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Abstract: The European Installation Bus(EIB) protocol, also known as KNX/EIB, is widely used
in building and home automation. An extension of the KNX/EIB protocol, EIBsec, is primarily
designed to meet the requirements for data transmission security in distributed building automation
systems. However, this protocol has some security issues in the request, key distribution, and identity
authentication processes. This paper employs a formal analysis method that combines Colored Petri
Net (CPN) theory with the Dolev-Yao attack model to evaluate and enhance the EIBsec protocol. It
utilizes the CPN Tools to conduct CPN modeling analysis on the protocol and introduces a security
assessment model to carry out intrusion detection and security assessment. Through this analysis,
vulnerabilities in the protocol, such as tampering and replay attacks, are identified. To address these
security concerns, we introduce hash verification and timestamp judgment methods into the original
protocol to enhance its security. Subsequently, based on the improved protocol, we conduct CPN
modeling and verify the security of the new scheme. Finally, through a comparison and analysis of
the performance and security between the original protocol and the improved scheme, it is found
that the improved scheme has higher security.

Keywords: EIBsec protocol; formal analysis; security evaluation; Dolev–Yao attack model; CPN

1. Introduction

In recent years, the security issues of Building Automation Systems [1] have become a
hot research topic, among which the EIBsec protocol is used as the KNX data protection [2]
protocol in building automation systems. KNX/EIB [3] bus technology can realize the
control of heating, ventilation, air conditioning, lighting, and shading systems, so it is
widely used in BAS. However, while it offers convenience, there are also many security
risks between devices connected by the bus. In particular, when communicating between
devices, due to the incomplete security mechanism of the protocol, user identity information
is leaked and communication data are intercepted. Additionally, fire alarm systems, system
intrusion and access control systems must resist not only random interference, but also
deliberate attacks by third parties who want to disrupt their actions, like supply chain
attacks, third-party plugin vulnerability attacks, Phishing, etc., so they have higher security
requirements. For example, the BACnet/IP [4,5] protocol, which is also widely used in BAS,
has authentication defects. The sender and receiver obtain the session key through the key
server in this protocol, but there is no storage and management of historical keys. Therefore,
there are forward and backward security flaws. In addition, in the LonTalk [6] protocol,
the sender and receiver authenticate their identities through pre-shared keys, but the two
parties do not conduct key negotiation in advance, and there is a risk of authentication
defects and key leakage.

As an extension of the KNX/EIB protocol, EIBsec employs the advanced AES [7,8]
symmetric encryption algorithm for secure data transmission across the bus. This enables
various devices to communicate and collaborate effectively. Consequently, the EIBsec
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protocol finds extensive use in smart home devices and industrial control equipment for
building automation.

For instance, iconic landmarks like the Oriental Pearl Tower in Shanghai rely on
the EIBsec protocol to orchestrate the nightly display of synchronized colorful lights.
Similarly, numerous shopping malls and renowned hotels depend on the EIBsec protocol
to ensure the normal operation and data security [9,10] of ventilation systems, lighting
systems, elevators, and other equipment. These Internet of Things (IoT) devices gather
environmental information through sensors [11], converting them into digital data to
uniformly transmit the information to the Internet of Things gateway [12,13], and transmit
it to the EIBsec system for processing. The processed data are then sent back to the
sensors [14], allowing them to adjust IoT devices based on the feedback. Simultaneously,
the results are transmitted to managers through the Internet, facilitating the redesign or
improvement of IoT devices using the collected data. Moreover, some businesses need
to collect substantial user data through industrial control systems, including sensitive
personal information such as images, videos, and audio recordings. There are some
security issues involved in the above-mentioned transmission process. To address these
issues, the EIBsec protocol should initially desensitize sensitive information when collecting
and responding to data in the end device. There are three entities in the above process,
terminal sensor, IoT gateway and EIBsec system. The data generated during this process
are managed uniformly by data security engineers. Residential users should only have
access rights; data administrators should have access, add and modify permissions; and
system administrators should have access, modify, add and delete permissions.

Furthermore, this process should rigorously verify device information integrated
into the EIBsec system. Additionally, identity verification of device administrators in the
cloud environment is essential. In actual applications, the security requirements are far
greater than these. But in the actual environment, does the EIBsec protocol meet this
series of security requirements? Administrators have repeatedly claimed that the EIBsec
system is absolutely secure. However, in recent years, network attackers use diverse attack
methods, such as Apache Log4j2 (CVE-2021-4101) remote code execution vulnerability
exploitation, Shiro deserialization vulnerability exploitation (CVE-2019-12422), social en-
gineering phishing, etc., which have caused a series of security problems, such as system
host compromise, system permissions and data loss, and sensitive data exposure to occur
frequently. These are enough to cause us to pay attention to the security of the underlying
protocol of the system.

Therefore, this article focuses on the EIBsec protocol as its research subject. Using the
CPN Tools [15] modeling tool combined with the Dolev–Yao attacker model, we analyze the
message interaction process of the protocol, evaluate the security attributes of the protocol,
identify potential security vulnerabilities [16], and ultimately put forth an improved plan.
This plan aims to mitigate security risks and enhance the system’s security attributes.
The contributions of this article are as follows:

1. Apply CPN [17] theory and formal analysis methods to scrutinize the security vul-
nerabilities within the EIBsec protocol. Utilize the CPN Tools modeling tool for
modeling and analyzing the original protocol, ensuring the model’s consistency with
the original protocol;

2. Based on the Dolev–Yao [18,19] attacker model, a security assessment model was inte-
grated into the CPN model of the original protocol to perform intrusion detection and
security assessment. This verification revealed the presence of replay and tampering
attack vulnerabilities in the original protocol;

3. We introduce an improvement scheme to address the existing security vulnerabilities
by incorporating hash verification and timestamp judgment into the original protocol,
thereby enhancing its security. Subsequently, we utilize the CPN Tools [20] tool to
create a CPN model based on the improved scheme. We then apply the same security
assessment model to validate the improved scheme;
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4. Finally, we analyze and compare the performance and security of the original scheme
and the improved scheme;

The structure of this article is as follows: In Section 2, we discuss related work and
introduce the basic knowledge of the protocol. Section 3 uses the CPN Tools tool to model
and analyze the EIBsec protocol and verifies the consistency between the CPN model
and the original protocol based on the state space report. In Section 4, we introduce
the security assessment model to conduct security assessment and discover the security
vulnerabilities of the protocol. In Section 5, we provide an improvement method for the
security vulnerabilities in the protocol and conduct CPN modeling based on the improved
scheme. The same security assessment model is introduced into the improved CPN model
to verify the security of the new scheme. In Section 6, the performance and security of the
new scheme are mainly analyzed and compared. Section 7 summarizes the full paper and
looks forward to future work.

We found that the new scheme can resist tampering attacks and replay attacks through
modeling evaluation. By comparing the original scheme and the new scheme in Section 7,
we found that the new scheme has higher security.

2. Related Work

The security of data transmission in building automation systems is extremely impor-
tant for individual users or for a business unit. Scholars in the field of information security
have proposed various solutions for the secure transmission of data in building automation
systems in communication protocols. The authors of [21] proposed a dual-factor authenti-
cation scheme, claiming that it can provide forward encryption and resist sensor capture
attacks, user tracking attacks, and DOS attacks. This scheme is logically safe, but the author
did not use formal analysis tools for modeling and analysis. Moreover, this scheme requires
a large amount of capital costs when invested in actual production environments, and the
implementation risk factors are high. The authors of [22] propose a secure EIB protocol
called SEIB, which uses 32-bit CRC verification to monitor unauthorized access and a
128-bit counter to prevent replay attacks. However, SEIB still has many security risks, such
as unprotected communication tunnels and the use of weak encryption algorithms, which
can easily crack the content. literature [23,24] use the KNX/EIB-based network simulation
framework OMNeT++ [25] to build a model for the EIBsec protocol to test the performance
of the protocol, but do not analyze the security of the protocol, nor establish a visual
security assessment model. The authors of [26] pointed out the application characteristics
of the EIBsec protocol in KNX/TP networks, but did not analyze the security flaws of
the protocol.

In summary, there is currently no reliable solution to verify and improve the EIBsec
protocol, and there is also a lack of a formal protocol modeling analysis method. Addition-
ally, an attacker model is needed to perform security testing on the original protocol and
the improved protocol. This article uses formal analysis methods to analyze the interac-
tion process of the original protocol and uses the Dolev–Yao attacker model to conduct
a security assessment of the original protocol. It is found that the protocol has a risk of
man-in-the-middle attacks leading to the theft of session keys and user data. In view of
the security flaws in the protocol, this paper proposes a new improvement scheme and
conducts modeling analysis and security assessment of the improved new protocol. This
article conducts formal modeling, analysis, and evaluation of the protocol based on CPN
theory. Security testing is conducted by extracting key parts of the protocol to discover
security flaws. After a security assessment, it was found that the protocol has replay attacks
and tampering attack vulnerabilities initiated by man-in-the-middle attackers. This article
will propose an improved scheme to solve the security vulnerabilities [2,23] of this protocol.
In order to verify the effectiveness of the proposed scheme, a security evaluation of the
new method was conducted. Finally, the security of the original scheme and the improved
scheme was compared.
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Compared with existing security research, the scheme proposed in this article has
the advantage of formal verification. A new formal model-checking method was used to
analyze the security of the protocol while ensuring consistency with the original model.
In order to study the security vulnerabilities of this protocol, an attacker model is introduced.
We also propose targeted improvement methods for the discovered security vulnerabilities,
and conduct subsequent security verification of the new solution.

2.1. Tools Comparison

This article mainly focuses on the security mechanisms in the protocol, verifies the
security of the EIBsec protocol, and identifies security vulnerabilities in the protocol. There-
fore, it is assumed that the communication is reliable. Then, formal modeling tools are used
to model and analyze the protocol. The current mainstream formal modeling tools include
Scyther [27], Tamarin [28], ProVerif [29], and CPN Tools [20].

The Scyther tool can only verify the confidentiality of the protocol, and it is not
very effective at verifying other properties such as availability and integrity. In addition,
the ability of Scyther in protocol verification is relatively weak, and for complex protocols
or protocols that require more sophisticated analysis techniques, it cannot fully cover
all security vulnerabilities. Tamarin only supports a limited range of protocol models;
for example, it does not support non-deterministic state transitions, complex data structures,
and computations, among others. Therefore, some complex protocols may not receive full
verification in Tamarin, and the models generated by Tamarin may become very large,
requiring a significant amount of memory and computational resources. ProVerif is a highly
abstract tool that is typically used to verify small-scale protocols. As the protocol becomes
more complex, it may not be able to handle all cases correctly. The verification time of
ProVerif is influenced by the size and complexity of the protocol, so verifying large-scale
protocols may take a long time.

CPN Tools is a tool for modeling, simulating, and analyzing Colored Petri Nets. It
supports various models, including static and dynamic models, and can be easily modified
and extended. It has an intuitive user interface that helps users create, edit, and analyze
CPN models. Users can directly edit Petri nets through the graphical interface, or use
advanced features to define Petri nets. It supports multiple analysis techniques, includ-
ing simulation analysis, performance analysis, model checking, and state space analysis,
making it convenient for users to perform comprehensive analyses of models. It enables
hierarchical modeling and analysis of complex protocols for the verification of security
mechanisms. Users can define the necessary data types through the ML language to detect
the protocol’s confidentiality, integrity, and availability and identify potential vulnerabili-
ties. However, CPN Tools uses a specialized Petri net drawing language (ML), so users need
to have a certain Petri net foundation to use the tool for modeling and analysis. Therefore,
the learning curve is steep and may require some time and effort to learn and become
proficient with the tool.

Compared to the three automated protocol security verification tools mentioned
above, CPN Tools has several advantages in the manual analysis of protocols. Additionally,
the high degree of freedom in the CPN modeling process is also one of its strengths.
The state space is entirely controlled by the modeler, and different modeling and analysis
methods can be implemented for different protocols. This is why CPN Tools are usually
more effective than automated protocol verification tools in protocol verification. Therefore,
this paper uses the CPN Tools to simulate the protocol.

2.2. Simple Use of CPN Tools and Petri Net Theory

CPN tools is a visualization tool that integrates simulation, editing, and creation. It can
dynamically and intuitively present the interaction process between various links between
the message requester and the service responder. The tools included in CPN include
auxiliary tools, creation tools, hierarchical tools, network tools, network tools, simulation
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tools, state vector space tools, style tools, etc. The CPN Tools accessory tool used in this
article is shown in Figure 1 :

• Create tool: Used to create a CPN model, in which circles represent places, used to
store data types, split and merge protocol message flows, and rectangles represent
transitions, indicating the occurrence and enabling of things.

• NET tool: Used to create a new page
• Simulation tool: Mainly used to detect possible errors in modeling details.
• Hierarchy tool: Used to break down more detailed protocol underlying models.
• State space tool: used to generate state space reports and analyze modeling results.
• Style tool: Used to distinguish different types of attacks.

Figure 1. CPN Tools.

Let us introduce CPN with a simple visual example: In Figure 2, the red number
1 indicates the toolbox, the red number 2 indicates the function of the specific toolbar,
the red number 3 indicates the model running steps and time, and the red number 4 is the
area where variables and functions are defined in the CPN ML language.

Figure 2. Simple model initial state of the protocol communication process.

In Figure 3, in the red number 1 area on the left, you can see that the client has sent
MES type messages to the server. The red number 2 area is the generated state space
report. Full represents the data that has run the entire process. Nodes and Arce in the State
space and Scc graph are the same, indicating that there are no loops and the protocol runs
completely. Only one of the Home markings and Dead Markings describes the correct
modeling of the underlying protocol. The name of Home Markings is [3], indicating the
status of the termination of the protocol operation. The correct modeling of the original
protocol is very important for subsequent research.
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Figure 3. Simple model final state of the protocol communication process.

Petri net theory [30] is used in the CPN modeling process. It is a network that describes
the relationship between events and conditions proposed by German scholar Carl Adam
Petri in his doctoral thesis “Automata Communication” in 1962. This system model later
became known as the Petri net. The term Petri net now refers to both this model and the
theory developed based on this model. Petri nets are sometimes called network theory
or Colored Petri Net theory. Petri nets are a formal method suitable for the specification
and analysis of concurrent, asynchronous, and distributed software systems. Petri nets
are divided into two types: location/migration Petri nets and advanced Petri nets. This
article uses location/migration Petri nets. These nets are used in communication protocol
verification, computer communication network performance evaluation and multimedia
applications, software engineering, system reliability analysis, FMS modeling, analysis and
control, System reliability analysis.

2.3. Preliminary Knowledge

As shown in Figure 4, The topology diagram of the EIBsec protocol is presented in a
tree structure, mainly divided into three layers: backbone layer, mainline layer, and line
layer. Each layer has an Advanced Coupler Unit (ACU) [31] at least, which is mainly
used for distributing session keys or group keys. The backbone layer is connected to
the internet through a gateway, the mainline layer is connected to the line layer through
ACU, and the line layer implements specific data transmission services. ACU is similar to
standard KNX/EIB lines [32] or backbone couplers [33], which allows ACU to be compatible
with KNX/EIB network traffic and handle data requests from different network segments.
Moreover, this tree structure is beneficial for avoiding the occurrence of single-point failures
and can also help minimize the consequences of DoS attacks. For example, when an ACU
detects a DoS attack on its network segment, it will be able to isolate the affected network
segment and prevent attackers from accessing the rest of the network.

ACU mainly consists of two parts:

1. Coupling unit: Implement standard coupler function.
2. Key service unit: Implement the necessary functions of a key server (distributing and

generating keys, revoking keys, and limiting key lifecycle).



Information 2023, 14, 653 7 of 26

Figure 4. EIBsec topology.

3. Modeling for EIBsec Protocol

The EIBsec protocol is an extension of the KNX/EIB protocol, which provides protec-
tion for management communications and process data communications and is mainly
used to protect data from malicious attacks during transmission. This protocol contains
three communication entities during the communication process, namely: Entity A, Entity
B, and ACU. In the EIBsec protocol, identity authentication is divided into two stages:
the first stage is for the distribution of session keys, and the second stage is for identity
authentication between entities. The protocol uses the AES-128 symmetric encryption
algorithm to encrypt request and response messages in the key distribution phase and
identity authentication phase. This article mainly studies the security flaws existing in the
session establishment process, models and analyzes the protocol, and evaluates the security
mechanism of the protocol. The flow chart and description of the symbols required in the
modeling process are shown in Table 1.

Table 1. Symbols and Descriptions.

Symbol Description

Entity A/B Participant A/B
ACU Key distribution server

N1/N3 generated by entity A
N2/N4 generated by entity B

N1B Verify response from entity B
N2A Verify response from entity A
N3’ (N3−1)
N4’ (N4−1)

NA/NB used to calculate the KA and KB
KA and KB dynamic node keys

AddrA/AddrB The address of Entity A/B
KSB_AB Session key or group key
Verify Validating and comparison

Encr/Decr Encr/Decr (k, message)
timestamp Timestamp

‖ String concatenation

The message flow diagram of the protocol is shown in Figure 5:
Phase 1: Key Distribution

Step 1: Entity A sends a session key request message to the corresponding key dis-
tribution server ACU, which includes random numbers N1, NA, and AddrA of Entity A,
as well as the request address AddrB of Entity A.

Step 2: After receiving the session key request message, the corresponding ACU
sends an initialization connection message to entity B based on the request content, which
includes the address AddrA of entity A and the random number NB.
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Step 3: Entity B responds to ACU with an encrypted message based on the connection
request content, which contains a random number N2 and is encrypted using Entity B’s
key KB.

Step 4: After receiving the response message from entity B, ACU decrypts the response
message and then responds to entity A and entity B with a message containing the session
key. The message responding to entity A contains the session key KSB_AB and Random
number N1B of entity B, Using KA to encrypt messages containing KSB_AB and N1B.
The message responding to entity B contains the session key KSB_AB and Random number
N2A of entity A, Using KA to encrypt messages containing KSB_AB and N2A. After this step
is completed, it indicates that ACU has completed key distribution, followed by entity A
and entity B for identity authentication.
Phase 2: Identity Authentication

Step 5: Entity A and entity B use KA and KB to decrypt the key response message and
obtain the session key KSB_AB. At the same time, entity A obtains the random number N1B
and entity B obtains the random number N2A. Entity A initiates an identity authentication
connection request to entity B. The request contains a new random number N3, using the
session key KSB_AB to encrypt the request message, and then sends the encrypted message
A_Auth_Connect_Request to entity B.

Step 6: After receiving the request message A_Auth_Connect_Request, entity B uses
the session key to decrypt and obtain the random number N3. At the same time, the random
number N3’ (N3−1) is calculated according to the agreed calculation rules. Then, we use
KSB_AB to encrypt N3’ and the new random number N4 and send the encrypted message
A_Auth_Connect_Reply to entity A.

Step 7: After receiving the A_Auth_Connect_Reply message from entity B, entity
A decrypts and obtains the random number N4. Entity A uses the agreed calculation
rules to recover N3 (N3’ +1) and Compares N3 and N3’(N3’ = N3 of original EntityA),
if expectations are met, subsequent certification will be carried out. At the same time,
Calculating N4’ (N4−1) and encrypting messages containing the random number N4’ using
the session key KSB_AB to form an A_Auth_Connect_Response message, it responds to entity
B; entity B decrypts the message, obtains N4’, then restores N4 (N4’ + 1), and compares
recovered N4 and N4’ (N4’ = N4 of original Etity B). If the expectations are met, the session
between entity A and entity B is successfully established.

Figure 5. Session establishment in EIBsec.
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3.1. Related Color Set Definitions

During the process of key distribution and identity authentication, protocols generate
various types of messages, so before modeling, it is necessary to use CPN tools color set
expressions to define the required data types. Table 2 is the definition of key color sets
required in the modeling process. The table displays the expression of composite color sets,
which are composed of a single color set based on the color set keywords in CPN tools.
Defining the color set in advance is beneficial for establishing subsequent CPN models.

Table 2. The model’s color sets the definition.

Symbol Meaning

NA1 colset NA1 = product AddrA* Nonce;
KN colset KN = product Nonce*Nonce;

MSGA colset MSGA = record m:msgA*k:Nonce;
MSGB colset MSGB = record m:msgB*k:Nonce;

AUTH1 colset AUTH1 = product randomNumber*KAB;
AUTH2 colset AUTH2 = record n:NN*k:KAB;
AUTH3 colset AUTH3 = product randomNumber*KAB;

3.2. Formal Modeling Process

In the previous section, we defined the relevant color set data types to lay the founda-
tion for the modeling process. In the next section, we utilize the CPN Tools tool to model
and analyze the protocol, aiming to identify security vulnerabilities within the protocol.
Firstly, we assume that the protocol is secure and then proceed to create a model based on
the message flow of the protocol. To streamline the complexity of the protocol, we employ
a hierarchical modeling approach, dividing the CPN model of the protocol into top and
bottom layers.

There are three communication entities in the CPN model: entity A, ACU, and entity
B. This model captures static characteristics such as protocol status through the distribution
of location tokens. Dynamic properties, including state changes, are described using rules
and token flows that facilitate transitions. In the context of CPN modeling, taking the
first message nnaa as an example, the EIBsec protocol can be formally defined using the
following nine-tuple [34]:

EIBsec = (Σ, P, T, A, N, C, G, E, I) (1)

ColorsetΣ = closetNonce = withNA|NB|NC|N1|N2|N3|N4|N3′|N4′;

colset AddrA = string; colset AddrB = string;

• Place set P = AddrA, NA, AddrB, N1, config, S1;
• Transition set T = ASR, mes;
• Directed arc set A = AddrA→ASR; NA→ASR; AddrB→ASR;

N1→ASR; ASR→config; config→mes; mes→S1;

• Node function N = AddrA→ASR: (AddrA, ASR); NA→ASR:

(NA, ASR); AddrB→ASR: (AddrB, ASR); N1→ASR: (N1, ASR);
ASR→config: (ASR, config); config→mes: (config, mes); mes→S1: (mes, S1);

• Color function C = AddrA:STRING; NA:WHIT; AddrA: STRING;

N1:WHIT; config; NNAA; S1:NNAA

• Alert function G = NULL;
• Arc expression function E = addra→ASR:addra; NA→ASR:NA;

addrb→ASR:addrb; N1→ASR:N1; ASR→config:addra, NA, addrb, N1;
config→mes:config; mes→S1:mes;

• Initialization function I = addra:addra; NA:NA; addrb:addrb;
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NA:NA; config, S1:NULL;

3.3. CPN Formal Modeling for EIBsec Protocol

Figure 6 is a top-level CPN model built based on the message flow of the EIBsec
protocol. This model generally describes the process of key distribution and identity
authentication in the protocol. The top-level model consists of Entity A, which which
initiates the request; ACU, which is responsible for key distribution, and Entity B. The entire
interaction process of the protocol is visually simulated; the double matrix represents the
existence of underlying substitution transitions, which respectively represent Entity A,
ACU, and Entity B. A single matrix in an alternative transition represents a transition that
is used to encrypt, decrypt, and calculate messages during a session, The ellipse represents
a place which is used to store messages during the session construction process. The line
segment with an arrow represents the message delivery direction. Its main function is to
pass the message to the corresponding entity for processing. Overall, the top-level model
contains a total of three transitions and eight message locations.

S1

NNAA

S2

NA1

S3

KN

S4

MSGB

S5

MSGA

S6

AUTH1

S7

AUTH2

S8

AUTH3

Entity A

Entity AEntity A

ACU

ACUACU
Entity B

Entity BEntity B

Figure 6. Top-level CPN mode of EIBsec protocol.

Figure 7 shows the internal CPN model of entity A’s substitution transition. Firstly,
Entity A sends a session key request nnaa message to the key distribution server ACU
through the message store place S1. The message nnaa is composed of random numbers
NA, N1, addra, and addrb. Place S5 receives the MSGA message sent by the key server
ACU. The MSGA message is encrypted by ka, decrypted at the transition DmsgA to obtain
the session key kab, and stored in the kab place. Transition Auth combines the session key
kab and the random number N3 into an AUTH1 identity authentication request message,
sends it to the S6 message storage place, and sends it to entity B through the S6 place.

The S7 place receives the identity authentication AUTH2 message from entity B.
AUTH2 is composed of the composite random number nn and the session key kab. The
composite random number nn is split through the transition Denn to obtain N3’ calculated
by entity B, and temporarily store N3’ in the N3’ place. Next, verification and calculation
of N3’ is carried out through transition verification to obtain the restored N3. Comparing
N3’ and N3 in transition comparison. If the expectations are met, the identity of entity B is
verified and the random number N4 is output. The random number comes from entity B.
Subsequently, the identity authentication of entity A is performed, and the random number
n4 is subtracted by one through the transition convertN4 to obtain N4’.Transition encry
uses the session key kab to encrypt the message containing the random number N4’ to
obtain the identity authentication message AUTH3, and sends AUTH3 to entity B through
place S8 to verify the identity of entity A.
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Figure 7. Internal CPN model of substitution transition Entity A.

Figure 8 shows the internal CPN model of the key distribution server ACU substitution
transition. After receiving the request message from entity A through the S1 place, AUC
splits the message NNAA according to the splitting principle and learns the entity object
that entity A wants to establish a session connection. Subsequently, the ACU combines the
request message (addra, NB) through the transition AICR. This message is composed of
addra and the random number NB, and NB is generated by the ACU.

Place S3 receives the response message KN from entity B, which is a combination of
kb and N2. At this time, ACU obtains the keys ka and kb generated by entity A and entity
B, respectively. Finally, MSGA and MSGB are sent to Entity A and Entity B, respectively,
through output places S4 and S5. Both messages contain the session key kab and carry
random numbers NB and NA, respectively. At the same time, the messages are encrypted
and transmitted using the keys ka and kb generated by each.

Figure 9 describes the internal CPN model of the substitution transition entity B.
After receiving the request message sent by the ACU through S2, entity B learns the entity
object that wants to establish a session connection. Entity B receives the MSGB message
through S4, the transition DMSGB to use the key kb to decrypt, and it obtains the session
key kab and the random number N2 generated by itself. If N2 is met as expected, it means
that the session key is obtained by the expected key server distribution.

After entity B obtains the session key, it performs mutual identity authentication
between entities. S6 receives the message encrypted by the session key and contains the
random number n3. The transition auth uses the session key kab to decrypt the message.
After the transition n3’ obtains n3, it calculates n3’ according to the action(n3-1) function.
Transition N3N4 combines n3’ and n4, and the combined message nn is encrypted using
the session key kab through transition AUTH2 to obtain the AUTH2 message. At the same
time, it is sent to entity A by S7. S8 receives the AUTH3 message, DeAUTH3 uses the
session key to decrypt it, obtaining n4’ and storing it in the n4’ place, and transition verify
verifies and calculates n4. The transition compare compares n4 and n4’. If they are equal, it
proves that the identity of entity A is legal. Otherwise, the session establishment process
ends, and the identity of entity A is not trustworthy.
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3.4. Consistency Verification of the Original Protocol CPN Model

To verify the security properties of the EIBsec protocol, firstly, we must correctly
model the protocol to ensure that the constructed CPN model is consistent with the original
protocol. After the modeling using CPN tools is completed, we use the state space report
generation tool to generate an experimental report and analyze whether the CPN model is
consistent with the EIBsec protocol message from the experimental data. We expect that the
CPN model has only one dead node. If this condition is met, it means that the constructed
CPN model is correct.

According to the experimental data in Table 3, we found that the number of state
space nodes and state space arcs is consistent with the number of Scc graph nodes and
Scc graph arcs, respectively. It can be judged that the original EIBsec protocol CPN model
does not have an infinite loop, the state space does not explode, and the model can run
normally. The number of dead marks is 1 and the name number is 480, which means that
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the last node after the model is completed is 480, which is what we expected, indicating the
correctness of the original protocol CPN model. The dead transition is zero, which means
that after the CPN model is completed, all transitions have been executed and there are no
transitions that have not been executed.

Table 3. State space report of protocol original model.

Type Number Name

State Space Nodes 480 /
State Space Arcs 1096 /
Scc graph Nodes 480 /
Scc graph Arcs 1096 /
Dead Marking 1 [480]

Dead transition instances 0 0

4. Protocol Security Assessment Model
4.1. Dolev–Yao Attacker Model

The Dolev–Yao [35] model is designed based on the layered idea of the protocol from
Dolev and Yao. It first considers whether there are vulnerabilities in the behavioral logic of
the protocol itself, and then considers whether there are problems with the implementation
method. This is exactly in line with the layered modeling method of CPN tools. This
model assumes that the cryptographic system is perfect, that the attacker’s knowledge and
capabilities cannot be underestimated, and that the attacker can control the entire network.
This assumption is considered from the perspective of the victim or the defender; that is to
say, it prepares for the worst, assuming that the attacker can break into the protocol system.
It makes us think about how to improve the protocol, thereby improving the security of
the protocol system. As the defender or the victim, you should have this principle: never
underestimate the knowledge and ability of the attacker.

Dolev and Yao also built an attacker model, describing in detail the behavior of
the attacker:

1. The attacker can eavesdrop on network messages without being noticed by the
main protocol;

2. The attacker can intercept and store messages in the network without being noticed
by the host protocol;

3. An attacker can forge and send messages;
4. The attacker can participate in the operation of the protocol as a legitimate protocol

participant.

In the Dolev–Yao threat model, attackers are almost omnipotent. It can be imagined
that when each of us communicates on the network, we are communicating with attackers,
and the messages we receive from the network are also sent to us by attackers. Therefore,
our communication security and data security rely on cryptographic security protection.

4.2. EIBsec Protocol Security Assessment Model

A security assessment model of the EIBsec protocol is established based on the Dolev–
Yao attacker model. This model includes three types of attacks initiated by attackers:
tampering, replay, and spoofing. The red transitions and places in Figure 10 represent the
tampering attack introduced in the underlying CPN model of the original protocol ACU.
According to the message decomposition and combination rules in the attacker model,
the attacker intercepts the message to be delivered to the ACU through A1 and stores it in
the A1 place, and a tampering attack is launched through B1. Since in the original protocol,
the request message initiated by entity A to establish a session is not encrypted, the message
is passed to transition B2 through A3. B2 stores the split atomic messages in A4, A5, and A6,
respectively. In transition B5, the random number NA is tampered with until it becomes
NB, and the tampered message is reassembled to become the attack payload and stored in
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MERGE. The attack payload is replayed to the output place S2 through the transmission
paths ATTACK, nc1, and ATTAcK.

The purple part in Figure 10 indicates that a replay attack was introduced in the
underlying CPN model of the original protocol ACU, and a replay attack was launched in
the transition MsGA and MsGB during the session key distribution process respectively.
The blue part in Figure 10 indicates that the spoofing attack was introduced in the under-
lying CPN model of the original protocol ACU, in which DeASR, AICR, DeAIRes, MsgA,
and MsgB launched the spoofing attack.
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Figure 10. Security assessment model.

4.3. EIBsec Protocol Security Assessment

In the previous section, we found security vulnerabilities in the original protocol based
on the security assessment model. Table 4 is the state space report after introducing the
attacker. We found that the number of nodes and arcs in the state space is consistent with
the number of nodes and arcs in the Scc graph, indicating that each state node is fully
reachable, the expression on the arc has been successfully executed, and the number of
dead transitions is zero, indicating that the protocol security assessment model has been
run in full. Among them, TAR-ATK represents a tampering attack, REY-ACK represents a
replay attack, and SPF-ACK represents a spoofing attack.

According to the state space report in Table 4, we can find that three dead marks
were generated after the introduction of tampering attacks, indicating that the original
protocol has tampering attack vulnerabilities. When a session key request is initiated
for the first time in the protocol, the request message is transmitted in clear text, which
allows an attacker to tamper with the data in the request message at will after intercepting
the message. In the security assessment model, we launch an attack by tampering with
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random numbers, which causes the subsequent operation of the protocol to not return the
expected results according to entity A’s original request. The tampering attack destroys the
confidentiality and integrity of the message. The replay attack in the security assessment
model produced four dead marks, indicating that the original protocol had a replay attack,
causing four nodes to fail. The attacker intercepts the message sent by the key distributor
ACU at MsGA and MsGB and replays it to Entity A and Entity B many times. Replay
attacks destroy the freshness of the message, causing the message to arrive late. The dead
mark number of spoofing attacks in the model is one, indicating that there is no spoofing
attack vulnerability in the original protocol.

As shown in Figure 11, the NodeDescriptor() function is used to query the status of
6520 transition and place nodes in the protocol running under a tampering attack, and the
dead mark nodes generated due to the tampering attack can be queried. As can be seen
from Figure 10, the tampering attack has been completed. The random number has been
tampered with from NA to NB. The attacker successfully tampered with the protocol
during the interaction process and passed the tampered message to entity B.

Table 4. Comparison of original protocol attacker model status space report.

Type TAR-ATK REY-ATK SPF-ATK

State Space Nodes 6250 2805 480
State Space Arcs 21294 7997 1096
Scc graph nodes 6250 2805 480
Scc graph Arcs 21294 7997 1096
Dead Markings 3 4 1
Dead transition 0 0 0

Figure 11. Querying the protocol termination status under tamper attack.

5. New Scheme of EIBsec Protocol

After passing the EIBsec protocol modeling evaluation in Section 4, it is found that
there is no spoofing attack in the protocol itself. However, since the message is transmitted
in plain text when sending the request and there is no time limit on the request and response
of the message, there are tampering attacks and replay attack vulnerabilities in the original
protocol. The improvement plan given in this article is: when entity A sends a request, it
uses the parameters in the request message as the input of the hash function to calculate a
hash value recorded as hash1, and sends the hash value together with the plaintext request
message to the key distribution Server ACU. When ACU receives the request message, it
uses the same hash function, uses the parameters in the request message to enter the hash
function, and then calculates a new hash value recorded as hash2. Hash2 is compared with
hash1 in the request message. In addition, considering the operation delay of transition in
the model and the maximum time for normal message transmission, we added a timestamp
based on the original protocol, which is in line with the idea of our design plan. In the
CPN model, the timestamp is carried out at each stage of the message interaction process
between entity A, ACU, and entity B, and a time upper limit threshold is set.
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If the attacker tampers with the message, the generated hash value is different from
hash1 in the original message, then the hash comparison fails in the ACU, the key request
message is discarded, and the session establishment is interrupted. If the attacker simply
intercepts the message and then replays it, the process will generate more time overhead,
and the timestamp will exceed the upper time threshold. This chapter will conduct CPN
modeling of the new scheme and use the same security assessment model to verify the
effectiveness of the new scheme.

5.1. Protocol Improvement Scheme

Figure 12 is the message flow chart of the improvement scheme. The entire message
flow process in the new scheme is also divided into two stages: distribution of session keys
and identity authentication between communicating entities.

Figure 12. Model of the new scheme message flow.

The message interaction process of the improved new scheme protocol is as follows:
Phase One: Key Distribution

Step 1: Entity A initiates a session key request message to the corresponding key
distribution server ACU. The message contains the random number N1, NA, AddrA, and
the address AddrB of the entity object that entity A wants to establish a session connection.
At the same time, the data in the request message are used as a parameter to calculate a
hash value recorded as hash1, the hash1 value is carried in the request message, and a
timestamp is added when sending the message.

Step 2: After the corresponding ACU receives the session key request message, it
obtains hash1 from the request message and uses the same method to calculate a new hash
value recorded as hash2. Hash1 is compared with hash2. If the hash values are the same,
the operation is followed up; otherwise, entity A’s request is rejected. At the same time,
ACU sets the timestamp threshold to determine whether the time spent by entity A in
sending the request message has timed out.

Step 3: After entity B receives the instruction from ACU, it obtains the request pa-
rameters, uses the parameters in the request message to calculate a hash value, and then
compares it with the hash value in the instruction. If the hash values are the same, it sends
an encrypted message to ACU. Otherwise, the instruction from the ACU is discarded.
At the same time, the timestamp threshold is set, and it is verified whether the timestamp
times out and include the timestamp when sending messages to the ACU.



Information 2023, 14, 653 17 of 26

Step 4: After receiving the message sent by entity B, ACU decrypts the message,
and then responds to entity A and entity B each with a message containing the session key.
The message responding to entity A contains the session key KSB_AB, entity B’s random
number N1B, and timestamp. KA is used to encrypt the message containing KSB_AB and
N1B. The message responding to entity B contains the session key KSB_AB, entity A’s random
number N2A, and timestamp. KB is used to encrypt the message containing KSB_AB and
N2A. After this step is completed, it means that ACU completes key distribution, and then
entity A and entity B perform identity authentication.
Phase 2: Identity Authentication

Step 5: Entity A and Entity B use KA and KB, respectively, to decrypt the key response
message from the ACU and obtain the session key KSB_AB. At the same time, entity A
obtains the random number N1B, and entity B obtains the random number N2A. Entity
A and Entity B verify the time threshold. Entity A initiates an identity authentication
connection request to entity B. The request contains a new random number N3, uses the
session key KSB_AB to encrypt the request message, timestamps it, and then sends it to
entity B.

Step 6: Entity B receives the request message, uses the session key to decrypt it, and ob-
tains the random number N3 and timestamp information. At the same time, the random
number N3’ is calculated through the action() function, and the timestamp is verified. Then,
N3’ is combined with the new random number N4 to form an A_Auth_Connect_Reply mes-
sage, which is encrypted using KSB_AB, timestamp information is added, and the encrypted
message with the timestamp is sent to entity A.

Step 7: After receiving the response message from entity B, entity A decrypts and
obtains random numbers N3’ and N4. Entity A uses the action() function to restore N3
(N3’ + 1) and compares it with the N3 carried when requesting from entity A. If the
two are equal, subsequent authentication will be performed. At the same time, N4’ is
calculated, and the message containing N4’ is encrypted using the session key KSB_AB,
and the timestamp information is carried together to form an A_Auth_Connect_Response
message, which is responded to Entity B. After entity B receives the message, it decrypts
the message and obtains N4’, then restores N4 according to the agreed calculation rules,
compares N4 and N4’ (N4 = N4’) and verifies whether the timestamp exceeds the set
time threshold. If it meets As expected, the session between Entity A and Entity B is
successfully established.

5.2. New Scheme Model of EIBsec Protocol

The improved EIBsec protocol also consists of three parts: entity A, ACU, and entity B.
The new scheme adds hash verification and timestamp judgment into the original protocol
to strengthen the security mechanism of the protocol. In this section, we use the CPN
Tools tool to model and analyze the new scheme. In Section 5.3, we use the same security
assessment model to verify the security of our new and improved scheme. The new
scheme CPN model is mainly divided into the top-level model and bottom-level model.
The top-level model is consistent with the top-level model of the original protocol, so this
section only shows the underlying CPN model. The underlying model describes the key
distribution and identity authentication process of the protocol message flow in the new
scheme in more detail.

The first CPN mathematical model expression of the modified original protocol:

EIBsec = (Σ, P, T, A, N, C, G, E, I) (2)

ColorsetΣ = closetNonce = withNA|NB|NC|N1|N2|N3|N4|N3′|N4′;

colset AddrA = string; colset AddrB = string; closet T = int; colset HASH = string;
val prdelay = 3; val trdelay = 6;

• Place set P = AddrA, NA, AddrB, N1, config, S1, Initial time, hash;
• Transition set T = ASR, mes, Hnnaat;
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• Directed arc set A = AddrA→ASR; NA→ASR; AddrB→ASR;N1→ASR;

Initial time→ASR; HASH→ASR; ASR→config; config→mes;
mes→hnnaat; hnnaat→Hnnaat; Hnnaat→S1

• Node function N = AddrA→ASR:(AddrA, ASR); NA→ASR:(NA, ASR);

AddrB→ASR:(AddrB,ASR); N1→ASR:(N1,ASR); t→ASR:(t,ASR);
hash1→ASR:(hash1,ASR); ASR→config:(ASR,config);
config→mes:(config, mes); mes→hnnaat:(mes, hnnaat);
hnnaat→Hnnaat:(hnnaat, Hnnaat); Hnnaat→S1: (Hnnaat, S1);

• Color function C = AddrA:STRING; NA:WHIT; AddrA:STRING;

N1:WHIT; config; NNAA;
S1:NNAA; T:int; HASH:STRING; prdelay, trdelay:VAL;

• Alert function G = NULL;
• Arc expression function E = addra→ASR:addra; NA→ ASR:NA;

addrb→ASR:addrb; N1→ ASR:N1; t→ASR:t; hash1→ASR:hash1;
ASR→config:addra, NA, addrb, N1, t + prdelay + trdelay, hash1;
config→mes:config; mes→hnnaat:cmes;
hnnaat→Hnnaat:hnnaat; Hnnaat→S1:Hnnaat;

• Initialization function I = addra:addra; NA:NA; addrb:addrb; NA:NA; t:0;

hash1:hash1; config, hnnaat, S1:NULL;

Figure 13 shows the underlying CPN model of the improved entity A. In the original
protocol, we introduced timestamp and hash. The initial time of the timestamp is 0, and the
hash value hash1 is obtained through the hash function. In practical applications, SHA-1
and MD5 can be selected to calculate hash values using the hash function. Place S1 sends
message hNNaat to ACU. The message hNNaat is composed of (hash1, N1, NA, addra,
addrb, t). Among them, hash1 is used to ensure the integrity of the message, and timestamp
is used to ensure the freshness of the message. Place S5 receives the message {k = ka,
m = msga} from the ACU, and uses [t <= 9] at the transition Msga to verify whether the
timestamp has timed out. If the timestamp has not timed out, it means that the message
has not been tampered with or repeated. The distribution of session key kab is completed.
Place S6 sends a message ((kab, n3), t) to entity B. The session key kab encrypts the content
to be sent and the random number n3 and adds a new timestamp to the encrypted message.
Place S7 receives the message {k = kab, n = nn} from entity B, decrypts it at transition
DeAUTH2, and verifies whether the message has timed out through the preset timestamp
threshold of [t <= 45] at transition Denn. Message ((kab, n4’), t) is sent to entity B through
place S8. n4’ = n4-1 in the message is calculated through the action(n4-1) function in the
transition convertN4, using the session key kab, the message content and random number
N4’ are encrypted, and a new timestamp is added to the encrypted message. In the new
scheme, each message will carry a timestamp.

Figure 14 depicts the underlying CPN model of the improved ACU. ACU receives
the hNNaat message through the input place S1, decomposes it at the transition DeASR,
and obtains the request message parameters. Using (N1, NA, addra, addrb) as the input of
the hash function to recalculate the hash value at the transition CalculateHash and storing
the calculation result in hash2, the hash value is calculated at the transition compareHash.
If hash1 is not equal to hash2, it means that the message has been tampered with. At this
time, the key distribution server ACU discards the request message packet and interrupts
the session establishment. On the contrary, place S2 will send the message (hash1, NB,
addra, t) to entity B. Place S3 receives the response message (N2, kb, t) from entity B,
and ACU verifies whether the timestamp message times out at the transition DeAICRes.
Subsequently, the key distribution server ACU sends messages msGA and msGB to entity
A and entity B, respectively. Both messages contain the session key communicated by entity
A and entity B and the random number of the other party, and the message package carries
a timestamp.
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Figure 14. Internal CPN model of improved ACU.

Figure 15 describes the underlying CPN model of the improved entity B. The input
place S2 receives the message (hash1, NB, addra, t), verifies the timestamp information
at the transition DNA1, transition CalculateHash to recalculate the hash, and stores the
calculation result in the variable hash3. Transition CompareHASH compares hash1 and
hash3 and output place S3 to send a message ((kb, N2), t) to ACU. The input place S4
receives the {m = msgb, k = kb, t1 = t} message, verifies the timestamp information at the
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transition DMSGB, and entity B obtains the session key kab in the message msgb. Place
S6 receives the identity authentication request message ((kab, n3), t) from entity A. Using
the session key kab previously distributed by ACU in the transition DeAuth, it decrypts
the authentication message and verifies the timestamp. Place S7 sends {k = kab, n = nn}
message to entity A. In the message, nn = (n3’, n4, t + prdelay + trdelay), n3’ = action(n3-1),
and kab is used to Encrypt the message. Finally, it is sent with a timestamp to entity A.
Place S8 receives the message ((kab, n4’), t), verifies whether the timestamp has timed out
according to the upper time threshold [t <= 54] at transition DeAUTH3, and decrypts it to
obtain n4’. At the transition verify, n4 is restored according to n4 = action(n4’ + 1). At the
transition compareN4, according to [n4 = n4’], it is judged whether the random number
has been tampered with. If they are equal, it means that the session between Entity A and
Entity B has been successfully established.
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Figure 15. Internal CPN Model of Improved Entity B.

5.3. New Scheme Security Assessment Model

In Section 5.2 we strengthen the security mechanism of the protocol by adding times-
tamps and hashes to the CPN model of the original protocol. As shown in Figure 16,
in this section, we will introduce the same Dolev–Yao adversary evaluation model into
the improved new scheme CPN model to attack our improved model. The evaluation
model still includes three types of man-in-the-middle attacks: tampering attacks, replay
attacks, and spoofing attacks. The attacker launches the attack at the key distribution server
ACU, as shown in Figure 11. The red part represents a tampering attack, the purple part
represents a replay attack, and the blue part represents a spoofing attack.
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Figure 16. New scheme security assessment model.

5.4. Security Evaluation of Improved Scheme

In the previous section, we introduced three man-in-the-middle [36] attacks at the
bottom of ACU to verify whether the improved scheme can effectively defend against
the three attacks. In this section, we analyze the state space reports generated by these
three attacks.

As shown in Table 5, by comparing the state space under three attack methods before
and after the improvement, we can find that the state space nodes and state space arcs
under the three attacks have increased significantly in the new scheme. This is due to the
addition of a security defense mechanism in the model, making the model more complex.
The number of dead nodes is reduced from 3 to 1 in the tampering attack. We can find that
in the tampering attack, although the attacker modifies the random number. However, since
the output place S2 needs to compare and verify the hash at the transition comparehash
before sending the message, the tampered random number cannot pass the hash verification.
Finally, the attacker cannot launch an effective tampering attack. The number of dead
nodes is reduced from 4 to 1 in the replay attack. It can be found that after the timestamp
is introduced, the attacker launching a replay attack will cause the message to time out,
making the replay attack impossible. The dead nodes before and after the spoofing attack
improvement are all one, illustrating there is no spoofing attack in the original protocol.
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Table 5. Comparison of state spaces under three attack models.

Before Improvement New Scheme

Type TAR-ATK REY-ATK SPF-ATK TAR-ATK REY-ATK SPF-ATK

State Space Nodes 6520 2805 480 8960 15,555 2760
State Space Arcs 21,294 7997 1096 30,072 56,332 8402
Scc graph nodes 6520 2805 480 8960 15,555 2760
Scc graph Arcs 21,294 7997 1096 30,072 56,332 8402
Dead Markings 3 4 1 1 1 1
Dead Transition 0 0 0 0 0 0

As shown in Table 6, by comparing the state space generated by the security assessment
model before and after the improvement, it is found that the number of nodes and arcs
in the improved state space has increased significantly, which is due to the addition of
hash comparison and timestamp verification. The number of dead nodes has been reduced
from 16 to 1, indicating that the improved scheme is effective and can effectively defend
against tampering and replay attacks. Regardless of whether it is a legitimate user or an
illegal attacker, the request message initiated must pass hash verification and timestamp
judgment, and the message that cannot pass will be discarded. The security mechanism of
the new scheme can effectively ensure that the data are not tampered with and replayed
during the transmission process, ensuring the integrity, freshness, and confidentiality of
the data during the transmission process.

Table 6. State space comparison of security assessment model

Type Before Improvement New Model

State Space Nodes 42,245 50,320
State Space Arcs 162,968 197,323
Scc graph Nodes 42,245 50,320
Scc graph Arcs 162,968 197,323
Dead Marking 16 1
Dead transition 0 0

6. Performance and Security Analysis of New Scheme
6.1. Performance Analysis

The EIBsec protocol uses a symmetric encryption algorithm, and the time spent on
running the protocol is mainly taken during the encryption, decryption, and verification
steps. The time consumed includes generating random numbers NA, N1, N2, N3, N4, NB
and addresses addra, addrb, represented by the symbol Tgeb; encryption, decryption, hash
calculation, and random number calculation are represented by Ten, Tde, Th1 and Th2,
respectively; the verification steps include timestamp judgment and Hash verification rep-
resented by Tve1 and Tve2, respectively. In the new scheme, during a session establishment
process, entity A needs to generate one request datum, two encryption and decryption times,
two random number calculations, two timestamp judgments, and one hash calculation,
The time required is 2Tge+2Tde+2Ten+2Th1+2Tve1+Th2; the key distribution server ACU
needs one decryption, two encryptions, one sending message generation, two timestamp
judgments, and one hash calculation, the time required is Tde+2Ten+Tge+2Tve1+Th2+Tve2;
Entity B needs two encryptions, three decryptions, two random number calculations, two
data generations, four timestamp judgments, one hash verification, and one hash cal-
culation. The time required is 2Ten+3Tde+2Th1+2Tge+4Tve1+Tve2+Th2. As shown in
Table 7, the time required to establish a complete session connection in the new scheme is
6Ten+6Tde+5Tge+4Th1+8Tve1+2Tve2+2Th2, and the time required in the original scheme
is 6Ten+6Tde+5Tge+4Th1. Therefore, the total time consumption of the improved scheme
is increased compared to that of the original scheme, which is due to the addition of
timestamp judgment, hash calculation, and hash verification.
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Table 7. Comparison of communication time consumption

Type Original Scheme New Scheme

Entity A 2Tge+2Tde+2Ten+2Th1 2Tge+2Tde+2Ten+2Th1+2Tve1+Th2
ACU Tde+2Ten+Tge 1Tde+2Ten+Tge+2Tve1+Th2+Tve2

Entity B 2Ten+3Tde+2Th1+2Tge 2Ten+3Tde+2Th1+2Tge+4Tve1+Tve2+Th2
Total time 6Ten+6Tde+5Tge+4Th1 6Ten+6Tde+5Tge+4Th1+8Tve1+2Tve2+2Th2

6.2. Security Analysis

TAR-ATK: Tampering attack. The attacker intercepts the sender’s plaintext message
and replays it to the receiver after being tampered with. In the improved EIBsec protocol,
the sender uses the parameters in the message to calculate the hash when communicating
with the ACU, even if the attacker intercepts and tampers with the hash in the message.
When the ACU and the receiver receive the message, the hash will be recalculated and
compared. If the hash values are found to be different, the message will be discarded.
The one-way nature of Hash [37,38] solves tampering attacks and security vulnerabilities
very well.

REY-ATK: Replay attack. The attack method is that the attacker repeatedly sends an
already-received message to the receiver to occupy or consume system resources. In the
improved EIBsec protocol, we use the method of adding timestamps to defend against
replay attacks. When entity A, ACU, and entity B communicate with each other as senders
or receivers, they will all bring timestamps in the messages [39]. After receiving the
message, first, it will be verified whether the timestamp exceeds the upper limit of time
consumed by normal message sending. If the timestamp is judged to have timed out,
the message will be discarded.

SPF-ATK: Spoofing attack refers to an attacker using a fake or disguised identity to
communicate with other legitimate hosts or send false messages, causing errors to occur
on the host under attack. Both the original protocol and the improved protocol contain
random numbers for identity authentication, whether in the session key distribution phase
or the mutual identity authentication phase, and new random numbers will be generated
each time during the session interaction. The receiver recalculates the random number
through the calculation rules agreed in advance to ensure that it will not be spoofed.

Malicious instruction(MI): Malicious instruction refers to an attacker injecting mali-
cious commands into messages to disrupt the normal operation of the system or make
the target host a puppet machine or springboard that he can operate. In the improved
EIBsec protocol, the attacker cannot obtain a valid session key. Even if the attacker injects
malicious instructions into the message, the receiver will verify the timestamp and hash
in the message. Therefore, the attacker’s message with malicious instructions cannot pass
verification and will not cause damage to the system and data.

Forward Security (FS): Forward security means that after the current key is obtained by
an attacker, the historical keys are still safe. In the new scheme, each communicating party
will generate a random number and perform hash verification and timestamp judgment
every time a session connection is established. The random number used to calculate the
node key or group key is credible. This ensures that leakage of current session keys does
not affect historical communication messages.

Backward Security (BS): Backward security means that after the current key is obtained
by an attacker, future keys are still safe. In the new scheme, it is consistent with forward
security, except that the generation of keys is consistent with the freshness of random
numbers. The attacker cannot predict in advance the session key and node key used in the
next session communication, and the receiver will verify the freshness of the message by
judging the timestamp, ensuring that the leakage of the current session key will not affect
future communication messages.

Through the above analysis, Table 8 compares the security of the original and the im-
proved protocol. it is fully demonstrated that the improved solution provides higher security.
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Table 8. Security comparison of the original protocol and improved protocol.

Protocol TAR-ATK REY-ATK SPF-ATK MI FS BS

EIBsec × × X × × ×
Improved EIBsec X X X X X X

X indicates that it can resist attacks or has this security attribute. × indicates that it cannot resist attacks or does
not have this security attribute.

7. Conclusions

This article focuses on the security of the EIBsec protocol. A method combining CPN
theory and the Dolev–Yao attack model was used to evaluate the security of the protocol.
First, we use CPN Tools to model the protocol and verify the consistency of the model
with the original protocol based on the state space report. The purpose of this step was to
achieve better improvements and security assessments on the model to improve the scheme.
Subsequently, in order to evaluate the security of the original protocol, we introduced the
Dolev–Yao attacker model into the original model we built. After analysis and evaluation,
we found that the original protocol had Security vulnerabilities in tampering and replay
attacks. Secondly, we propose improvements to address existing security flaws, modeling
the improved protocol through CPN Tools, and adding the same Dolev–Yao attacker model
to detect the security of the new scheme. Finally, comparing the performance and security of
the original protocol and the improved protocol, it was found that the improved scheme can
enhance the security attributes of the protocol, effectively resist man-in-the-middle attacks,
and ensure the forward security and backward security of the key [40,41] while being
able to resist malicious instruction injection attacks. The improvement scheme proposed
in this article is not only applicable to the EIBsec protocol but also has great reference
value for other protocols in building automation systems such as BACnet, LonWroks,
and OPC-UA [42].

In future work, we plan to use the CPN Tools tool combined with the adversary
model to implement more types of attacks with CPN theory to verify whether there are
other security vulnerabilities in the protocol. Secondly, by studying more reasonable
key agreement [43] and key distribution schemes, we will attempt to design a security
protocol that is more suitable for protecting data during the communication process, thereby
improving security while reducing communication costs. Finally, a user database will be
established in the building automation system, and different access permissions will be
set for different users. Risks will be reduced through permission division and a secure
authentication mechanism so that ordinary users can share non-sensitive data. And we will
synchronous and asynchronous processing mechanisms to the system, count the number
of online users in the building automation system, and stagger the peak period of using the
system to improve the utilization rate of the system.
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EIB European Installation Bus.
CPN Colored Petri Net.
BAS Building Automation Systems.
IoT Internet of Things.
TAR-ATK Tampering attack.
REY-ATK Replaying attack.
SPF-ATK Spoofing attack.
MI Malicious instruction.
FS Forward Security.
BS Backward Security.

Appendix A. System Configuration

OS: Windows 11 Professional Edition version 21H2, 64-bit operating system
Processor: Intel(R) Core(TM) i7-12700H 2.30 GHz
Software: CPN Tools version 4.0.1
jdk: version “20.0.2”
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