5.9) 84.3(−5.9)

FMNIST
SGD 88.6 84.7(−3.9) 84.1(−4.5) 86.4(−2.2) 85.2(−3.3) 87.3(−1.3) 85.8(−2.8) 88.1(−0.5) 86.9(−1.7) 84.2(−4.4) 82.2(−6.4) 74.7(−13.9) 73.2(−15.4)

Adagrad 85.8 78.6(−7.2) 75.9(−9.9) 84.6(−1.2) 81.9(−3.9) 83.8(−2) 79.1(−6.7) 88.7(+2.9) 82.3(−3.5) - 83.1(−2.7) 75.3(−10.5) 73.8(−12)
RMSProp 83.6 79.5(−4.1) 78.5(−5.1) 82.9(−0.7) 78.7(−4.9) 82.6(−1) 81.7(−1.9) 83.1(−0.5) 81.9(−1.7) - 81.5(−2.1) 75.5(−8.1) 73.2(−10.4)
Nadam 85.9 82.5(−3.4) 78.8(−7.1) 83.4(−2.5) 74.4(−11.5) 66.2(−19.7) 83(−2.9) 83.2(−2.7) 82.5(−3.4) - 82.4(−3.5) 75.6(−10.3) 72.6(−13.3)

Adadelta 83.8 77.6(−6.2) 75.1(−8.7) 82.7(−1.1) 73(−10.8) 77.4(−6.4) 77.8(−6) 81.8(−2) 82.3(−1.5) - 82(−1.8) 74.2(−9.6) 71.3(−12.5)

CIFAR-10
SGD 85.7 74.2(−11.5) 74.9(−10.8) 82.8(−2.9) 83.1(−2.6) 84.3(−1.4) 78.6(−7.1) 82.5(−3.2) 83.9(−1.8) 74.6(−11.1) 82.6(−3.1) 75.1(−10.6) 74.2(−11.5)

Adagrad 88.4 75.7(−12.7) 72.6(−15.8) 85.8(−2.6) 83.6(−4.8) 87.2(−1.2) 81.9(−6.5) 82.5(−5.9) 85.3(−3.1) - 83.9(−4.5) 76.3(−12.1) 75.1(−13.3)
RMSProp 86.3 81.6(−4.7) 76.4(−9.9) 85.7(−0.6) 84.9(−1.4) 84.2(−2.1) 82.1(−4.2) 83.6(−2.7) 81.5(−4.8) - 80.5(−5.8) 77(−9.3) 75.9(−10.4)
Nadam 75.3 73.4(−1.9) 73.6(−1.7) 81.6(6.3) 80.6(5.3) 72.3(7) 78.2(2.9) 80.8(5.5) 81.1(5.8) - 79.8(4.5) 76.2(0.9) 75.6(0.3)

Adadelta 78.2 71.2(−7) 70.5(−7.7) 83.1(4.9) 82.1(3.9) 75.5(7.3) 79.4(1.2) 81.3(3.1) 84.5(6.3) - 82.1(3.9) 75.9(−2.3) 73.8(−4.4)

Purchase
SGD 79.3 72(−7.3) 79.2(−0.1) 70.5(−8.8) 57(−22.3) 3.8(−75.5) 76.8(−2.5) 79.8(0.5) 79.2(−0.1) 70.3(−9) 82.6(3.3) 75.1(−4.2) 74.2(−5.1)

Adagrad 82.6 76.2(−6.4) 83.1(0.5) 69.2(−13.4) 64.7(−17.9) 4.4(−78.2) 80.7(−1.9) 82.9(0.3) 78.8(−3.8) - 83.9(1.3) 76.3(−6.3) 75.1(−7.5)
RMSProp 56.4 24.1(−32.3) 51.5(−4.9) 67.4(11) 8.5(−47.9) 5.2(−51.2) 51.7(−4.7) 52.6(−3.8) 77.8(21.4) - 80.5(24.1) 77(20.6) 75.9(19.5)
Nadam 65.1 41.4(−23.7) 66.6(1.5) 68.9(3.8) 13.2(−51.9) 8.2(−56.9) 60.9(−4.2) 67.5(2.4) 79.4(14.3) - 79.8(14.7) 76.2(11.1) 75.6(10.5)

Adadelta 28.1 15.5(−12.6) 29.1(1) 24.6(−3.5) 3.1(−25) 2.5(−25.6) 14.3(−13.8) 29.1(1) 80.3(52.2) - 82.1(54) 75.9(47.8) 73.8(45.7)
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Table 4. FL model accuracy.

Datasets Optimizers WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

MNIST

SGD 87 72(−15) 80(−7) 86.7(−0.3) 85.5(−1.5) 85.4(−1.6) 85.6(−1.4) 86.2(−0.8) 86.9(−0.1) 79.9(−7.1) 90.9(3.9) 82.3(−4.7) 77.9(−9.1)
Adagrad 88.7 88.2(−0.5) 84.9(−3.8) 88.3(−0.4) 88.1(−0.6) 88.5(−0.2) 88.3(−0.4) 87(−1.7) 88.2(−0.5) - 91.6(2.9) 79.7(−9) 77.5(−11.2)
RMSProp 91.7 91.6(−0.1) 89.5(−2.2) 91.1(−0.6) 87.4(−4.3) 86(−5.7) 90(−1.7) 91.7(0) 87.9(−3.8) - 90.9(−0.8) 80.4(−11.3) 78(−13.7)
Nadam 95.5 93.9(−1.6) 89.3(−6.2) 95.3(−0.2) 86.7(−8.8) 30.4(−65.1) 95.3(−0.2) 95.4(−0.1) 94.1(−1.4) - 91.5(−4) 80.1(−15.4) 77.4(−18.1)

Adadelta 94.3 92.8(−1.5) 83.9(−10.4) 94.1(−0.2) 92.8(−1.5) 94(−0.3) 91.6(−2.7) 90.5(−3.8) 90.7(−3.6) - 90.2(−4.1) 79.3(−15) 77.9(−16.4)

FMNIST
SGD 81.3 79.8(−1.5) 76.4(−4.9) 81(−0.3) 75.7(−5.6) 80.5(−0.8) 74.9(−6.4) 80.3(−1) 80.9(−0.4) 77.6(−3.7) 83.5(2.2) 73.3(−8) 69.4(−11.9)

Adagrad 82.6 82(−0.6) 78.9(−3.7) 81.6(−1) 79.9(−2.7) 82.2(−0.4) 78.4(−4.2) 80.6(−2) 80.7(−1.9) - 83.5(0.9) 73.2(−9.4) 69.6(−13)
RMSProp 91.7 76.8(−14.9) 74.4(−17.3) 71(−20.7) 72.3(−19.4) 68.2(−23.5) 55(−36.7) 76.1(−15.6) 75.8(−15.9) - 83.1(−8.6) 73.3(−18.4) 69.6(−22.1)
Nadam 84.6 82.2(−2.4) 78.6(−6) 83(−1.6) 69.3(−15.3) 52.5(−32.1) 73.8(−10.8) 83.2(−1.4) 83.9(−0.7) - 83.3(−1.3) 73.3(−11.3) 69(−15.6)

Adadelta 84.1 81.1(−3) 75.8(−8.3) 81.1(−3) 72(−12.1) 81.6(−2.5) 75.4(−8.7) 82.8(−1.3) 83(−1.1) - 83(−1.1) 72.8(−11.3) 67.8(−16.3)

CIFAR-10
SGD 79.5 73(−6.5) 65.9(−13.6) 79.3(−0.2) 73.2(−6.3) 74.6(−4.9) 74.9(−4.6) 73.1(−6.4) 79.3(−0.2) 75.7(−3.8) 82.8(3.3) 75.3(−4.2) 68.5(−11)

Adagrad 76.3 67(−9.3) 54(−22.3) 76.2(−0.1) 72.9(−3.4) 71.4(−4.9) 71.1(−5.2) 69.9(−6.4) 75.7(−0.6) - 79.7(3.4) 70.2(−6.1) 66.7(−9.6)
RMSProp 72.8 61.2(−11.6) 53.6(−19.2) 72.4(−0.4) 70.9(−1.9) 72.2(−0.6) 71(−1.8) 68.6(−4.2) 72.1(−0.7) - 71.3(−1.5) 64.8(−8) 61.1(−11.7)
Nadam 80.3 75.6(−4.7) 70.9(−9.4) 79.8(−0.5) 72.3(−8) 74.6(−5.7) 75.2(−5.1) 76.8(−3.5) 77.6(−2.7) - 79.4(−0.9) 70.8(−9.5) 70.3(−10)

Adadelta 78.6 77.8(−4.8) 72.6(−10) 78.2(−4.4) 70.1(−12.5) 71.3(−11.3) 77.8(−4.8) 75.9(−6.7) 76.3(−6.3) - 81.5(−1.1) 65.8(−16.8) 66.8(−15.8)

Purchase
SGD 78.9 77.8(−1.1) 78.5(−0.4) 78.3(−0.6) 79(0.1) 79.6(0.7) 78.3(−0.6) 79.3(0.4) 78.8(−0.1) 76.5(−2.4) 78(−0.9) 75.5(−3.4) 43.9(−35)

Adagrad 81.3 80.2(−1.1) 80.4(−0.9) 80.4(−0.9) 80(−1.3) 81.4(0.1) 80.2(−1.1) 80.1(−1.2) 77.6(−3.7) - 79(−2.3) 77.4(−3.9) 43.8(−37.5)
RMSProp 21.6 20.6(−1) 19.4(−2.2) 22.7(1.1) 23.8(2.2) 21.8(0.2) 23(1.4) 23.9(2.3) 76.6(55) - 78.8(57.2) 76.9(55.3) 46.8(25.2)
Nadam 30.1 28.7(−1.4) 32(1.9) 29.9(−0.2) 29.3(−0.8) 28.6(−1.5) 27.9(−2.2) 25.5(−4.6) 79.3(49.2) - 78.8(48.7) 74.1(44) 45.3(15.2)

Adadelta 30.8 29.6(−1.2) 32.8(2) 34.4(3.6) 33.8(3) 32.2(1.4) 32.6(1.8) 31.4(0.6) 78.6(47.8) - 77.8(47) 77(46.2) 42.9(12.1)
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Figure 5. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—FMNIST dataset.

Figure 6. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—CIFAR-10 dataset.
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Figure 7. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—Purchase dataset.

Figure 8. Comparison of Attack 1 recall on CL and FL using various optimizers and countermeasures—
MNIST dataset.
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Figure 9. Comparison of Attack 1 Recall on CL and FL using various optimizers and
countermeasures—FMNIST dataset.

Figure 10. Comparison of Attack 1 recall on CL and FL using various optimizers and
countermeasures—CIFAR-10 dataset.
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Figure 11. Comparison of Attack 1 recall on CL and FL using various optimizers and
countermeasures—Purchase dataset.

Generally, the recall of Attack 1 is almost the same, if not less, in FL compared to the
recall in CL considering different mitigation techniques. Figure 12 illustrates five various
optimizers’ effects as well as various countermeasures’ effects on the FL model accuracy,
where the y-axis provides the test accuracy of the FL model. As DP-SGD is specialized for
SGD optimizer, we applied DP only on SGD optimizer and not with other optimizers. The
first group in all the plots is WC, which represents the baseline without countermeasures.
We have provided the full details of our experiments in CL and FL environments in
Tables 3 and 4, respectively.

Figure 12. A comparison of FL model accuracy with five various optimizers, with and without
countermeasures—MNIST, FMNIST, CIFAR-10, and Purchase datasets.

• CL model accuracy without countermeasure: As per Table 3, the highest CL model
accuracy results for Nadam, SGD, Adagrad, and Adagrad on the MNIST, FMNIST,
CIFAR-10, and Purchase datasets, respectively. In contrast, Nadam on the CIFAR-10,
Adadelta on MNIST, FMNIST, and Purchase yield the lowest accuracy. Generally
speaking, depending on the dataset, the optimizer, and the batch size used in each
round of training, the values for the model accuracy change.
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• CL model accuracy with countermeasures: As per Table 4, the combination that
yields the highest CL model accuracy for MNIST after applying countermeasures
belongs to Nadam with M. When we apply M as the countermeasure and Nadam
as the optimizer, the accuracy of the model slightly decreases compared to the case
when we use no countermeasure (WC). Subsequently, this is followed by an increase
in the attack recall when using Nadam with M, as per Table 5. In general, Nadam with
M slightly decreases model accuracy and significantly increases attack recall for the
MNIST dataset, while Adadelta with MCD provides the lowest model accuracy. For
the FMNIST dataset, when we use Adagrad with M, we have even higher accuracy
than no countermeasure. However, the attack recall is subsequently high, as shown
in Table 5. In CIFAR-10, AR and BN hold the highest accuracy, while MCD has the
lowest accuracy. In the Purchase dataset, AR–KD yields the highest accuracy for all
optimizers, even better than without countermeasures. This happens while attack
recall in the Purchase dataset, as per Table 5, is reduced for SGD and Adagrad.

• FL model accuracy without countermeasure: As shown in Table 4, the highest FL
model accuracy belongs to Nadam, RMSProp, Adadelta, and Adagrad on the MNIST,
FMNIST, CIFAR-10, and Purchase datasets, respectively, whereas RMSProp on the
CIFAR-10 and Purchase datasets as well as SGD on MNIST and FMNIST yield the
lowest accuracy. In general, FL model accuracy is the lowest for Purchase and the
highest for MNIST. This is justified by the nature of the datasets and the distribution
of their features, which make each data record more distinguishable from the others.
The reason why some optimizers are performing very well for specific datasets in the
CL environment and not performing well for the same dataset in the FL environment
is that these optimizers are sensitive to the FedAvg algorithm, where we average the
total weights that are computed locally by the clients to generate the global model.

• FL model accuracy with countermeasures: As per Table 4, BN has no significant
effect on the CIFAR-10 model accuracy. For CIFAR-10, the highest accuracy belongs
to AR–KD when using the SGD optimizer, and the lowest accuracy belongs to MCD
when using the Adagrad optimizer. For MNIST and FMNIST, the countermeasure that
maintains the maximum accuracy varies between different optimizers. For instance,
in FMNIST, the mitigation technique that keeps the model accuracy at its maximum
value is AR–KD for four optimizers: SGD, Adagrad, RMSProp, and Adadelta. Also,
for Nadam, KD yields the highest accuracy in the FL environment. For FMNIST, the
lowest accuracy belongs to AR when using the Nadam optimizer. For MNIST, the best
accuracy goes for AR–KD when using SGD and Adagrad, whereas M provides the
highest accuracy in RMSProp and Nadam. Also, BN provides the highest accuracy
when using Adadelta. The lowest accuracy for MNIST belongs to GD–KD when using
the Nadam optimizer. The highest accuracy for the Purchase dataset belongs to AR
when using SGD and Adagrad, as well as KD when using Nadam and Adadelta.
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Table 5. CL attack recall.

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

MNIST

SGD
Attack-1 95.40 94.2(−1.2) 83.4(−12) 94.4(−1) 87.9(−7.5) 94(−1.4) 79.8(−15.6) 93.1(−2.3) 84.6(−10.8) 89.2(−6.2) 68.1(−27.3) 65.8(−29.6) 68.6(−26.8)
Attack-2 94.90 93.7(−1.2) 83.2(−11.7) 94.8(−0.1) 86.8(−8.1) 93.6(−1.3) 93.2(−1.7) 93.9(−1) 82.4(−12.5) 88.3(−6.6) 65.4(−29.5) 63.2(−31.7) 65.2(−29.7)
Attack-3 90.70 85.3(−5.4) 74.5(−16.2) 88.7(−2) 82.9(−7.8) 83.2(−7.5) 88.6(−2.1) 89.3(−1.4) 80.5(−10.2) 82.4(−8.3) 63.7(−27) 60.4(−30.3) 63.4(−27.3)
Attack-4 87.10 32(−55.1) 34.6(−52.5) 28.7(−58.4) 24.5(−62.2) 35.3(−51.8) 37.4(−49.7) 24.6(−62.5) 22.6(−64.5) 26.8(−60.3) 24.7(−62.4) 32.5(−54.6) 28(−59.1)

Adagrad
Attack-1 97.80 97.2(−0.6) 93.8(−4) 96.6(−1.2) 95.2(−2.6) 96.9(−0.9) 95.4(−2.4) 96.9(−0.9) 94.6(−3.2) - 81.6(−16.2) 65.9(−31.9) 55.9(−41.9)
Attack-2 97.70 92.4(−5.3) 93.5(−4.2) 95.7(−2) 95.1(−2.6) 96.4(−1.3) 93.6(−4.1) 95.9(−1.8) 76.1(−21.6) - 66.2(−31.5) 64.1(−33.6) 55.3(−42.4)
Attack-3 91.30 87.4(−3.9) 76.6(−14.7) 89.5(−1.8) 86.2(−5.1) 86.3(−5) 81.3(−10) 85.4(−5.9) 74.9(−16.4) - 63.4(−27.9) 58.9(−32.4) 52.1(−39.2)
Attack-4 86.90 33.6(−53.3) 32.1(−54.8) 35.2(−51.7) 34.1(−52.8) 39.7(−47.2) 31.8(−55.1) 35.3(−51.6) 31.4(−55.5) - 20(−66.9) 96(9.1) 84(−2.9)

RMSProp
Attack-1 99.40 98.9(−0.5) 98.3(−1.1) 99.3(−0.1) 98.8(−0.6) 99.1(−0.3) 98.6(−0.8) 98.4(−1) 98.2(−1.2) - 66.2(−33.2) 49.7(−49.7) 34.2(−65.2)
Attack-2 99.20 98.6(−0.6) 97.3(−1.9) 98.7(−0.5) 97.2(−2) 98.3(−0.9) 97.7(−1.5) 97(−2.2) 96.4(−2.8) - 64.3(−34.9) 45.5(−53.7) 33.1(−66.1)
Attack-3 98.60 96.3(−2.3) 94.1(−4.5) 98.2(−0.4) 93.1(−5.5) 95.6(−3) 94.3(−4.3) 94.8(−3.8) 92.5(−6.1) - 58.9(−39.7) 43.8(−54.8) 32.4(−66.2)
Attack-4 89.90 23(−66.9) 38.7(−51.2) 39.5(−50.4) 37.3(−52.6) 39.4(−50.4) 34.6(−55.3) 32.8(−57.1) 31.3(−58.6) - 24(−65.9) 16(−73.9) 20(−69.9)

Nadam
Attack-1 82.90 71.9(−11) 70.1(−12.8) 86.3(3.4) 77.8(−5.1) 67.7(−15.2) 81.1(−1.8) 95(12.1) 48.3(−34.6) - 63.1(−19.8) 46.5(−36.4) 34.6(−48.3)
Attack-2 80.70 70.3(−10.4) 68.5(−12.2) 85.6(4.9) 76.4(−4.3) 66.4(−14.3) 79.5(−1.2) 92.9(12.2) 45.5(−35.2) - 61.2(−19.5) 44.6(−36.1) 32.1(−48.6)
Attack-3 78.50 71.5(−7) 69.4(−9.1) 77.5(−1) 65.1(−13.4) 58.9(−19.6) 73.6(−4.9) 78.2(−0.3) 44.7(−33.8) - 59.8(−18.7) 39.5(−39) 29.8(−48.7)
Attack-4 80.30 69(−11.3) 67.9(−12.4) 78(−2.3) 32(−48.3) 28(−52.3) 84.4(4.1) 43.3(−37) 52(−28.3) - 30(−50.3) 24.2(−56.1) 12(−68.3)

Adadelta
Attack-1 59.70 48.4(−11.3) 47.3(−12.4) 93(33.3) 49.8(−9.9) 48.3(−11.4) 48.3(−11.4) 55.3(−4.4) 54.4(−5.3) - 44.6(−15.1) 48.3(−11.4) 48.3(−11.4)
Attack-2 58.80 47.3(−11.5) 46.7(−12.1) 91.8(33) 45.5(−13.3) 47.8(−11) 44.2(−14.6) 52.8(−6) 53.1(−5.7) - 43.1(−15.7) 45.6(−13.2) 46.9(−11.9)
Attack-3 56.50 43.6(−12.9) 46.8(−9.7) 92.2(35.7) 49.3(−7.2) 45.6(−10.9) 41.3(−15.2) 51.9(−4.6) 52.2(−4.3) - 42.6(−13.9) 43.5(−13) 45.8(−10.7)
Attack-4 44.00 36(−8) 34.8(−9.2) 76.2(32.2) 8(−36) 20(−24) 20(−24) 12(−32) 32.8(−11.2) - 16(−28) 24(−20) 20(−24)

FMNIST

SGD
Attack-1 95.8 93.7(−2.1) 85.6(−10.2) 95.3(−0.5) 88.9(−6.9) 94.7(−1.1) 86.5(−9.3) 93.4(−2.4) 83.5(−12.3) 86.3(−9.5) 68.4(−27.4) 57.9(−37.9) 58.4(−37.4)
Attack-2 93.6 86.4(−7.2) 83.2(−10.4) 93.1(−0.5) 85.9(−7.7) 92.8(−0.8) 86.1(−7.5) 92.5(−1.1) 82.9(−10.7) 85.7(−7.9) 65.2(−28.4) 55.6(−38) 56.2(−37.4)
Attack-3 90.2 82.2(−8) 81.6(−8.6) 89.6(−0.6) 84.9(−5.3) 89.1(−1.1) 83.7(−6.5) 88.5(−1.7) 81.9(−8.3) 83.1(−7.1) 61.3(−28.9) 51.2(−39) 54.2(−36)
Attack-4 82.1 27(−55.1) 25.8(−56.3) 33.6(−48.5) 38.4(−43.7) 42.8(−39.3) 29.5(−52.6) 37.5(−44.6) 21.7(−60.4) 27.9(−54.2) 35.9(−46.2) 22.8(−59.3) 8(−74.1)

Adagrad
Attack-1 90.6 83.2(−7.4) 82.4(−8.2) 85.4(−5.2) 83.6(−7) 86.9(−3.7) 87.6(−3) 89.5(−1.1) 84.2(−6.2) - 78.8(−11.8) 72.6(−18) 62.7(−27.9)
Attack-2 87.2 82.6(−4.6) 81.6(−5.6) 84.3(−2.9) 81.9(−5.3) 85.3(−1.9) 86.8(−0.4) 85.7(−1.5) 81.8(−5.4) - 76.5(−10.7) 68.5(−18.7) 58.6(−28.6)
Attack-3 85.7 82.4(−3.3) 81.1(−4.6) 82.8(−2.9) 78.4(−7.3) 82.9(−2.8) 82.7(−3) 83.6(−2.1) 79.3(−6.4) - 75.1(−10.6) 65.3(−20.4) 55.9(−29.8)
Attack-4 80.9 46.2(−34.7) 26.9(−54) 36.7(−44.2) 26.4(−54.5) 35.4(−45.5) 32(−48.9) 43.2(−37.7) 31.2(−49.7) - 88(7.1) 68(−12.9) 24(−56.9)

RMSProp
Attack-1 91.5 76.4(−15.1) 73.8(−17.7) 89.4(−2.1) 86.9(−4.6) 88.4(−3.1) 85.2(−6.1) 87.5(−4) 72.6(−18.9) - 51(−40.5) 68.7(−22.8) 55.1(−36.4)
Attack-2 89.2 73.6(−15.6) 72.7(−16.5) 86.3(−2.9) 82.8(−6.4) 87.2(−2) 83.1(−6.1) 85.3(−3.9) 71.8(−17.4) - 47.3(−41.9) 65.3(−23.9) 52.6(−36.6)
Attack-3 85.3 71.9(−13.4) 70.6(−14.7) 84.3(−1) 81.4(−3.9) 82.8(−2.5) 80.1(−5.2) 81.6(−3.7) 69.3(−16) - 45.9(−39.4) 58.8(−26.5) 50.8(−34.5)
Attack-4 70.8 20.1(−50.7) 20.5(−50.3) 35.9(−34.9) 26.2(−44.6) 34.8(−36) 28.6(−42.2) 29.6(−41.2) 26.1(−44.7) - 24(−46.8) 92(21.2) 28(−42.8)

Nadam
Attack-1 66.5 75.2(8.7) 71.2(4.7) 83(16.5) 58.4(−8.1) 27.5(−39) 74.1(7.6) 68.4(1.9) 53.3(−13.2) - 69.6(3.1) 54.5(−12) 64.1(−2.4)
Attack-2 65.7 73.5(7.8) 70.4(4.7) 81.3(15.6) 55.3(−10.4) 25.6(−40.1) 73.1(7.4) 65.2(−0.5) 51.6(−14.1) - 65.8(0.1) 52.6(−13.1) 63.2(−2.5)
Attack-3 60.3 69.8(9.5) 65.9(5.6) 79.7(19.4) 51.9(−8.4) 26.6(−33.7) 70.4(10.1) 62.8(2.5) 49.8(−10.5) - 64.2(3.9) 50.8(−9.5) 61.5(1.2)
Attack-4 28 66(38) 58.7(30.7) 14(−14) 88(60) 12(−16) 92(64) 4(−24) 44(16) - 76.2(48.2) 32(4) 84(56)

Adadelta
Attack-1 51.8 49.1(−2.7) 47.2(−4.6) 48.8(−3) 60.5(8.7) 39.2(−12.6) 59.2(7.4) 60(8.2) 39.4(−12.4) - 49.7(−2.1) 43.3(−8.5) 39.5(−12.3)
Attack-2 50.7 47.1(−3.6) 45.3(−5.4) 50.3(−0.4) 59.6(8.9) 37.4(−13.3) 58.1(7.4) 58.2(7.5) 37.6(−13.1) - 45.6(−5.1) 42.1(−8.6) 35.8(−14.9)
Attack-3 49.6 46.8(−2.8) 44.4(−5.2) 49.5(−0.1) 55.3(5.7) 35.5(−14.1) 57.6(8) 57.3(7.7) 35.9(−13.7) - 43.8(−5.8) 39.6(−10) 34.5(−15.1)
Attack-4 92 88(−4) 78.3(−13.7) 92(0) 80(−12) 16(−76) 84(−8) 12(−80) 20(−72) - 7(−85) 66.3(−25.7) 39.9(−52.1)
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Table 5. Cont.

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

CIFAR-10

SGD
Attack-1 92.6 82.8(−9.8) 80.5(−12.1) 91.7(−0.9) 91.5(−1.1) 89.4(−3.2) 85.3(−7.3) 90.4(−2.2) 81.3(−11.3) 84.2(−8.4) 67.3(−25.3) 58.6(−34) 66.3(−26.3)
Attack-2 90.4 80.2(−10.2) 79.9(−10.5) 89.2(−1.2) 89.6(−0.8) 84.2(−6.2) 83.7(−6.7) 86.9(−3.5) 79.4(−11) 81.8(−8.6) 63.2(−27.2) 55.4(−35) 64.8(−25.6)
Attack-3 84.7 77.9(−6.8) 75.1(−9.6) 82.8(−1.9) 82.6(−2.1) 81.7(−3) 82.3(−2.4) 82.8(−1.9) 75.2(−9.5) 76.4(−8.3) 62.1(−22.6) 53.7(−31) 60.1(−24.6)
Attack-4 78.4 36.8(−41.6) 35.6(−42.8) 42.7(−35.7) 40.9(−37.5) 40.5(−37.9) 39.1(−39.3) 40.6(−37.8) 33.9(−44.5) 35.2(−43.2) 25.6(−52.8) 38.4(−40) 26(−52.4)

Adagrad
Attack-1 91.3 76.8(−14.5) 75.7(−15.6) 90.2(−1.1) 89.4(−1.9) 90.4(−0.9) 87.6(−3.7) 88.1(−3.3) 74.2(−17.1) - 70.2(−21.1) 73.8 54.8(−36.5)
Attack-2 89.4 73.6(−15.8) 72.4(−17) 88.3(−1.1) 87.9(−1.5) 85.3(−4.1) 84.1(−5.3) 83.8(−5.6) 72.8(−16.6) - 68.3(−21.1) 69.7(−19.7) 51.9(−37.5)
Attack-3 83.6 68.9(−14.7) 65.7(−17.9) 83.1(−0.5) 80.7(−2.9) 81.5(−2.1) 81.6(−2) 82.4(−1.2) 66.9(−16.7) - 65.4(−18.2) 68.3(−15.3) 50.1(−33.5)
Attack-4 72.5 28.6(−43.9) 25.3(−47.2) 36.4(−36.1) 34.9(−37.6) 37.7(−34.8) 30.3(−42.2) 33.4(−39.1) 25.9(−46.6) - 71.3(−1.2) 53.9(−18.6) 24(−48.5)

RMSProp
Attack-1 89.3 83.6(−5.7) 82.9(−6.4) 88.4(−0.9) 87.3(−2) 88(−1.3) 87.6(−1.7) 89.1(−0.2) 82.5(−6.8) - 56.8(−32.5) 68.2(−21.1) 60.3(−29)
Attack-2 84.2 78.4(−5.8) 75.9(−8.3) 83.9(−0.3) 82.4(−1.8) 81.9(−2.3) 82.8(−1.4) 82.7(−1.5) 76.8(−7.4) - 60.9(−23.3) 65.8(−18.4) 58.9(−25.3)
Attack-3 81.6 74.9(−6.7) 72.9(−8.7) 80.6(−1) 78.5(−3.1) 77.3(−4.3) 78.2(−3.4) 80.1(−1.5) 71.4(−10.2) - 61.2(−20.4) 67.3(−14.3) 54.6(−27)
Attack-4 68.5 24.7(−43.8) 22.6(−45.9) 32.9(−35.6) 30.5(−38) 31.8(−36.7) 29.2(−39.3) 31.3(−37.2) 23.4(−45.1) - 48.8(−19.7) 60.8(−7.7) 28.8(−39.7)

Nadam
Attack-1 67.2 65.8(−1.4) 64.2(−3) 67.1(−0.1) 60.6(−6.6) 28.6(−38.6) 74.3(7.1) 65.3(−1.9) 55.3(−11.9) - 65.8(−1.4) 55.6(−11.6) 65.1(−2.1)
Attack-2 65.8 63.3(−2.5) 62.1(−3.7) 64.2(−1.6) 58.3(−7.5) 25.7(−40.1) 73.6(7.8) 61.4(−4.4) 51.2(−14.6) - 62.3(−3.5) 54.3(−11.5) 63.8(−2)
Attack-3 63.2 61.1(−2.1) 60.7(−2.5) 62.1(−1.1) 57.8(−5.4) 24.5(−38.7) 74.8(11.6) 63.1(−0.1) 50.8(−12.4) - 60.9(−2.3) 52.8(−10.4) 60.9(−2.3)
Attack-4 68.3 48.3(−20) 45.6(−22.7) 67.5(−0.8) 61.2(−7.1) 29.6(−38.7) 88.5(20.2) 72.1(3.8) 45.3(−23) - 44.2(−24.1) 58.9(−9.4) 18(−50.3)

Adadelta
Attack-1 65.3 63.5(−1.8) 61.9(−3.4) 65.1(−0.2) 58.3(−7) 55.8(−9.5) 73.5(8.2) 68.3(3) 52.8(−12.5) - 61.7(−3.6) 55.8(−9.5) 51.8(−13.5)
Attack-2 64.2 61.3(−2.9) 60.2(−4) 64.1(−0.1) 57.6(−6.6) 53.9(−10.3) 73.6(9.4) 65.1(0.9) 53.4(−10.8) - 60.5(−3.7) 54.9(−9.3) 49.3(−14.9)
Attack-3 63.1 59.8(−3.3) 57.8(−5.3) 62.3(−0.8) 55.8(−7.3) 52.1(−11) 74.5(11.4) 66.3(3.2) 51.1(−12) - 58.8(−4.3) 53.1(−10) 45.2(−17.9)
Attack-4 58 53(−5) 51.4(−6.6) 38(−20) 35(−23) 48.6(−9.4) 70.8(12.8) 28.8(−29.2) 24(−34) - 48(−10) 32(−26) 40.8(−17.2)

Purchase

SGD
Attack-1 53.3 52.5(−0.8) 51.6(−1.7) 66.9(13.6) 54.2(0.9) 53.5(0.2) 54.2(0.9) 51.1(−2.2) 41(−12.3) 51.2(−2.1) 48.7(−4.6) 57(3.7) 52(−1.3)
Attack-2 52.2 51.2(−1) 50.6(−1.6) 66.1(13.9) 53.8(1.6) 52.5(0.3) 53.3(1.1) 50.1(−2.1) 40.5(−11.7) 50.1(−2.1) 47.5(−4.7) 56.5(4.3) 51.8(−0.4)
Attack-3 51.8 50.1(−1.7) 50.1(−1.7) 65.8(14) 52.2(0.4) 51.2(−0.6) 52.1(0.3) 49.8(−2) 39.2(−12.6) 49.9(−1.9) 46.9(−4.9) 55.3(3.5) 50.9(−0.9)
Attack-4 88 12(−76) 66.8(−21.2) 70.3(−17.7) 32.6(−55.4) 54.3(−33.7) 16(−72) 12(−76) 20(−68) 66(−22) 26(−62) 28(−60) 24(−64)

Adagrad
Attack-1 59.9 52.9(−7) 59.4(−0.5) 73.7(13.8) 53.1(−6.8) 50.1(−9.8) 53.9(−6) 57.9(−2) 35(−24.9) - 52.3(−7.6) 49.6(−10.3) 53.7(−6.2)
Attack-2 58.4 51.3(−7.1) 58.8(0.4) 73.1(14.7) 52.8(−5.6) 49.4(−9) 53.1(−5.3) 56.7(−1.7) 32.5(−25.9) - 51.9(−6.5) 48.5(−9.9) 52.9(−5.5)
Attack-3 57.2 50.2(−7) 58.1(0.9) 72.8(15.6) 52(−5.2) 48.9(−8.3) 52.8(−4.4) 55.9(−1.3) 31.8(−25.4) - 51.1(−6.1) 48.9(−8.3) 52.1(−5.1)
Attack-4 16 16(0) 24(8) 16(0) 28(12) 14(−2) 12(−4) 24(8) 26(10) - 20(4) 8(−8) 25(9)

RMSProp
Attack-1 46.9 36.4(−10.5) 49.8(2.9) 71.8(24.9) 52.1(5.2) 53.9(7) 71.8(24.9) 48.4(1.5) 26(−20.9) - 54.9(8) 25.2(−21.7) 40.5(−6.4)
Attack-2 45.3 36.1(−9.2) 48.9(3.6) 70.5(25.2) 51.2(5.9) 52.9(7.6) 70.2(24.9) 47.9(2.6) 25.4(−19.9) - 53.8(8.5) 24.7(−20.6) 39.7(−5.6)
Attack-3 44.3 35.2(−9.1) 48.1(3.8) 69.9(25.6) 51.1(6.8) 52.1(7.8) 68.9(24.6) 47.1(2.8) 24.9(−19.4) - 53.1(8.8) 23.9(−20.4) 39.1(−5.2)
Attack-4 92 24(−68) 32(−60) 12(−80) 16(−76) 92(0) 12(−80) 24(−68) 76(−16) - 20(−72) 8(−84) 36(−56)

Nadam
Attack-1 56.2 40.4(−15.8) 53.4(−2.8) 72.1(15.9) 53.1(−3.1) 51.3(−4.9) 46(−10.2) 55.8(−0.4) 20.8(−35.4) - 51.3(−4.9) 30.2(−26) 51(−5.2)
Attack-2 55.3 39.8(−15.5) 52.2(−3.1) 71.8(16.5) 52.3(−3) 50.8(−4.5) 45.7(−9.6) 55.1(−0.2) 19.9(−35.4) - 50.9(−4.4) 29.2(−26.1) 50.8(−4.5)
Attack-3 55.1 39.2(−15.9) 51.3(−3.8) 70.9(15.8) 51.3(−3.8) 49.2(−5.9) 44.3(−10.8) 55.8(0.7) 18.4(−36.7) - 50.1(−5) 28.7(−26.4) 49.9(−5.2)
Attack-4 84 92(8) 24(−60) 16(−68) 24(−60) 76(−8) 11(−73) 8(−76) 28(−56) - 8(−76) 18(−66) 12(−72)

Adadelta
Attack-1 52.7 51.1(−1.6) 51.1(−1.6) 51.8(−0.9) 55.3(2.6) 51.9(−0.8) 50(−2.7) 50(−2.7) 46.8(−5.9) - 55.6(2.9) 52(−0.7) 53.7(1)
Attack-2 51.3 50.2(−1.1) 49.8(−1.5) 50.3(−1) 52.7(1.4) 49.8(−1.5) 48.7(−2.6) 49.2(−2.1) 45.2(−6.1) - 53.2(1.9) 51.2(−0.1) 51.3(0)
Attack-3 49.8 48.3(−1.5) 49.5(−0.3) 48.2(−1.6) 50.8(1) 49.2(−0.6) 47.6(−2.2) 48.6(−1.2) 43.2(−6.6) - 50.1(0.3) 49.8(0) 50.1(0.3)
Attack-4 84 4(−80) 72(−12) 8(−76) 24(−60) 64(−20) 28(−56) 62(−22) 8(−76) - 18(−66) 16(−68) 16(−68)
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5.2.2. Attack Recall

Reducing the attacks’ recall is the best sign that implies MIA mitigation. Figure 13
illustrates the results of the four aforementioned attacks applying five optimizers, with(out)
countermeasures on four datasets, MNIST, FMNIST, CIFAR-10, and Purchase, respectively.
The y-axis represents the recall of the attack. The attack recall in CL is tabulated in Table 5,
whereas the attack recall in FL is tabulated in Table 6 on various datasets and optimizers.

Figure 13. A comparison of the four attacks on the FL environment using five optimizers with and
without countermeasures.
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Table 6. FL attack recall.

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

MNIST

SGD
Attack-1 95.2 79.3(−15.9) 82.4(−12.8) 94.5(−0.7) 91.6(−3.6) 93.6(−1.6) 81(−14.2) 93.4(−1.8) 75.7(−19.5) 88(−7.2) 76.9(−18.3) 72.6(−22.6) 69.8(−25.4)
Attack-2 94.5 74.6(−19.9) 82(−12.5) 94.3(−0.2) 91(−3.5) 93.1(−1.4) 78.2(−16.3) 93(−1.5) 72.8(−21.7) 86.7(−7.8) 74.5(−20) 72.5(−22) 67.2(−27.3)
Attack-3 88.2 71.7(−16.5) 68.4(−19.8) 86.2(−2) 82.5(−5.7) 81.1(−7.1) 69.4(−18.8) 85(−3.2) 68.9(−19.3) 81.2(−7) 72.6(−15.6) 71.8(−16.4) 65.8(−22.4)
Attack-4 86 24.8(−61.2) 34(−52) 24.4(−61.6) 24.1(−61.9) 34.5(−51.5) 28(−58) 24.3(−61.7) 18(−68) 22.1(−63.9) 48.4(−37.6) 40(−46) 35.5(−50.5)

Adagrad
Attack-1 97.6 97(−0.6) 93.4(−4.2) 95.8(−1.8) 96.4(−1.2) 96.7(−0.9) 93.5(−4.1) 97(−0.6) 73.4(−24.2) - 77.6(−20) 73(−24.6) 77.4(−20.2)
Attack-2 97.5 89(−8.5) 93.1(−4.4) 94(−3.5) 96.1(−1.4) 96.3(−1.2) 92.1(−5.4) 95(−2.5) 70.3(−27.2) - 75.8(−21.7) 72.3(−25.2) 83.2(−14.3)
Attack-3 89.2 88.1(−1.1) 74.7(−14.5) 86(−3.2) 86.2(−3) 84.5(−4.7) 79(−10.2) 81.9(−7.3) 64.2(−25) - 73.6(−15.6) 71.2(−18) 81.6(−7.6)
Attack-4 82 16(−66) 38(−44) 34.3(47.7) 32(−50) 38.4(−43.6) 20(−62) 16(−66) 17.8(−64.2) - 13.9(−68.1) 28(−54) 24(−58)

RMSProp
Attack-1 99 98.7(−0.3) 97.4(−1.6) 98.6(−0.4) 92.8(−6.2) 93.5(−5.5) 97(−2) 96.6(−2.4) 83.6(−15.4) - 82.7(−16.3) 66.5(−32.5) 69.4(−29.6)
Attack-2 98.9 98.2(−0.7) 97(−1.9) 98.3(−0.6) 89.4(−9.5) 87.7(−11.3) 91.9(−7) 91.3(−7.6) 78.6(−20.4) - 75.2(−23.7) 63.2(−35.7) 68.7(−30.2)
Attack-3 93.5 90.8(−2.7) 83.4(−10.1) 92.9(−0.6) 85.3(−8.2) 91(−2.5) 91.7(−1.8) 91.05(−2.4) 72.5(−21) - 71.1(−22.4) 61.1(−32.4) 65.9(−27.6)
Attack-4 88 70(−18) 31(−57) 36(−52) 32(−56) 36.2(51.8) 30(−58) 28(−60) 22.6(−65.4) - 21.6(−66.4) 28(−60) 68(−20)

Nadam
Attack-1 94.5 81.1(−13.4) 79.8(−14.7) 85.1(−9.4) 76.5(−18) 40.5(−54) 83.9(−10.6) 62.1(−32.4) 57.4(−37.1) - 74.2(−20.3) 52.9(−41.6) 70.2(−24.3)
Attack-2 93.8 79.5(−14.3) 78.2(−15.6) 84.2(−9.6) 75.6(−18.2) 39.5(−54.3) 82.3(−11.5) 60.9(−32.9) 56.2(−37.6) - 72.1(−21.7) 50.7(−43.1) 68.5(−25.3)
Attack-3 89.5 75.8(−13.7) 68.5(−21) 83.9(−5.6) 73.2(−16.3) 38.7(−50.8) 79.8(−9.7) 58.6(−30.9) 55.3(−34.2) - 70.6(−18.9) 48.2(−41.3) 64.3(−25.2)
Attack-4 88 49.3(−38.7) 47.5(−40.5) 87.2(−0.8) 80(−8) 16(−72) 56(−32) 52(−36) 54.6(−33.4) - 33(−55) 8(−80) 12(−76)

Adadelta
Attack-1 65.7 55.1(−10.6) 52.3(−13.4) 83.7(18) 48.1(−17.6) 48.3(−17.4) 48.8(−16.9) 66.8(1.1) 70.7(5) - 58.1(−7.6) 48.3(−17.4) 58.4(−7.3)
Attack-2 64.3 53.9(−10.4) 50.8(−13.5) 81.8(17.5) 45.4(−18.9) 46.7(−17.6) 47.5(−16.8) 65.2(0.9) 68.5(4.2) - 56.3(−8) 47.6(−16.7) 56.3(−8)
Attack-3 60.9 50.2(−10.7) 46.7(−14.2) 75.6(14.7) 41.8(−19.1) 44.3(−16.6) 45.4(−15.5) 60.8(−0.1) 65.3(4.4) - 52.3(−8.6) 41.1(−19.8) 52.1(−8.8)
Attack-4 88 69.3(−18.7) 65.4(−22.6) 12(−76) 84(−4) 32(−56) 32(−56) 49(−39) 45.6(−42.4) - 28(−60) 12(−76) 50.6(−37.4)

FMNIST

SGD
Attack-1 82.4 71(−11.4) 74.6(−7.4) 76.7(−5.7) 80.5(−1.9) 77.5(−4.9) 77(−5.4) 81.9(−0.5) 74.8(−7.6) 75.1(−7.3) 64.7(−17.7) 65.2(−17.2) 50.1(−32.3)
Attack-2 82.1 70.3(−11.8) 69.8(−12.3) 74.4(−7.7) 77.2(−4.9) 79.1(−3) 76.9(−5.2) 81.1(−1) 70.2(−11.9) 71.6(−10.5) 63.2(−18.9) 63.5(−18.6) 49.2(−32.9)
Attack-3 76.8 64.1(−12.7) 63.2(−13.6) 69.8(−7) 71.9(−4.9) 71.1(−5.7) 69.7(−7.1) 68.3(−8.5) 65.6(−11.2) 65.8(−11) 61.3(−15.5) 60.2(−16.6) 47.9(−28.9)
Attack-4 72 9(−63) 16(−56) 32.8(−39.2) 36.2(−35.8) 44(−28) 36(−36) 32(−40) 26.1(−45.9) 23.8(−48.2) 76.1(4.1) 44(−28) 62.6(−9.4)

Adagrad
Attack-1 83.6 80.2(−3.4) 78.2(−5.4) 81.1(−2.5) 81(−2.6) 80.6(−2) 78.9(−4.7) 82.5(−1.1) 73.2(−10.4) - 84.5(0.9) 62.9(−20.7) 66.8(−16.8)
Attack-2 82.2 80(−2.2) 77.5(−4.7) 80.9(−1.3) 81(−1.2) 80.2(−2) 78.1(−4.1) 82(−0.2) 71.2(−11) - 80.6(−1.6) 59.8(−22.4) 64.8(−17.4)
Attack-3 75.1 73.4(−1.7) 71.3(−3.8) 71.1(−4) 69.9(−5.2) 70(−5.1) 72.1(−3) 74.2(−0.9) 69.4(−5.7) - 78.8(3.7) 57.3(−17.8) 63.1(−12)
Attack-4 80 68(−12) 24(−56) 36.4(−43.6) 24(−56) 36.8(−43.2) 34(−46) 36(−44) 26.3(−53.7) - 92(12) 84(4) 59.8(−20.2)

RMSProp
Attack-1 74.2 69.9(−4.3) 72.3(−1.9) 67.8(−6.4) 66(−8.2) 64.3(−9.9) 67.5(−6.7) 73.6(−0.6) 63.9(−10.3) - 88.1(13.9) 69.4(−4.8) 65.3(−8.9)
Attack-2 73.9 69.4(−4.5) 71.7(−2.2) 66.7(−7.2) 66.5(−7.4) 63.8(−10.1) 66.1(−7.8) 73(−0.9) 60.8(−13.1) - 83.7(9.8) 67.5(−6.4) 63.7(−10.2)
Attack-3 68.2 61.3(−6.9) 55.8(−12.4) 59(−9.2) 58.3(−9.9) 59.6(−8.6) 59.3(−8.9) 64.6(−3.6) 58.1(−10.1) - 80.9(12.7) 65.1(−3.1) 62.9(−5.3)
Attack-4 69 12(−57) 16(−53) 38(−31) 14(−55) 32.3(−36.7) 34(−35) 32(−37) 24.7(−44.3) - 85(16) 76.1(7.1) 41(−28)

Nadam
Attack-1 82.6 63.9(−18.7) 74.7(−7.9) 81.25(−1.3) 56.9(−25.7) 32.1(−50.5) 78.8(−3.8) 80.2(−2.4) 68.4(−14.2) - 84.2(1.6) 58.8(−23.8) 56.9(−25.7)
Attack-2 80.7 62.5(−18.2) 73.2(−7.5) 79.4(−1.3) 55.5(−25.2) 33.2(−47.5) 75.6(−5.1) 78.6(−2.1) 65.2(−15.5) - 82.6(1.9) 57.4(−23.3) 55.8(−24.9)
Attack-3 81.5 58.1(−23.4) 56.8(−24.7) 72.3(−9.2) 52.3(−29.2) 40.2(−41.3) 73.1(−8.4) 75.9(−5.6) 54.5(−27) - 80.9(−0.6) 53.4(−28.1) 54.3(−27.2)
Attack-4 83.2 79.2(−4) 54(−29.2) 72(−11.2) 80(−3.2) 76(−7.2) 71.6(−11.6) 69.1(−14.1) 39(−44.2) - 76(−7.2) 84(0.8) 60(−23.2)

Adadelta
Attack-1 68.9 49.4(−19.5) 48.2(−20.7) 61.8(−7.1) 59.4(−9.5) 58.9(−10) 48.5(−20.4) 67.6(−1.3) 51.2(−17.7) - 44.6(−24.3) 62.9(−6) 40.3(−28.6)
Attack-2 67.8 48.7(−19.1) 47.3(−20.5) 60.2(−7.6) 58.2(−9.6) 56.5(−11.3) 46.8(−21) 67.2(−0.6) 48.5(−19.3) - 43.1(−24.7) 60.8(−7) 38.6(−29.2)
Attack-3 62.2 47.6(−14.6) 46.5(−15.7) 57.8(−4.4) 59.5(−2.7) 51.2(−11) 42.3(−19.9) 60.8(−1.4) 47.3(−14.9) - 42.6(−19.6) 62.4(0.2) 35.4(−26.8)
Attack-4 62.8 22(−40.8) 20(−42.8) 55.9(−6.9) 61.6(−1.2) 68.8(6) 62.4(−0.4) 45.3(−17.5) 37.9(−24.9) - 16(−46.8) 84(21.2) 38.2(−24.6)
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Table 6. Cont.

Datasets Optimizers Attacks WC D MCD BN GD AR GN M KD DP AR–KD GN–KD GD–KD

CIFAR-10

SGD
Attack-1 79 68.5(−10.5) 62.2(−16.8) 78.3(−0.7) 77.8(−1.2) 76.3(−2.7) 75.2(−3.8) 73.6(−5.4) 68.9(−10.1) 69.1(−9.9) 60.2(−18.8) 63.3(−15.7) 51.2(−27.8)
Attack-2 78.6 68.2(−10.4) 61.1(−17.5) 78.1(−0.5) 77.4(−1.2) 74.3(−4.3) 76.7(−1.9) 74.2(−4.4) 63.1(−15.5) 67.6(−11) 58.3(−20.3) 61.7(−16.9) 48.9(−29.7)
Attack-3 74.3 67.4(−6.9) 60.9(−13.4) 73.4(−0.9) 73.2(−1.1) 71.5(−2.8) 71.2(−3.1) 72.8(−1.5) 60.4(−13.9) 69.6(−4.7) 57.4(−16.9) 58.4(−15.9) 45.3(−29)
Attack-4 75.6 31(−44.6) 28(−47.6) 33.9(−41.7) 32.6(−43) 30(−45.6) 29.8(−45.8) 23.4(−52.2) 25.8(−49.8) 30.9(−44.7) 48(−27.6) 40(−35.6) 29(−46.6)

Adagrad
Attack-1 74.2 65(−9.2) 61(−13.2) 73.8(−0.4) 73.1(−1.1) 72.4(−1.8) 73(−1.2) 70(−4.2) 65.8(−8.4) - 71.4(−2.8) 54.2(−20) 58.1(−16.1)
Attack-2 73.7 64.3(−9.4) 60(−13.7) 73.1(−0.6) 72.6(−1.1) 72.2(−1.5) 72.8(−0.9) 69.5(−4.2) 63.1(−10.6) - 69.2(−4.5) 52.4(−21.3) 56.8(−16.9)
Attack-3 67.4 56.9(−10.5) 53(−14.4) 62.4(−5) 62.2(−5.2) 60.4(−7) 61.5(−5.9) 58.4(−9) 60.4(−7) - 67.4(0) 51.1(−16.3) 52.4(−15)
Attack-4 70.1 17(−53.1) 13(−57.1) 28.4(−41.7) 25(−45.1) 27.1(−43) 25.2(−44.9) 12(−58.1) 26.2(−43.9) - 18(−52.1) 32(−38.1) 25(−45.1)

RMSProp
Attack-1 68.2 58.6(−9.6) 55(−13.2) 65.8(−2.4) 64.2(−4) 65.3(−2.9) 64(−4.2) 62.1(−6.1) 62.3(−5.9) - 52.4(−15.8) 58.7(−9.5) 59.3(−8.9)
Attack-2 67.9 57.3(−10.6) 53.2(−14.7) 65.1(−2.8) 63.6(−5.3) 61.9(−6) 62.4(−5.5) 60.8(−7.1) 60.6(−7.3) - 50.6(−17.3) 57.1(−10.8) 57.9(−10)
Attack-3 63.7 56(−7.7) 52.9(−10.8) 62.3(−1.4) 60.8(−2.9) 61.7(−2) 59(−4.7) 59.4(−4.3) 57.2(−6.5) - 49.7(−14) 56.2(−7.5) 55.4(−8.3)
Attack-4 65.6 23(−42.6) 12(−53.6) 34(−31.6) 32.1(−33.5) 32.7(−32.9) 30.3(−35.3) 25.6(−40) 21.9(−43.7) - 32.4(−33.2) 46.8(−18.8) 35(−30.6)

Nadam
Attack-1 78.4 68.5(−9.9) 65.8(−12.6) 77.8(−0.6) 53.1(−25.3) 45.2(−33.2) 74.3(−4.1) 75.9(−2.5) 67.1(−11.3) - 74.3(−4.1) 55.6(−22.8) 52.6(−25.8)
Attack-2 75.2 64.2(−11) 62.3(−12.9) 74.2(−1) 52.8(−22.4) 43.8(−31.4) 71.6(−3.6) 74.2(−1) 52.3(−22.9) - 71.4(−3.8) 52.1(−23.1) 49.4(−25.8)
Attack-3 73.1 6 4.8(−8.3) 61.7(−11.4) 72.1(−1) 50.3(−22.8) 41.6(−31.5) 69.2(−3.9) 72.6(−0.5) 50.9(−22.2) - 69.8(−3.3) 51.3(−21.8) 48.7(−24.4)
Attack-4 70.6 65.2(−5.4) 32(−38.6) 70.1(−0.5) 65.4(−5.2) 50.3(−20.3) 60.5(−10.1) 55.6(−15) 31.2(−39.4) - 60.3(−10.3) 74.6(4) 49.1(−21.5)

Adadelta
Attack-1 65.9 55.3(−10.6) 53.1(−12.8) 65.1(−0.8) 58.5(−7.4) 52.6(−13.3) 45.2(−20.7) 62.1(−3.8) 50.3(−15.6) - 35.3(−30.6) 55.8(−10.1) 43.7(−22.2)
Attack-2 64.5 52.1(−12.4) 51.2(−13.3) 63.1(−1.4) 56.2(−8.3) 49.5(−15) 43.8(−20.7) 59.8(−4.7) 48.7(−15.8) - 33.7(−30.8) 52.9(−11.6) 42.9(−21.6)
Attack-3 62.3 50.6(−11.7) 48.5(−13.8) 61.1(−1.2) 53.1(−9.2) 47.6(−14.7) 41.9(−20.4) 57.6(−4.7) 45.4(−16.9) - 32.2(−30.1) 51.6(−10.7) 40.3(−22)
Attack-4 58 22(−36) 20(−38) 50(−8) 50.3(−7.7) 60(2) 56.2(−1.8) 45.7(−12.3) 18(−40) - 18.6(−39.4) 32.4(−25.6) 36.9(−21.1)

Purchase

SGD
Attack-1 52.2 53.1(1.9) 49.3(−1.9) 52.2(1) 52.9(1.7) 54.5(3.3) 51.6(0.4) 50.1(−1.1) 51.9(0.7) 49.5(−1.7) 48.9(−2.3) 50.9(−0.3) 48.4(−2.8)
Attack-2 50.2 52.2(2) 48.9(−1.3) 51.8(1.6) 52.1(1.9) 53.7(3.5) 50.8(0.6) 49.5(−0.7) 51.1(0.9) 49.1(−1.1) 48.1(−2.1) 50.6(0.4) 47.9(−2.3)
Attack-3 49.3 51.6(2.3) 48.1(−1.2) 51.1(1.8) 51.5(2.2) 52.4(3.1) 50.1(0.8) 49(−0.3) 50.8(1.5) 48.7(−0.6) 47.8(−1.5) 49.9(0.6) 47.1(−2.2)
Attack-4 84 24(−60) 24(−60) 92(8) 22(−62) 80(−4) 12(−72) 36(−48) 8(−76) 80(−4) 84(0) 88(4) 20(−64)

Adagrad
Attack-1 52.4 53.3(0.9) 53.1(0.7) 58.7(6.3) 51.1(−1.3) 55.2(2.8) 53.4(1) 55.3(2.9) 54.9(2.5) - 54(1.6) 47.9(−4.5) 49.1(−3.3)
Attack-2 51.2 52.8(1.6) 52.8(1.6) 57.8(6.6) 50.8(−0.4) 54.9(3.7) 53.1(1.9) 54.8(3.6) 54.2(3) - 53.5(2.3) 47(−4.2) 48.8(−2.4)
Attack-3 50.8 52.1(1.3) 52.1(1.3) 57(6.2) 50.2(−0.6) 54.2(3.4) 52.8(2) 54.1(3.3) 53.7(2.9) - 53.1(2.3) 46.5(−4.3) 48.1(−2.7)
Attack-4 72 80(8) 88(16) 12(−60) 28(−44) 24(−48) 84(12) 24(−48) 80(8) - 12(−60) 84(12) 92(20)

RMSProp
Attack-1 37.8 42.3(4.5) 36(−1.8) 23.1(−14.7) 51.8(14) 52(14.2) 35.2(−2.6) 39.8(2) 55.8(18) - 54.7(16.9) 43.4(5.6) 42.2(4.4)
Attack-2 37.1 41.9(4.8) 35.7(−1.4) 22.8(−14.3) 51.2(14.1) 51.6(14.5) 34.8(−2.3) 39.1(2) 55.1(18) - 53.9(16.8) 42.8(5.7) 41.8(4.7)
Attack-3 36.8 41(4.2) 35(−1.8) 22.5(−14.3) 49.7(12.9) 51(14.2) 34.2(−2.6) 38.7(1.9) 54.9(18.1) - 53.1(16.3) 42.2(5.4) 41.2(4.4)
Attack-4 96 88(−8) 36(−60) 36(−60) 24(−72) 32(−64) 36(−60) 24(−72) 96(0) - 16(−80) 20(−76) 24(−72)

Nadam
Attack-1 35.8 40.4(4.6) 35.1(−0.7) 19.2(−16.6) 54.4(18.6) 50.5(14.7) 29.6(−6.2) 34.4(−1.4) 51.4(15.6) - 45.3(9.5) 46.1(10.3) 50.9(15.1)
Attack-2 34.7 39.8(5.1) 34.7(0) 18.9(−15.8) 53.9(19.2) 49.8(15.1) 28.9(−5.8) 34(−0.7) 50.7(16) - 44.8(10.1) 45.8(11.1) 50.1(15.4)
Attack-3 34.1 39(4.9) 34(−0.1) 18.3(−15.8) 53.1(19) 49.1(15) 28.3(−5.8) 33.8(−0.3) 50(15.9) - 44.3(10.2) 45.3(11.2) 49.8(15.7)
Attack-4 40 28(−12) 72(32) 20(−20) 88(48) 80(40) 88(48) 8(−32) 72(32) - 12(−28) 84(44) 16(−24)

Adadelta
Attack-1 51.1 50.5(−0.6) 53.1(2) 54.7(3.6) 55.1(4) 53.1(2) 52.8(1.7) 53.9(2.8) 59.4(8.3) - 46.4(−4.7) 50.5(−0.6) 49.3(−1.8)
Attack-2 50.4 49.5(−0.9) 52.9(2.5) 54.1(3.7) 54.8(4.4) 52.8(2.4) 51.9(1.5) 53.2(2.8) 58.7(8.3) - 45.9(−4.5) 50(−0.4) 48.6(−1.8)
Attack-3 50 49.1(−0.9) 52.1(2.1) 53.3(3.3) 54.3(4.3) 52.1(2.1) 51.1(1.1) 52.8(2.8) 58(8) - 45.3(−4.7) 49.8(−0.2) 48.1(−1.9)
Attack-4 72 28(−44) 96(24) 24(−48) 96(24) 64(−8) 32(−40) 68(−4) 4(−68) - 8(−64) 12(−60) 24(−48)
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• CL attacks recall without countermeasure: As shown in Table 5, for the MNIST
dataset, the strongest attack is Attack 1 when we apply RMSProp. The recall value of
this attack without any countermeasure is 99.4%, which is the highest among other
attacks. For Attack 1, only changing the optimizer to Adadelta drops this value to
59.7% without using any countermeasure. Also, the weakest attack goes for Attack
4 when using Adadelta optimization. The recall value of this attack is 44%. For the
FMNIST dataset, the strongest attack is Attack 1 with the SGD optimizer and the
weakest attack is Attack 4 with the Nadam optimizer. For CIFAR-10, the strongest
attack is Attack 1 with SGD optimizer and the weakest is Attack 4 with Adadelta
optimizer. For the Purchase dataset, the best attack is Attack 4 with RMSProp optimizer
and the worst attack is Attack 4 with Adagrad optimizer.

• CL attacks recall with countermeasures: As per Table 5, different mitigation tech-
niques provide various recall values in every attack. We observe that the strongest
attack in the case of MNIST, which is Attack 1 with RMSProp, is defended by GD–KD
by a reduction of 65.2% of recall value, which is impressive. Using GD–KD is only
reducing the model accuracy by 8% according to Table 3. We can conclude that, in
the CL environment, GD–KD provides the strongest defense with the lowest model
accuracy degradation. This is very important in developing future ML models. For
the FMNIST dataset, the strongest attack belongs to Attack 1 when using SGD. This
attack in the case of FMNIST is also defended by GD–KD by a reduction of 37.4% in
recall value, although the strongest defense for this particular attack and dataset is
GN–KD with a 37.9% recall reduction. It is noteworthy that GD–KD and GN–KD
drop model accuracy by 15.4% and 13.9%, respectively, as shown in Table 3. The
same thing holds true for the CIFAR-10 dataset. The strongest attack is Attack 1 with
SGD optimizer for this dataset, and GN–KD is capable of defending this attack by a
reduction in attack recall by 34%. Also, in the Purchase dataset, the strongest attack,
which is Attack 4 with RMSProp optimizer, is defended by GN–KD and resulted in
recall value reduction by 84%. In general, we observe that, in the CL environment,
in most of the experiments, the combinations of KD and another countermeasure
provides lower attack recall values than other mitigation techniques. This means that
these combinations are the best to defend MIA against ML in the CL environment.

• FL attacks recall without countermeasure: As shown in Figure 13 and Table 6, for the
MNIST dataset, we observe that the highest attack recall (99%) belongs to Attack 1 with
RMSProp. This value is significantly reduced to 65.7% by only changing the optimizer
to Adadelta. It is impressive to see that changing the optimizer to Adadelta will not
drop model accuracy significantly. According to Table 4, using Adadelta reduces FL
model accuracy by approximately 1% compared to Nadam. For the FMNIST dataset,
Attack 1 with Adagrad provides the highest attack recall value (83.6%). When we
change the optimizer to Adadelta, we witness a drop in attack recall to 68.9% without
any mitigation technique. The same as Adadelta in MNIST, we are seeing a slight drop
in accuracy from 91.7% to 84.1% according to Table 4. For the CIFAR-10 dataset, the
highest attack recall is 79% for Attack 1 with SGD optimizer. This value is dropped to
65.9% by only changing the optimizer to Adadelta. Similar to MNIST and FMNIST,
this change has not had a significant impact on the accuracy of the FL model. As shown
in Table 4, the accuracy of CIFAR-10, when using Adadelta as an optimizer, only drops
by roughly 2%. For the Purchase dataset, the best attack is Attack 4 with the RMSProp
optimizer with 96% recall value. Also, without applying any countermeasure, the
lowest recall value for this dataset belongs to Attack 3 with the Nadam optimizer.

• FL attacks recall with countermeasures: As shown in Table 6, it is evident that the
various mitigation techniques exhibit varying performance. However, in general,
the combinations of KD with either GD, GN, or AR consistently offer improved
protection while preserving the model’s utility. For MNIST with RMSProp, GN–KD
effectively reduces the recall of Attack 1 by 32.5%, which is the most potent attack in
our FL MNIST experiments. Remarkably, this reduction is achieved with only an 11%
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decrease in FL model accuracy, as indicated in Table 4. In the case of FMNIST, Table 6
reveals that Attack 1 with Adagrad exhibits a high recall value of 83.6%. However, this
attack can be mitigated by GN–KD, resulting in a 20.7% reduction in recall. It is worth
noting that this defense strategy incurs a modest accuracy drop of 9.7%, as reflected in
Table 4. In CIFAR-10, the strongest attack is Attack 1 with SGD, boasting a recall value
of 92.6%. GN–KD is capable of reducing this recall to 58.6% while causing a minimal
4.2% drop in FL accuracy, as detailed in Table 4. In the Purchase dataset, the most
potent attack, Attack 4, using the RMSProp optimizer, experiences an 80% reduction in
effectiveness with a recall value of 96% when AR–KD is applied. Notably, AR–KD not
only avoids a decline in accuracy for the Purchase dataset with the RMSProp optimizer
but also substantially boosts accuracy by 52%. This improvement is attributed to the
capacity of AR–KD to modify the model’s architecture, thereby averting overfitting.

5.2.3. Accuracy–Recall Trade-Off

To obtain a clear comparison between the efficiency of the countermeasures, we
calculated the ratio of accuracy over recall. The higher the ratio is, the better the trade-off
we are achieving. Figure 14 illustrates the accuracy–recall ratio of each countermeasure. As
shown in Figure 14, for almost all optimizers, the highest trade-off belongs to one of the
combinatory approaches (either AR–KD, GN–KD, or GD–KD). This figure proves that the
combinational approaches that we tested provide a better trade-off between the accuracy
of the target model and MIA attack recall. The higher value of this trade-off conveys the
message that the mitigation technique keeps the accuracy of the target model high and
reduces the attack recall as much as possible.

Figure 14. The ratio of the accuracy of the model over recall of the attack model in FL environment.

5.2.4. Privacy and Utility

Concluding from Tables 3–6, it is noted that combination of KD with either AR, GN, or
GD has significant advantages over using each one of them separately as well as over other
conventional countermeasures. Experiments are showing that the new combinations of
countermeasures successfully handle the trade-off between privacy and utility. Generally
speaking, in all datasets and almost all optimizers (AR, GD, and GN), KD is capable of
reducing the attack recall while preserving the accuracy of the model at a high level. Not
only do they preserve the utility of the model at a high level but also, due to the nature of
KD, in some cases, they increase model accuracy as well.

6. Conclusions

This research paper presents a thorough examination of the accuracy of centralized
and federated learning models, as well as the recall rates associated with different mem-
bership inference attacks. Additionally, it evaluates the effectiveness of various defense
mechanisms within both centralized and federated learning environments. Our experimen-
tal findings reveal that Attack 1 [9] yields the highest advantage for potential attackers,
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while Attack 4 [11] is the least favorable for malicious actors. Among the defense strategies
examined, the combination of knowledge distillation (KD) with activity regularization
(AR), Gaussian dropout (GD), or Gaussian noise (GN) emerges as the most effective in the
context of centralized and federated learning. Notably, these three combinations stand
out for their ability to effectively balance the trade-off between preserving privacy and
maintaining utility. This comparative analysis holds significant importance for guiding
future advancements in model development.
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