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Abstract: Trade embargoes, often imposed for political, economic, or security reasons, have long been
a tool of international diplomacy. Transshipments may be employed as a strategic mechanism by
nations and organizations to circumvent trade embargoes. Transshipment involves rerouting goods
through intermediary ports or countries to obscure their origin, destination, or the parties involved.
This practice may be subject to investigation, which could lead to exposing the entities employing it.
Strategic management of transshipments has to be devised by those entities (the attackers) battling
against the transshipment detection mechanisms adopted by the embargo-setters (the defenders).
In this paper, we consider an entity exploiting transshipments through several intermediaries. We
derive an optimal strategy for that entity wishing to minimize the probability of being exposed. Our
strategy provides the optimal number of intermediaries and the optimal distribution of goods among
those intermediaries.

Keywords: transshipments; trade embargoes; trade networks; routing; supply chain

1. Introduction

Trade embargoes, often referred to simply as embargoes, are a common trade move
that is imposed by a country on another country, consisting of the restriction or prohibition
on the import/export of certain goods/services to or from another country. This restriction
is typically implemented as a punitive or coercive measure for political, economic, or
security reasons. Trade embargoes are used as a tool of foreign policy to exert pressure
on a targeted country, often with the goal of influencing its behaviour, complying with
international agreements, or addressing various concerns, such as human rights violations,
national security threats, or violations of international law. Embargoes can vary in scope,
ranging from a partial ban on specific products to a comprehensive prohibition on nearly
all trade with the targeted nation. For example, the United States has imposed embargoes
on several countries, including Cuba [1,2], Iran [3], and North Korea [4], which limit the
ability of US companies to trade with these countries.

In response to these trade restrictions, embargoed countries may use transshipments
to bypass the restrictions and continue trading with other countries. Transshipments refer
to the process of transferring goods or cargo from one transportation vehicle or mode to
another during the course of their journey from the point of origin to the final destination.
In this context, they are used to route trades through a third country that is not under
an embargo, thereby avoiding the restrictions imposed on the embargoed country. The
case of interest here is shown in Figure 1, where the entity (country/company) A is under
embargo and cannot import directly from V (the broken link represents the embargo)
and exploits B as a bridge to bypass the embargo. Hence, B will import from V and will
redirect the imported goods to A. The geometric shape of this trade arrangement gives it
the name triangulation, though in the following, we will mostly employ the more generic
term transshipment.
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Figure 1. Trade triangulation.

One of the key benefits of trade triangulations is that they allow companies to bypass
trade restrictions and continue trading with embargoed countries. This can help companies
maintain their market share and preserve their relationships with their customers in embar-
goed countries. Additionally, trade triangulations can help companies access new markets
and expand their business opportunities. Another benefit of trade triangulations is that
they may help companies reduce costs and improve efficiency. For example, by routing
their trade through a third country, companies may take advantage of lower shipping costs
and more favourable trade agreements. A company that routes its trade through a country
with a free trade agreement with both the embargoed country and the country of origin
may be able to take advantage of lower tariffs and other trade benefits.

Of course, costs associated with routing trade through a third country may also
increase, due, e.g., to transportation costs, customs duties, and other fees. Additionally,
trade triangulations can result in longer delivery times, as goods must be transported
through a third country.

This practice is not exempt from risks, since the origin country (V in Figure 1) may
detect the abnormal flow of goods to B, which will have to add the good to be redirected to
A to its own imports from B. Any increase in import by the bridge B may be a hint that it is
acting as an accomplice in a trade triangulation. In order to limit such risk, the embargoed
country A may employ several bridges and distribute its import needs across them. A
sample case, where the embargoed country sources through two bridges (B1 and B2) is
shown in Figure 2. The problem that arises here is: How may the embargoed country A
optimally allocate its import need across a set of n bridges so as to minimise the probability
of being exposed? We refer to the optimal allocation as the optimal hiding strategy for the
embargoed country, since it employs the bridges as a tool to hide itself from the country
from which it is forbidden to import.

B1 A

V B2

Figure 2. Combination of two trade triangulations.

In this paper, we tackle that issue and find the import allocation across the bridges that
minimises the probability of being exposed under a softmax-like distribution. Our solution
is a closed formula for the case of two bridges and leads to a system of nonlinear equations
(to be solved numerically) in the case of n bridges. We also prove that the allocation is quite
far from being proportional and exhibits a sharp threshold effect in that potential bridges
are not allocated any share of the import needs of the embargoed country till their import
volume stays below a given fraction of the largest importer among the bridges. Our major
contributions are as follows:

• We model the transshipment problem under trade embargoes and postulate a proba-
bility of a bridge being exposed;

• We provide a closed formula for the optimal import allocation in the case of two bridges;
• We numerically solve the optimal import allocation problem for the case of n bridges;
• We identify the threshold effect and provide bounds for the minimum import volumes

of bridges;
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Our paper is organized as follows. We review the literature on embargoes and trans-
shipments in Section 2. We formulate the optimal hiding strategy (i.e., the optimal import
allocation) problem mathematically in Section 3. We solve the problem in Section 4.1 for
the case of two bridges and Section 4.2 for the case of n bridges. The threshold effect is
dealt with in both sections for the respective cases.

2. Trade Networks, Embargoes, and Transshipments

Our study concerns the use of trade triangulations (which are specific cases of trans-
shipments) to bypass trade embargoes. In this section, we review the literature on embar-
goes and transshipments. In most cases, embargoes are a major form of sanctions against a
country. In this paper, we will often refer to sanctions under the understanding that they
include embargoes as their major tool.

The general features of sanctions are reviewed in [5]. It has been shown in [6] that they
are not modern tools, and their history can be traced back to the Middle Ages. Coming to
modern times, their continuous use in the trade relationship between the U.S.A. on one side
and the USSR and China on the other side is illustrated in [7], while the embargoes on arms
trade between the European Union and China has been examined in [8]. Recent examples of
embargoes are: the Iran–Contra Affair in the 1980s, when the United States imposed an arms
embargo on Iran, but members of the US government secretly sold weapons to Iran and
used the proceeds to fund anti-communist rebels in Nicaragua (see the full story on https:
//www.britannica.com/event/Iran-Contra-Affair, accessed on 5 December 2023); the Oil-
for-Food Program in the 1990s, when the United Nations imposed a trade embargo on Iraq
following its invasion of Kuwait, but Iraq was able to bypass the embargo by participating
in the Oil-for-Food Program, which allowed it to sell oil in exchange for humanitarian
supplies (see the full story on https://www.britannica.com/place/Iraq/The-UN-embargo-
and-oil-for-food-program, accessed on 5 December 2023); North Korea, which has been
subject to numerous trade embargoes over the years, but has been able to bypass them by
engaging in illicit activities such as counterfeiting, drug trafficking, and arms sales (see the
list of sanctions against North Korea on https://ofac.treasury.gov/sanctions-programs-
and-country-information/north-korea-sanctions, accessed on 5 December 2023); and Cuba,
which has been subject to a trade embargo since the 1960s, but Cuba has been able to
bypass it by trading with other countries, particularly Russia, China, and Venezuela (see
the story on https://www.britannica.com/story/pro-and-con-cuba-embargo, accessed on
5 December 2023).

The impact of embargoes on the economy of both sides involved has been dealt with
in several papers, typically through the analysis of specific cases. The modifications to trade
networks after the invasion of Ukraine have been examined in [9,10]. Sanctions have been
shown to lengthen recession periods in Iran in [11] and to impact overall trade volumes
in [12]. Their use for reasons other than political has also been examined, e.g., in [13] when
they are of a sanitary nature, and [14], when they are due to human rights violations.

A direct consequence of embargoes is the opening of new trade routes to compensate
for losing those that are closed due to the embargo. The case of coal import in Poland after
the embargo from Russia is analysed in [15]. Evidence of trade triangulations through
neighbouring countries is shown in [16]. Also, a concrete case of bypassing the oil embargo
against South Africa through maritime activities in the 1970s is described in [17]. The
use of transshipments by North Korea to bypass embargoes is analysed in [18]. A way
of detecting such triangulations through the increase in stock prices related to demand
increase is proposed in [19]. However, the net effect due to the reduction of other trade
activities may be negative for the neighbouring countries acting as bridges [20,21].

3. The Optimal Hiding Problem in Transshipments

Having reviewed the relevance of embargoes and the use of transshipments through a
third party (trade triangulation) to bypass them, in this section, we provide the mathemati-
cal formulation of the bypassing strategy for the embargoed country.

https://www.britannica.com/event/Iran-Contra-Affair
https://www.britannica.com/event/Iran-Contra-Affair
https://www.britannica.com/place/Iraq/The-UN-embargo-and-oil-for-food-program
https://www.britannica.com/place/Iraq/The-UN-embargo-and-oil-for-food-program
https://ofac.treasury.gov/sanctions-programs-and-country-information/north-korea-sanctions
https://ofac.treasury.gov/sanctions-programs-and-country-information/north-korea-sanctions
https://www.britannica.com/story/pro-and-con-cuba-embargo
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We refer to a generalization of Figure 2, where we have the embargoed country A,
which cannot import directly from V, but may exploit n bridges B1, B2, . . . , Bn to route
the goods from A to itself. The mechanism may rely on a subsidiary or shell company
in the countries acting as bridges, which do not have a trade embargo with Country V.
For the sake of brevity, we refer to the country A subject to the embargo as the attacker,
and the country V from which import is sought as the defender or victim. The overall
volume of goods that the attacker wishes to import indirectly from the defender through
the bridges is QA. The volumes of the same goods that the bridges import prior to being
used as bridges are, respectively, Q1, Q2, . . . , Qn. Since the bridges have to accommodate
the additional import volume QA, their import volumes will grow: each candidate bridge
will have to import both the volume needed for its own consumption and that needed for
the attacker’s consumption (which it will route to the attacker). For the generic country Bi,
the new import volume from V will be

Q∗i = Qi + αiQA (1)

with the constraint
n

∑
i=1

αi = 1 (2)

since the attacker wishes to have all its import needs satisfied. We assume that: (a) the
embargo has been decided and enforced by the victim country, so that the country subject
to embargo (the attacker) cannot import the goods directly from the victim (the country that
has established the embargo); (b) the attacker is able to find n ≥ 1 countries that already
import those goods from the victim and are willing to act as bridges towards the attacker;
(c) the quantity of goods required by the attacker can be made available by the victim (i.e.,
the import needs of the attacker can be met by the export capabilities of the victim).

At the same time, the import increase by a bridge may be a sign of a trade triangulation
and may be exploited by the victim to detect possible triangulations, as suggested in [19].
The victim may become aware of the attack on either bridge by identifying anomalous
surges in imported quantities. If the identification is correct, that would expose the role
of country Bi as a bridge. We postulate that the probability of the attack through bridge
i being exposed follows the generalized logistic distribution, also known as Richards’
curve [22]: the formula is actually a simple case of the generalized logistic distribution
y = K−A

(C+Qeβx)1/ν + A where A = −1, C = 1, K = 1, Q = 1, and ν = 1. It has been used in
different contexts, e.g., in [23,24].

pi = 2
e

∆Qi
Qi

1 + e
∆Qi
Qi

− 1 i = 1, 2, . . . , n, (3)

where ∆Qi = Q∗i −Qi = αiQA is the overloading factor of bridge i. When the overloading
factor is zero, the bridge is not apportioned with an additional import quota. We can see in
Figure 3 how the probability of a bridge being exposed grows with its overloading factor.

Since either bridge can be detected by the victim, the attacker is itself exposed when
even a single bridge is exposed. The overall probability that A’s attack will be detected is

PA = 1−
n

∏
i=1

(1− pi). (4)

Of course, the attacker seeks the minimum probability of being exposed, i.e., of hiding
behind the bridges (hence, the name hiding strategy). For that purpose, it may choose the
suitable apportionment factors αi, i = 1, 2, . . . , n, through which it distributes its overall
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import volume need among the bridges. Then, its problem is the following constrained
optimization one:

arg min
α

PA = arg min
α

1−
n

∏
i=1

1−

2
e

αi QA
Qi

1 + e
αi QA

Qi

− 1


= arg min

α

1− 2
n

∏
i=1

1− 1

1 + e−
αi QA

Qi


= arg min

α

1− 2
n

∏
i=1

1

1 + e
αi QA

Qi

.

= arg max
α

n

∏
i=1

1

1 + e
αi QA

Qi

(5)

where α = {α1, α2, . . . , αn}, subject to
n

∑
i=1

αi = 1 (6)
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Figure 3. Probability of bridge being exposed.

4. Optimal Hiding Strategy

In this section, we examine how to derive the optimal hiding strategy, i.e., the optimal
allocation of the additional import volume across the bridges. We consider first the case of
two bridges and then the general case of n bridges.

4.1. The Case of Two Bridges

We assume that our attacker (i.e., the nation or company wishing to bypass the
embargo) may choose two nations/companies as bridges (either or both). We recall the
notation established in Section 3 and call the attacker A and the two bridges B1 and B2. The
victim, i.e., the nation/company promoting the embargo, is V.

The quantities imported by the two bridges prior to their use as bridges towards A
are Q1 > 0 and Q2 > 0, respectively. The attacker needs to distribute its import need QA
between the two bridges. Since ∑2

i=1 αi = 1, we can simplify the notation and consider the
share of B1 as α1 = α, so that α2 = 1− α1, with α ∈ [0, 1]. Then, the quantities that B1 and
B2 import from V after including what they need to satisfy A’s request are
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Q∗1 = Q1 + αQA

Q∗2 = Q2 + (1− α)QA
(7)

Similarly, the probability of the attackers being exposed is a special case of Equation (4):

PA = 1− (1− p1)(1− p2). (8)

We can now solve the optimal allocation problem embodied by Equation (5).
By recalling the probability of a bridge being exposed, as described by Equation (3),

the overall probability of the attacker being exposed can be written as:

PA = 1−

2− 2
e

∆Q1
Q1

1 + e
∆Q1
Q1

2− 2
e

∆Q2
Q2

1 + e
∆Q2
Q2


= 1−

2− 2
e

αQA
Q1

1 + e
αQA
Q1

2− 2
e
(1−α)QA

Q2

1 + e
(1−α)QA

Q2


= 1− 4

1− e
αQA
Q1

1 + e
αQA
Q1

1− e
(1−α)QA

Q2

1 + e
(1−α)QA

Q2


= 1− 4

1 + eα
QA
Q1 − eα

QA
Q1

1 + eα
QA
Q1

1 + e(1−α)
QA
Q2 − e(1−α)

QA
Q2

1 + e(1−α)
QA
Q2

= 1− 4
1

1 + eα
QA
Q1

1

1 + e(1−α)
QA
Q2

(9)

The attacker’s aim is to minimise PA through a proper choice of the allocation weight
α. We note that minimising PA can be simplified through the following development:

arg min
α

PA = arg max
α

1

1 + eα
QA
Q1

1

1 + e(1−α)
QA
Q2

= arg min
α

(
1 + eα

QA
Q1

)(
1 + e(1−α)

QA
Q2

) (10)

In order to look for the minimum of the function appearing in the last term in
Equation (10), we zero its derivative. By defining the overloading ratio for the i-th bridge
as βi = QA/Qi, i = 1, 2, that derivative is

∂

∂α

(
1 + eαβ1

)(
1 + e(1−α)β2

)
=

∂

∂α

[
1 + e(1−α)β2 + eαβ1 + eαβ1+(1−α)β2

]
= −β2e(1−α)β2 + β1eαβ1 + (β1 − β2)eαβ1+(1−α)β2

(11)

We are sure that the search for the extremal point by zeroing the first derivative leads
us to a minimum, since the second derivative is positive:

∂2

∂α2

(
1 + eαβ1

)(
1 + e(1−α)β2

)
=

∂

∂α

[
−β2e(1−α)β2 + β1eαβ1 + (β1 − β2)eαβ1+(1−α)β2

]
= β2

2e(1−α)β2 + β2
1eαβ1 + (β1 − β2)

2eαβ1+(1−α)β2 > 0

(12)

By recalling Equations (10) and (11), we can conclude that minimizing PA is tanta-
mount to finding the roots of the following equation (zeroing the first derivative):



Information 2023, 14, 650 7 of 17

−β2e(1−α)β2 + β1eαβ1 + (β1 − β2)eαβ1+(1−α)β2 = 0 (13)

By dividing all terms by the positive term eαβ1+(1−α)β2 , we obtain the final equation to
be solved:

β1 − β2 + β1e(α−1)β2 − β2e−αβ1 = 0, (14)

Equation (14) has to be solved numerically. In order to obtain some further insight
into this equation, we write it in the following form:

D(α, β1, β2) = β1(1 + e(α−1)β2)− β2(1 + e−αβ1) = 0. (15)

We now have to look for the value of α that solves Equation (15). That value will give
us the optimal distribution of load on the two candidate bridges. However, we will find out
that Equation (15) does not always allow for a solution. In order to prove this statement,
we first prove the following Lemma 1.

Lemma 1. There exists an infinite number of couples (β1, β2) for which the equation D = 0 admits
no solution for any value of α ∈ [0, 1]

Proof of Lemma 1. We can easily observe that the function D is a growing function of β1
and a decreasing function of β2.

In fact, the first-order derivatives are, respectively:

∂D
∂β1

= 1 + e(α−1)β2 + αβ2e−αβ1 > 0 (16)

∂D
∂β2

= (α− 1)β1e(α−1)β2 − 1− e−αβ1 < 0 (17)

Since D is a growing function of β1, we can be sure that, for any β2, there exists a value
β∗1 such that D > 0 for any β1 > β∗1 and any α ∈ [0, 1]. Since β1 ∈ (0, ∞), we have infinite
couples (β1, β2) for which D > 0 regardless of the value of α.

Similarly, since D is a decreasing function of β2, we can be sure that, for any β1, there
exists a value β∗2 such that D < 0 for any β2 > β∗2 and any α ∈ [0, 1]. Since β2 ∈ (0, ∞), we
have infinite couples (β1, β2) for which D < 0 regardless of the value of α.

Those two results guarantee that there is an infinite number of couples (β1, β2) for
which D 6= 0, regardless of α.

Though Lemma 1 only provides us with a non-existence proof, we can find a necessary
condition on the values of the import volumes Q1 and Q2 to obtain a solution for the
optimal allocation problem.

Theorem 1. If the ratio of import volumes Q1/Q2 does not satisfy the inequality 1
2 < Q1

Q2
< 2, the

optimal allocation problem has no solution in α ∈ (0, 1)

Proof. We can write the optimal allocation Equation (15) in the following form

β1

β2
=

1 + e−αβ1

1 + e(α−1)β2
(18)

Since both exponentials in Equation (18) are lower-bounded by zero and upper-
bounded by one, the following inequality holds

1
2
<

1 + e−αβ1

1 + e(α−1)β2
< 2→ 1

2
<

β1

β2
=

Q2

Q1
< 2. (19)
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If this inequality does not hold, the optimal allocation Equation (18) cannot be satisfied.
Since the two bounds are reciprocals of each other, the theorem statement easily follows.

We can complete the framework by looking at what happens when the optimal
allocation problem has no solution in α ∈ (0, 1). We can formulate the following theorem.

Theorem 2. When the optimal allocation problem has no solution for α ∈ (0, 1), the best hiding
strategy is to allocate the whole import volume on the bridge with the larger import volume

Proof. If the probability of the attacker being exposed does not reach its minimum inside
the interval α ∈ (0, 1), then it either reaches a maximum inside that interval or is a
monotonous function of α. In either case, the minimum must lie on either extreme of the
interval, i.e., when either α = 0 or α = 1. We must therefore look at the values taken by the
probability of the attacker being exposed given by Equation (9) when α = 0, 1.

We have, respectively,

PA|α=0 = 1− 4
1
2

1
1 + eβ2

= 1− 2
1 + eβ2

(20)

and
PA|α=1 = 1− 4

1
1 + eβ1

1
2
= 1− 2

1 + eβ1
(21)

The minimum (optimal) value of PA is reached for α = 1 when

PA|α=1 < PA|α=0 → 1− 2
1 + eβ1

< 1− 2
1 + eβ2

eβ1 < eβ2 → QA
Q1

<
QA
Q2
→ Q2 < Q1

(22)

Hence, when Q1 > Q2 (i.e., the bridge B1 is the larger importer), the optimal strategy
for the attacker is to allocate all the additional import volume on B1 itself.

Theorem 1 tells us that we obtain a non-trivial solution (i.e., different from either
α = 0 or α = 1) only when the initial import volumes of the two bridges are not too
imbalanced. Further, Theorem 2 tells us that, when the ratio of their import volumes
exceeds those bounds (i.e., one bridge imports more than twice the volume of the other
bridge), the optimal strategy for the attacker is to fully rely on the larger importer. A further
consequence of Theorem 2 is that we can identify a threshold on the volume imported by
the smaller importer for it to be able to be allocated some fraction of the import need of
the attacker.

This threshold effect is evident if we plot the solution, i.e., the value of α that gives the
optimal (i.e., minimum exposure probability) solution to the import allocation problem.
We show the space of solutions in Figure 4 when βi ∈ [0.1, 3]. As expected, the attacker
tends to apportion most of the load to the heavier importer. However, when the ratio of
original import volumes is pretty imbalanced, we obtain α = 0 or α = 1, which means that
the attacker actually uses just one bridge (ther larger one). In Figure 4, we observe that, for
any value of β2, α = 0 (i.e., all the excess load is on Bridge 2) as long as β1 stays above some
threshold (i.e., the import Q1 is small enough). For example, when β2 = 0.6, we can read
on Figure 4 that all the excess import passes through Bridge 2 as long as β1 > 0.78 (i.e., as
long as the plot in Figure 4 stays in the dark area, corresponding to α = 0) or, alternatively,
as long as the ratio of imports of the two bridges is Q1/Q2 < 0.6/0.78 = 76.9%. That
means that Bridge 1 starts getting involved in the triangulation by the attacker when its
original import is at least 76.9% of that of Bridge 2. We can then conclude that the bounds
in Equation (18) are both loose, and the range of imbalances giving nontrivial allocations is
even narrower. In Figure 5, we see how the optimal apportionment value α moves between
its extremes. When β1 is very low (B1 is a heavy importer), the transition is very sharp, so
the optimal solution is to rely on either importer but not on both. For all practical purposes,
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we can identify a threshold value for β2 that marks the passage from one importer to the
other. When β1 grows (the importer B1 is not so heavy with respect to the additional burden
asked for by the attacker), the transition is more gradual, so there is a region where both
importers are to be used with various degrees of apportionment between them. In general,
we can identify three intervals in the range of β1 (the same can be said for β2), where the
additional import to satisfy the attacker is respectively assigned to B1 only (interval U1), to
both B1 and B2 (interval U2), and then to B2 only (interval U3), as you can see in Figure 6.

Figure 4. Optimal distribution for two bridges.
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Figure 5. Impact of Bridge 2’s import on optimal α.
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Figure 6. Assignment regions.

If we look at the first threshold marking the passage from interval U2 to U3, we are
searching for the value marking the passage from the heavy dark area to a lighter one in
Figure 4, i.e., for the special value β∗1 = min β1 : α = 0. By setting α = 0 in Equation (15),
we obtain

β1(1 + e−β2)− β2(1 + 1) = 0

β∗1 =
2β2

1 + e−β2
.

(23)

We recall that this is the import value of Bridge B1 for which it starts actually being
employed as a bridge (Bridge B2 being the heavier importer of the two). We can also look
at the value marking the passage from region U2 to U1, i.e., when Bridge B1 receives all
the additional volume (α1 = 1) and becomes the heavier importer. We are now looking for
β∗2 = min β2 : α = 1. By setting α1 = 1 in Equation (15), we obtain

β1(1 + 1)− β2(1 + e−β1) = 0

β∗2 =
2β1

1 + e−β1
,

(24)

where we notice the perfect symmetry with respect to Equation (23).
We can gain a quantitative understanding of the width of such intervals by looking at

Figure 7, where we have plotted both thresholds. We see that when the pre-transshipment
import by the alternative bridge B2 is very high (hence, β2 is very low), the co-existence
range for the two bridges is very narrow, and there is a sudden passage from the only
bridge being B1 to being B2 (or vice versa). Instead, when B2 imports just a fraction of the
additional load, the co-existence range (vertical distance between the two curves) widens,
and the bridge B1 is involved in the transshipment even if it is not a heavy importer.

An alternative way to look at the share of transshipment between the two candidate
importers is through the loading ratio Q∗ = max Q1/Q2|α = 0, i.e., the maximum loading
ratio such that all the transshipment is still carried out through Bridge 2. We can recall
Equation (23) and manipulate it as follows by exploiting the definition of the overloading
ratios βi’s:

β1 =
2β2

1 + e−β2

QA
Q1

= 2
QA
Q2

1
1 + e−β2

1
Q1

= 2
1

Q2

1
1 + e−β2

Q1

Q2
=

1 + e−β2

2

Q∗ =
1 + e−β2

2

(25)

We can see the resulting plot in Figure 8.
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Figure 7. Overloading factors.
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Figure 8. Loading ratio.

4.2. The Case of n Bridges

After considering the particular case of two bridges, which has provided us with some
insights into the threshold effect associated with the optimal strategy, we now turn to the
general case of n bridges.
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We first recall the general terminology set in Section 3. The impost volumes by the
bridges before and after their involvement in the triangulation are Qi and Q∗i ,
i = 1, 2, . . . , n, respectively. Namely, the value Qi is the volume imported by candidate
bridge Bi before triangulation, while Q∗i is the volume imported by the candidate bridge Bi
after its involvement in the triangulation, when it also has to carry a share of the volume
QA required by the attacker. The αi ∈ [0, 1], i = 1, 2, . . . , n are the sharing factors, with the
constraint ∑n

i=1 αi = 1.
The probability of being exposed for the single bridge is given by Equation (3), while

that for the attacker is shown in Equation (4).
Since the attacker wishes to minimise the probability of being exposed, but the con-

straint ∑n
i=1 α1 = 1 has to be satisfied, the attacker has to solve a constrained minimization

problem, for which it can use the Lagrange multiplier approach [25]. The optimization
problem would be

min
α1,α2,...,αn

PA

s.t. α1, α2, . . . , αn ≥ 0
n

∑
i=1

αi = 1

(26)

where two constraints appear, but it can be transformed by the Lagrange approach into the
unconstrained problem

min
α1,α2,...,αn ,h

PA + h

(
n

∑
i=1

αi − 1

)
(27)

The minimization equation to solve is now the set

∂pA
∂αi

+ h
∂

∂αi

(
n

∑
j=1

αj − 1

)
= 0 i = 1, 2, . . . , n (28)

As to the first term in this equation, by applying the product rule, we have

∂pA
∂αi

= −2

 n

∏
j=1
j 6=i

1

1 + eαj β j

 ∂

∂αi

1
1 + eαi βi

= 2βi

 n

∏
j=1
j 6=i

1

1 + eαj β j

 eαi βi

(1 + eαi βi )2

= 2βi
eαi βi

1 + eαi βi

n

∏
j=1

1

1 + eαj β j

(29)

The second term in Equation (28) is instead simply

h
∂

∂αi

(
n

∑
j=1

αj − 1

)
= h. (30)

After inserting these results into Equation (28), we obtain the system of equations

2βi
eαi βi

1 + eαi βi

n

∏
j=1

1

1 + eαj β j
+ h = 0 i = 1, 2, . . . , n (31)
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Since the terms ∏n
j=1

1
1+eαj βj

and h do not depend on the specific bridge, the following

identity must hold

β1
eα1β1

1 + eα1β1
= β2

eα2β2

1 + eα2β2
= · · · = βn

eαn βn

1 + eαn βn
(32)

This identity provides us with n− 1 independent equations, each one involving a
couple of bridges, which, together with the constraint equation ∑n

i=1 αi − 1 = 0, give us
the solution for the import shares α1, α2, · · · , αn for the present state of import volumes
described by the set of βi, i = 1, 2, . . . , n.

The solutions depend, of course, on the ex ante status of imports, i.e., the set of βi that
we have just mentioned. The possible combinations of those values are infinite. However,
we already know from the case of two bridges that some combinations do not lead to a
repartition of the additional import, but rather concentrate the additional import into one
bridge (or more, but less than n, since we now have n bridges rather than two). Actually,
if we sort the ex ante imports in descending order (without loss of generality), we can
hypothesize to have some j∗ such that αk = 0 for k ≥ j∗. We can follow the same approach
as for the case of two bridges. In fact, we can write Equation (32) as follows

β1
1

1 + e−α1β1
= β2

1
1 + e−α2β2

= · · · = βn
1

1 + e−αn βn
(33)

For any couple of bridges (and in particular for i = 1 and any k), we can write

β1

βk
=

1 + e−α1β1

1 + e−αk βk
(34)

We can again note that the right-hand term is bounded, so that

1
2
<

β1

βk
=

Qk
Q1

< 2. (35)

Since Qk ≤ Q1 by construction, we must have Qk
Q1

> 1/2 to obtain a non-zero solution
for αk.

In order to obtain some insights into the way the import volume of the attacker is to
be distributed among the bridges, we can hypothesize some regular distributions for the
current import volumes Qis.

In particular, here, we consider a uniform distribution and a generalized Zipf distribution.
In the case of a uniform distribution, we assume that the generic import volume Qi

is a random variable following a uniform distribution. Without loss of generality, we can
also assume that Qi ∈ [0, b]. In this case, we have no average difference among bridges.
However, for each instantiation of the problem, the import volumes will not be equal. We
can sort the import volumes of any realization of the random variables and use their order
statistics, so as to obtain average results. We know that the expected values of the order
statistics for a uniform distribution, when volumes exhibit an upper bound b (the lower
bound being zero), are given by the formula [26]:

E[Qi] = b
n + 1− 1

n + 1
(36)

The existence of an upper bound is a safe assumption, since import volumes are
anyway upper-bounded by the export capacity of the nation/organization from which the
bridges are sourcing. If we recall the bound on the import ratios given by Equation (35), we
can derive the maximum number of bridges that can be allocated a non-zero fraction of the
overall additional import volume through the following inequality

β1

βi
=

E[Qi]

E[Q1]
=

b n+1−i
n+1

b n+1−1
n+1

=
n + 1− i

n
>

1
2
→ i ≤

⌊n
2
+ 1
⌋

(37)
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Under uniform distribution, roughly half of potential bridges will not be allocated any
additional load, i.e., they will be excluded from the list of actual bridges that the attacker
employs. However, the condition expressed by the inequality (37) is a sufficient condition
for a bridge not to be assigned a share of the import volume needed by the attacker. The
actual bound is tighter (i.e., lower) than that. Since we are considering the case where the
import volumes are random variables, we can resort to MonteCarlo simulation to estimate
that bound. We expect the number of actual bridges (i.e., bridges supporting a share of the
import volume QA) to be a function both of the number n of candidate bridges and the
overall overloading factor k defined by the following equation:

QA = k
n

∑
i=1

Qi. (38)

We can now run a MonteCarlo simulation, in which we generate 10,000 instances of
groups of n potential bridges’ import volumes for selected values of the overall overloading
factor. At each simulation run, we compute the number of actual bridges, i.e., the number
of bridges that receive a non-zero allocation, and average them through the simulation runs
to estimate the expected number of actual bridges.

In Figure 9, where the overloading factor k is shown as a parameter, we see that the
fraction of candidate bridges that are actually employed does not depend on the number of
candidate bridges (since we observe pretty linear trends) but grows with the overloading
factor. As the needs of the attacker increase over the volume presently carried by the
bridges, the attacker has to rely on more and more bridges.

3 4 5 6 7 8 9 10
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5

No. of candidate bridges

N
o.

of
ac

tu
al

br
id

ge
s

Overloading
0.1
0.5
1.0

Figure 9. Selection of candidate bridges.

We can examine the impact of the overloading factor in more depth in Figure 10, where
we observe that the growth of the number of actual bridges is sublinear.

As a volume distribution suitable for describing a realistic situation, we can also recall
the generalized Zipf law, which assumes that the import volumes obey the following
(deterministic) equation

Qi ∝
1
iη → βi =

QA
Qi

∝ QAiη (39)

Zipf law has been found to hold both for the goods exported by a single country
and for the exports of a fixed good by all the countries in the world [27]. Other examples
of its application in macroeconomics are its use to model the Gross Domestic Product
(GDP) [28], the GDP per capita [29], the market distribution [30], and the distribution of
telco customer [31]. A final example in trade is given in [32], where the Zipf law is used to
describe the size of regional container ports.
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Figure 10. Impact of the overloading factor on the number of bridges.

Before providing some numerical results when imports follow the generalized Zipf
law, we can see which bridges can actually be involved in the optimal apportionment of
the additional import load. In fact, using Equation (39), the following condition must hold
(a necessary but not sufficient) to have αi > 0

Q1

Qi
= iη < 2 (40)

from which we have i ≤
⌊

e
ln 2
η

⌋
, which is plotted in Figure 11.
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Figure 11. Maximum number of actual bridges.



Information 2023, 14, 650 16 of 17

5. Discussion and Conclusions

We have analysed the case of trade triangulations, where a country tries to bypass em-
bargoes through the use of other countries, which are not subject to embargoes, as bridges.
The envisaged context consists of the embargoed country trying to import goods/services
through those bridges.

Our investigation has produced the following two major findings:

• It is possible to find an optimal hiding strategy (i.e., a strategy that minimizes the
probability of being exposed) for the country that wishes to bypass an embargo;

• The optimal strategy does not use all the candidate bridges, but just the largest importers;

These findings allow the embargoed country to focus on a subset of bridges, avoiding
dispersing its energies (needed to establish and maintain friendly ties with would-be
bridges) among too many countries candidates to act as bridges.

At the same time, this investigation allows countries that wish to impose embargoes
to assess the probability of exposing the embargoed country and its allies in the bypassing
operation. Since the embargoed country will select the largest importers as its allies, that is
also an indication for the embargo-setting country to direct its attention.

It is to be noted that both the embargoed country and the embargo-setting country
face consequences from the application of the hiding strategy. The embargoed country
certainly achieves a short-term gain, since it enjoys immediate access to necessary goods,
mitigating economic hardships. At the same time, it faces long-term risks: if discovered, the
country could face severe diplomatic repercussions, including stricter sanctions, damaged
international relations, and increased isolation. At the same time, the success of the
triangulation undermines the effectiveness of the embargo, potentially prompting the
embargo-setting country to enhance enforcement measures or seek alternative diplomatic
solutions. Also, the discovery of the triangulation may strain relations with other countries
(e.g., the bridges) and erode the embargo-setter’s credibility in international agreements.

An investigation path we envisage for future research is to incorporate those impacts
in the analysis; in particular, possible detection countermeasures by the embargo-setting
country, formulating a strategic game between it, the embargoed country, and the poten-
tial bridges.
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